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Relaxation anisotropy 
of quantitative MRI parameters 
in biological tissues
Nina Elina Hänninen1,2, Timo Liimatainen1,3, Matti Hanni1,3,4, Olli Gröhn5, 
Miika Tapio Nieminen1,3,4 & Mikko Johannes Nissi1,2*

Quantitative MR relaxation parameters vary in the sensitivity to the orientation of the tissue in the 
magnetic field. In this study, the orientation dependence of multiple relaxation parameters was 
assessed in various tissues. Ex vivo samples of each tissue type were prepared either from bovine knee 
(tendon, cartilage) or mouse (brain, spinal cord, heart, kidney), and imaged at 9.4 T MRI with T1, T2, 
continuous wave (CW-) T1ρ, adiabatic T1ρ and T2ρ, and Relaxation along fictitious field (RAFF2-4) 
sequences at five different orientations with respect to the main magnetic field. Relaxation anisotropy 
of the measured parameters was quantified and compared. The highly ordered collagenous tissues, 
i.e. cartilage and tendon, presented the highest relaxation anisotropy for T2, CW-T1ρ with spin-lock 
power < 1 kHz, Ad-T2ρ and RAFF2-4. Maximally anisotropy was 75% in cartilage and 30% in tendon. 
T1 and adiabatic T1ρ did not exhibit observable anisotropy. In the other measured tissue types, 
anisotropy was overall less than 10% for all the parameters. The results confirm that highly ordered 
collagenous tissues have properties that induce very clearly observable relaxation anisotropy, whereas 
in other tissues the effect is not as prominent. Quantitative comparison of anisotropy of different 
relaxation parameters highlights the importance of sequence choice and design in MR imaging.

The clinical use and applications of magnetic resonance imaging (MRI) are growing steadily. The advantage 
of MRI is that it provides valuable information on biological tissues without the use of ionizing radiation. The 
conventional MRI contrast emerges from the relaxation of spins in the matter that forms tissues. The relaxation 
can also be quantified via a method called quantitative MRI (qMRI).

The angular dependence of dipolar interaction alters relaxation time values in ordered structures depending 
on tissue orientation with reference to the main magnetic field1–4. For highly ordered collagenous tissues such 
as cartilage and tendon, the longest transversal T2 relaxation time arises when the fibers of the tissue are exactly 
at the so-called magic angle of 54.7° in relation to the main magnetic field B0

2. This is observed as an increased 
signal in T2 weighted images. The effect of anisotropy varies depending on the amount of organization in the 
material and on the relaxation parameter measured5.

Molecular motion (typically water molecules in the case of MRI) modulates the interaction of nuclear spins 
and causes variation in relaxation processes. Rigid organization of the molecular environment, e.g. collagen fiber 
network in cartilage or tendon, or white matter structures in the brain, restricts the molecular motion of water 
molecules6. This increases the strength of dipolar interaction, and thus affects the relaxation of spins. At the magic 
angle, the molecular dipolar coupling of the spins is at its minimum, resulting in the longest T2 relaxation time7.

One of the earliest studies of relaxation anisotropy in different tissue types was the study of Henkelman et al.8. 
At a magnetic field strength of 1.5 T, they observed that the T2 relaxation is anisotropic in tendon and cartilage, 
and the longitudinal relaxation time T1 expresses a slight orientational variation in tendon. T2 or T1 anisotropy 
was not observed in kidney, muscle, white matter or optic nerve tissues in their study. In other studies, the magic 
angle effect has been mostly studied in tendon1,9–14, cartilage3,5,6,15–17 and brain tissue18–25. The relaxation anisot-
ropy studies of the brain have focused on white matter, in which anisotropy has been observed both in vivo18 
and ex vivo26 for T2*, in vivo for T227 and in vivo for T114,22.

For tendon, T1 has been observed to slightly depend on the orientation13, but the T2 weighted MRI signal 
change can be even six-fold between orientations1,13. In the clinical tendon imaging, the magic angle effect can 
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be specifically utilized to obtain more signal, as tendons generally have very low MRI signal28–30. In cartilage, 
T1 relaxation does not exhibit relaxation anisotropy3, but T2 relaxation is strongly dependent on the tissue 
orientation5,7,16. The orientation dependence of multiple other MRI relaxation parameters has been observed to 
fall between these two extremes5. In addition to tendon and cartilage tissues, magic angle effect can be prominent 
also in other collagenous tissues, such as meniscus31,32.

Understanding the anisotropic relaxation properties of tissues is essential for accurate diagnostic decisions 
based on MRI5. Furthermore, anisotropy and its changes could specifically also serve as a biomarker for disease 
in organized tissues33. Previously anisotropy of multiple qMRI relaxation parameters has been quantified and 
compared in ordered tissue represented by articular cartilage5. However, comparative studies between different 
tissue types are scarce and little is known about the orientation dependence of modern relaxation time param-
eters, such as adiabatic (Ad-)T2ρ and relaxation along fictitious field (RAFF)45.

The purpose of our study is to analyze the relaxation anisotropy of different qMRI parameters in different 
biological tissues at a high magnetic field (9.4 T). We aim to provide reference data which can be used to estimate 
the influence of relaxation anisotropy on different MRI contrasts and applications, and provide a starting point 
for exploiting anisotropy as an MRI contrast.

Results
Cartilage and tendon.  In cartilage, a clear dependence of T2 on orientation was observed in the calculated 
T2 maps and T2 relaxation times (Fig. 1). Relaxation times varied between the measured five sample orientations 
also for continuous wave (CW-)T1ρ with 200 Hz and 500 Hz spin-lock, adiabatic T2ρ and RAFF2-4. For these 
orientation dependent parameters, the relaxation times were highest at the orientations near the magic angle 
conditions (at the nominal orientations of 60° and 120°). The orientation dependence was the most prominent in 
the radial zone of cartilage. However, some variation was observed also in the transitional and superficial zones 
of cartilage. For CW-T1ρ, the variation between the orientations diminished when the spin-lock amplitude was 
increased, and CW-T1ρ with 5000 Hz spin-lock was almost independent of orientation. No variation between 
orientations was observed for adiabatic (Ad-)T1ρ and T1 relaxation times.

For all the measured relaxation parameters, the calculated relaxation anisotropy varied between the param-
eters and the cartilage zones (Fig. 2, Table 1). Relaxation anisotropy was the highest in the radial zone of carti-
lage. T2 and Ad-T2ρ had an anisotropy of 75% in the radial zone. For CW-T1ρ, anisotropy varied between 75 
and 10% depending on the spin-lock amplitude. RAFF2 and RAFF3 had anisotropy of approximately 50%, and 

Figure 1.   Cartilage and tendon: (a) T2 weighted image and (b) T2 maps at the five measured orientations of 
representative samples. (c) Definition of regions of interest (ROIs). (d) Average relaxation times of four samples 
at the five orientations (0–120 deg) for the defined ROIs in cartilage and tendon samples.
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RAFF4 approximately 35%. Ad-T1ρ and fast spin echo (FSE) inversion recovery (IR-)T1 showed very little or 
no anisotropy at all.

In tendon, the calculated T2 maps at different sample orientations showed the largest difference between 
the nominal zero-degree orientation and the other orientations (Fig. 1). All the measured relaxation times were 
generally lower in tendon than in cartilage. T2, Ad-T2ρ, RAFF2-4 and CW-T1ρ with low spin-lock amplitudes 
showed some variation in the relaxation time values between the orientations, but the difference was smaller than 
in cartilage. Relaxation anisotropy was not as homogenously present through the tendon samples as in cartilage 
samples (Fig. 2). Relaxation anisotropy was on average 30% for Multi echo spin echo (MESE) T2, Ad-T2ρ and 
CW-T1ρ with low spin-lock amplitudes (Fig. 2, Table 1). Increasing spin-lock power reduced the anisotropy 
of CW-T1ρ similarly as in cartilage. RAFF2-4 had anisotropy of approximately 20%, Ad-T1ρ of 10%, and T1 
showed practically no anisotropy.

Brain and spinal cord.  Relaxation time values in gray and white matter in the brain and in the spinal cord 
did not show much variation between the orientations (Fig. 3). In the T2 map of the brain sample at the first 
orientation, and in the relaxation anisotropy maps of the brain, the apparently high anisotropy spot in a ventri-
cle was due to trapped paraformaldehyde (PFA) that moved away as the sample was rotated (Figs. 3 and 4). In 

Figure 2.   (a) Relaxation anisotropy maps of quantitative MRI parameters in cartilage and tendon. (b) Average 
relaxation anisotropy in ROIs defined as shown in Fig. 1C.
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general, the calculated anisotropy values in white and gray matter were very low for all the measured relaxation 
parameters, 5% or lower (Fig. 4, Table 1).

For spinal cord, relaxation anisotropy maps showed areas of high anisotropy at the edges of the sample, 
especially for RAFF2 and RAFF3, but these were probably due to the local inhomogeneities in the magnetic 
field. T2 anisotropy for spinal cord was approximately 5% and for CW-T1ρ with 200 Hz spin-lock 8% (Fig. 4, 
Table 1). For RAFF2 and RAFF3, anisotropy was slightly higher, but still lower than 10% and there was a large 
variation between the samples. For the rest of the qMRI parameters, the calculated anisotropy values were less 
than 5% in spinal cord.

Heart and kidney.  In the heart and kidney samples, the relaxation times were close to constant at all the 
different sample orientations (Fig. 5). In the relaxation anisotropy maps of the heart, specific high anisotropy 
areas appeared due to the field inhomogeneities caused by trapped air bubbles or blood (Fig. 6). The ROIs repre-
senting epicardium and mesocardium of the heart wall both had an average anisotropy of 5% for T2, and lower 
than 10% anisotropy for CW-T1ρ with 200 Hz spin-lock. Relaxation anisotropy for the other qMRI parameters 
was similar or lower.

For kidney, the relaxation anisotropy maps showed low level anisotropy throughout the tissue for most of the 
parameters, with RAFF2-4 and FSE IR-T1 showing the lowest level of anisotropy (Fig. 6). A duct-like structure 
could be observed in the top part of the anisotropy maps with most of the parameters. Overall, the relaxation 
anisotropy values in kidney medulla and cortex were low, approximately 5% for T2, CW-T1ρ with 200 Hz spin-
lock and RAFF2-3 and even lower for the other qMRI parameters (Fig. 6, Table 1).

Discussion
The purpose of the study was to expand the understanding of relaxation anisotropy in various biological tissues 
by conducting multi-parameter rotation measurements for several samples of different tissue types. Henkelman 
et al.8 used 1.5 T field in their study in 1994, and the observed relaxation anisotropy for tendon and cartilage, 
and not for the other tissue types (kidney, muscle, white matter, optic nerve). Our aim was to expand the same 
concept to quantitative imaging at 9.4 T field, include a wider set of MRI relaxation parameters and scanning 
orientations, as well as to also include an ROI analysis that could provide more information compared to the 

Table 1.   Average relaxation anisotropy of qMRI parameters in different tissues in the specified ROIs (Figs. 1C, 
3C and 5C). Cartilage ROIs: SZ superficial zone, TZ translational zone, RZ radial zone. ROIs in brain: GM gray 
matter, WM white matter. Cardiac ROIs: EC epicardium, MC mesocardium. Kidney ROIs: MD medulla, CX 
cortex.

Relaxation anisotropy (%)

Cartilage Tendon Brain Spinal Cord Heart Kidney

MESE T2
SZ: 12.7
TZ: 35.7
RZ: 71.1

26.0 WM: 5.0
GM: 3.4 4.7 EC: 5.3

MC: 5.8
MD: 3.1
CX: 4.6

CW-T1ρ 200 Hz
SZ: 19.7
TZ: 40.8
RZ: 74.5

32.0 WM: 5.1
GM: 4.4 7.9 EC: 8.8

MC: 9.7
MD: 5.0
CX: 5.3

CW-T1ρ 500 Hz
SZ: 13.3
TZ: 22.3
RZ: 49.9

27.1 WM: 2.1
GM: 2.3 4.9 EC: 5.1

MC: 4.6
MD: 2.9
CX: 3.1

CW-T1ρ 1000 Hz
SZ: 7.9
TZ: 9.1
RZ: 28.1

19.9 WM: 2.0
GM: 2.2 3.8 EC: 6.0

MC: 4.4
MD: 2.5
CX: 2.1

CW-T1ρ 5000 Hz
SZ: 8.4
TZ: 6.5
RZ: 10.9

6.7 WM: 2.7
GM: 2.7 4.1 EC: 6.6

MC: 5.0
MD: 1.8
CX: 3.8

Ad-T2ρ
SZ: 12.1
TZ: 34.2
RZ: 72.2

30.4 WM: 2.7
GM: 3.0 3.0 EC: 5.3

MC: 4.8
MD: 2.9
CX: 2.3

RAFF2
SZ: 29.3
TZ: 28.4
RZ: 52.8

20.3 WM: 4.0
GM: 2.6 9.6 EC: 3.6

MC: 3.6
MD: 3.1
CX: 6.7

RAFF3
SZ: 28.5
TZ: 27.5
RZ: 49.8

20.8 WM: 3.2
GM: 2.5 9.1 EC: 3.7

MC: 3.7
MD: 2.2
CX: 5.9

RAFF4
SZ: 26.5
TZ: 24.5
RZ: 34.5

17.6 WM: 2.5
GM: 3.0 4.9 EC: 3.0

MC: 2.7
MD: 1.2
CX: 3.9

Ad-T1ρ
SZ: 7.0
TZ: 4.0
RZ: 6.7

10.6 WM: 2.4
GM: 3.6 2.7 EC: 4.3

MC: 3.8
MD: 1.5
CX: 2.1

FSE IR-T1
SZ: 1.8
TZ: 0.6
RZ: 1.6

2.7 WM: 2.4
GM: 4.5 5.9 EC: 2.3

MC: 2.1
MD: 1.0
CX: 1.8
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NMR setting of the Henkelman et al.8 study. In addition to the relaxation anisotropy results, the data provided 
here and in the supplementary material S1 serves as a reference material for multi-parametric relaxation times 
in various tissue types in the 9.4 T magnetic field.

As expected, the highly ordered collagenous tissues, i.e. cartilage and tendon, showed the highest relaxation 
anisotropy, but the level of anisotropy was highly dependent on the measured MRI parameter. Parameters show-
ing the highest anisotropy were MESE T2, Ad-T2ρ, CW-T1ρ with the low spin-lock amplitude and RAFF2-3. 
Ad-T1ρ and T1 were practically independent of orientation. These findings are in accordance with a previous 
study investigating most of these parameters in articular cartilage5. Brain, spinal cord, heart and kidney tissue 
showed only slight variations in the relaxation times between the different orientations, and for these tissue 
types, the relaxation anisotropy was less than 10% for all the qMRI parameters. Thus, collagenous tissues have 
properties which induce relaxation anisotropy, whereas for other kind of soft tissues studied here, the phenom-
enon is mostly negligible.

For tendon, we expected to observe an even higher relaxation anisotropy than in cartilage, as tendon contains 
highly organized collagen fibers. In the literature, T2 weighted signal changes have been reported to be six-fold 
between the magic angle and the parallel orientation13 for the T2 weighted signal in ex vivo bovine tendon sam-
ples, or even 15-fold for T2* relaxation time in human tendons34. However, we only observed ~ 30% anisotropy 
in the tendon samples. This could be either a result of missing the exact magic angle orientation, which would 
produce the maximum signal, or then the observation is dependent on the used imaging sequence and the chosen 
TE values. The relaxation in a tendon tissue can be very fast, and if short enough TE values are not used, not all 
the signal can be received. The effect of the chosen TE values is further highlighted by the reports using ultra-
short echo time (UTE) T2* measurements, showing that UTE sequences have lower anisotropy than the longer 
TE sequences14. Another explanation could be, especially when the results are compared to the clinical imaging, 
that the relaxation anisotropy in tendons is dependent on the strain: in vivo, tendons are attached at both ends, 
and this natural strain is lost in the small, excised ex vivo samples. Nevertheless, variation of the relaxation anisot-
ropy between the quantitative MRI parameters in tendon tissue was observed, and it resembled that of cartilage.

The variation in the relaxation times due to the orientation change could also be caused by susceptibility 
effects35,36. For example, the cartilage and spinal cord specimens included bone structures that were likely to 
induce local distortions in the magnetic field. Some of the measured MRI parameters were more sensitive to local 
field inhomogeneities than the others, and that could cause errors in the measurement. Generally, the variation 
in B0 was less than ± 50 Hz, and the variation in B1 less than ± 5% at each orientation. The higher rank RAFF 
measurements (RAFF3 and RAFF4) have lower pulse power than RAFF2, and the variance in the relaxation time 

Figure 3.   Brain and spinal cord: (a) T2-weighted images and (b) T2 maps at the five measured orientations 
of representative samples. (c) Definition of ROIs. (d) Average relaxation times of four samples at the five 
orientations (0–120 deg) for the defined ROIs in brain and spinal cord samples.
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values and anisotropy for them was in some cases higher. Distinct focal changes in RAFF relaxation times were 
observed particularly nearby the nooks of the ventricles of the heart, where presumably air bubbles had been 
trapped and were moving during the rotation of the specimens.

In clinical imaging, field strengths are lower than that used in this study (9.4 T). However, relaxation anisot-
ropy exists also in clinical fields and should not be neglected37. This is true especially when imaging collagen-
ous tissues, for which the orientation change can result in clearly observable signal change. The data measured 
by Mlynarik et al. 200438 and Kantola et al. 202239 indicate that in cartilage tissue, relaxation anisotropy of T2 
and T1ρ is similar at 3 T field as at higher fields. Relaxation anisotropy of 10% or less probably does not cause 
problems in clinical diagnostics, but 50% or more could raise an issue. It is important also to consider the effect 
of the pulse sequence on the observed anisotropic properties of the tissues. In the current study, CW-T1ρ with 
low spin-lock amplitude generally had higher anisotropy than T2, even though previously the opposite has been 
observed5. This is probably due to differences in the used sequences or TE values.

Our study has some limitations. We measured only five orientations for each sample, and due to the defini-
tion of the anisotropy in Eq. (1), more accurate values for the anisotropy could be obtained if more angles were 
measured. Alternatively, the measured signal could be modeled using the assumed magic angle dependence9,10 to 
estimate the anisotropy more precisely, however the five angles used here are likely insufficient for such modeling. 

Figure 4.   (a) Relaxation anisotropy maps of quantitative MRI parameters in brain and spinal cord samples. (b) 
Average relaxation anisotropy in the ROIs defined as shown in Fig. 3C.
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The orientation sensitive relaxation parameters vary significantly near the magic angle, and thus the maximum 
values could be missed with just a few measured orientations. At least when the assumed fiber orientation is 
known, which is true for cartilage and tendon, it is possible to obtain a relatively good estimate of the orientation 
dependence with five or even fewer orientations5. With the other tissue types investigated here, this approach 
might not be as reliable, as the fiber-to-field angles tend to be less specific than in cartilage or tendon. However, 
we assume that the five orientations spanning through 0°–120° gives a good estimation of the relaxation anisot-
ropy and also allows for some variation to be present in the orientations of the structures within the samples.

We only measured ex vivo samples stored in a freezer (cartilage, tendon) or PFA (other tissues). Storing 
may affect the molecular dynamics of the tissues and the results could be different for in vivo measurements. 
In cartilage, the magic angle phenomenon has been observed both ex vivo3,5,16 and in vivo37. For brain tissue, 
existing findings suggest, that at least T2* orientation dependence can be observed in the fixed ex vivo human 
tissue samples25. Fixation of the tissue affects relaxation by decreasing the molecular motion and may thus also 
affect the relaxation anisotropy. However, fixation is a commonly utilized means necessary for soft tissue meas-
urements. PFA itself can contribute to relaxation and thus careful washing of the fixative before MRI measure-
ments is necessary. In brain samples, though, some PFA was observed to be trapped in a ventricle and caused an 
artifact in the anisotropy maps (Fig. 4). As the in vivo re-orientation measurements are quite hard to establish 
with existing systems, we chose to employ ex vivo samples to assess the anisotropic properties of tissues. The total 
measurement time for one sample was very long (~ 23 h) and thus keeping the samples at room temperature for 
extended time might have had an additional effect.

The orientations of each sample were chosen based on the measurement setup and known structure of each 
tissue type. For known fiber structures, i.e. cartilage, tendon and spinal cord, the orientation of fibers was set 
parallel to the main magnetic field at the nominal zero orientation. However, variation in the final fiber orienta-
tion was observed especially for tendon, for which the anatomical image (Fig. 1) shows that the fiber bundles 
can be slightly curved or otherwise not exactly parallel to each other. For the other tissue types, the inner struc-
tures are more complex and the definition of the orientation is more ambiguous. Measuring a 3-dimensional 
structure in two dimensions can result in a loss of information of the structure and relaxation anisotropy. In 
addition, calculating the anisotropy has inaccuracies due to measurement noise, possible local magnetic field 
inhomogeneities and relaxation time fitting errors. In tendon, the magic angle effect was so profound that at the 
nominal zero orientation, the acquired signal was extremely low especially for T2 measurements. Thus, the fitting 
of the T2 maps at this orientation had lower accuracy than at the other orientations, which could also affect the 
subsequent anisotropy calculations. Especially with this kind of tissue, it would be beneficial to use the shortest 

Figure 5.   Heart and kidney: (a) T2 weighted images and (b) T2 maps at the five measured orientations 
of representative samples. (c) Definition of ROIs. (d) Average relaxation times of four samples at the five 
orientations (0–120 deg) for the defined ROIs in heart and kidney samples.
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possible echo time in the measurements, or even UTE type of measurements to reliably compare the relaxation 
time values between the different orientations.

In conclusion, our data further confirms, that highly ordered collagenous tissues have properties that induce 
very clearly observable relaxation anisotropy, whereas in other tissues the effect is not as prominent. The phe-
nomenon should be considered especially when imaging collagen-rich tissues, such as cartilage and tendon. 
There is also a clear variation in relaxation anisotropy between the different relaxation parameters. The type of 
the measurement sequence can either reduce or increase the effect of relaxation anisotropy, and thus choosing 
an appropriate imaging sequence and parameters is crucial.

Figure 6.   (a) Relaxation anisotropy maps of quantitative MRI parameters in heart and kidney samples. (b) 
Average relaxation anisotropy in the ROIs defined as shown in Fig. 5C.
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Methods
Sample preparation and MRI measurements.  Cartilage and tendon samples were collected from 
four bovine knees obtained from a local grocery store. Cylindrical osteochondral plugs were extracted from 
the patellae, and tendon sections from the anterior cruciate ligament (ACL) or the cranial cruciate ligament 
(CrCL). The samples were stored at − 20 °C before the MRI measurements. For the other tissue samples, four 
mice were sacrificed and transcardially perfused and fixed with 4% PFA. Heart, brain, kidney samples and a 
section of spinal cord with the surrounding tissues were collected and stored in 4% PFA. The procedures were 
approved by the Animal Health and Welfare committee of the Regional State Administrative Agency (Approval 
No. ESAVI/270/04.10.07/2017) and conducted following the guidelines set by the European Commission Direc-
tive 2010/63/EU for animal experiments and ARRIVE guidelines.

MRI was performed at 9.4 T using a 19 mm quadrature RF volume transceiver (RAPID Biomedical GmbH, 
Rimpar, Germany) and VnmrJ3.1 Varian/Agilent DirectDrive console. For the MRI measurements, the samples 
were immersed in perfluoropolyether (Galden HS 240, Solvay Solexis, Italy) in a custom-built holder, which 
allowed rotation of the specimens with respect to the main magnetic field (B0) from outside the scanner. An 
automated rotation system based on an Arduino-controlled (Arduino Micro A000053, https://​www.​ardui​no.​cc/) 
stepper motor, connected to the scanner trigger TTL output, was programmed in conjunction with the pulse 
sequences providing the trigger to automatically rotate the sample after each repeated set of MRI sequences40.

The relaxation time measurements were performed at room temperature using a global preparation block 
coupled to a single slice fast spin echo readout (echo spacing = 5.5 ms, echo train length = 8 with centric echo 
ordering, matrix = 192 × 192, field‐of‐view = 17 × 17 mm, and 1 mm slice, yielding an in-plane resolution of 
90 × 90 µm). A single imaging slice was positioned at the center of the specimen, perpendicular to the axis of 
the specimen rotation. All the measurements were obtained at five different sample orientations, nominally 0°, 
30°, 60°, 90° and 120°, with respect to the main magnetic field B0. This set of orientations was chosen to cover 
the possible variation induced by the magic angle effect. For the known fiber structures, i.e. cartilage, tendon, 
spinal cord and brain, the orientation of fibers was set parallel to the main magnetic field at the nominal zero 
orientation. For heart and kidney, the nominal zero orientation was set close to what the orientation would be in 
clinical imaging. The orientation was confirmed with co-registration during data analysis. Shimming, calibrations 
and all the relaxation measurements were repeated for every orientation. The measurements at one orientation 
lasted approximately 4.5 h, yielding a total measurement time of about 23 h for each sample.

The measurements included: IR-T1 (repetition time (TR) = 7 s, inversion time = 0.2, 0.5, 0.8, 1.1, 1.4 and 3 s), 
MESE T2 (TR = 3 s, echo time (TE) = 7.4, 14.7, 22.1, 29.4, 36.8, 44.1, 51.5, 58.8, 66.2 and 73.6 ms), T1ρ meas-
ured using adiabatic pulses41–44 (Ad-T1ρ) (TR = 5 s, pulse shape = HS1, τp = 4.5 ms, and γB1,max/2π = 2.5 kHz, 
pulse trains of 0, 4, 8, 12, 24 and 36 pulses using MLEV4 phase cycling), continuous wave (CW-)T1ρ (TR = 5 s, 
γB1/2π = 200, 500, 1000 or 5000 Hz, spin-lock durations of 0, 8, 16, 32, 64 and 128 ms), adiabatic T2ρ43 (Ad-T2ρ) 
(TR = 5 s, pulse shape = HS1, τp = 4.5 ms, and γB1,max/2π = 2.5 kHz, pulse trains of 0, 4, 8, 12 and 24 pulses), 
and RAFF45,46, which was measured with three different setups: RAFF2, RAFF3 and RAFF4 (TR = 5 s, 45 deg, 
τp = 4.5 ms, γB1,max/2π = 625 Hz / 525 Hz / 323 Hz respectively, using trains of 0, 2, 4, 8, 16, 32 and 64 pulses with 
and without an inversion preparation). In addition, B0 (using WASSR preparation47 and B1 (using hard pulse 
preparation) were measured to assess the homogeneity of the B0 and B1 fields in the imaged slice.

Data analysis.  The MRI relaxation time constants were fitted in a voxel-wise manner using 2-parameter 
monoexponential model (and additionally accounting for steady state for RAFF2-445) with a noise floor subtrac-
tion before the fitting. In-house developed Matlab (Matlab R2017b, Mathworks, Natick, MA, USA) plugins for 
Aedes (http://​aedes.​uef.​fi) were applied to fit the parameters by minimizing the square sum between the model 
and the data.

The images of the same sample at different orientations were co-registered to the first orientation using Elastix 
software48 and the first echo of the T2 data. Anisotropy was defined as a Michelson contrast5,49,50

where Rmin and Rmax are the minimum and maximum measured intensity R over the different physical orienta-
tions of the specimen. Here, this formalism was used to calculate the voxel-wise MR anisotropy maps for the 
relaxation parameters using the co-registered relaxation time maps.

To quantitatively analyze the values of the MRI parameters in the different locations of the samples, ROIs were 
manually defined utilizing the T1 and T2 maps as anatomical guides. The average relaxation time and anisotropy 
values were calculated for each ROI separately from the respective maps.

Data availability
The datasets used and analysed during the current study are available for download at Zenodo (DOI 10.5281/
zenodo.6303732).
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