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Comprehensive mapping of SARS-CoV-2
interactions in vivo reveals functional virus-host
interactions
Siwy Ling Yang1,8, Louis DeFalco 2,8, Danielle E. Anderson 3,8, Yu Zhang 1,8, Jong Ghut Ashley Aw 1,8,

Su Ying Lim1, Xin Ni Lim1, Kiat Yee Tan1, Tong Zhang1, Tanu Chawla3, Yan Su4, Alexander Lezhava 4,

Andres Merits5, Lin-Fa Wang 3,9✉, Roland G. Huber 2,9✉ & Yue Wan 1,6,7,9✉

SARS-CoV-2 is a major threat to global health. Here, we investigate the RNA structure and

RNA-RNA interactions of wildtype (WT) and a mutant (Δ382) SARS-CoV-2 in cells using

Illumina and Nanopore platforms. We identify twelve potentially functional structural ele-

ments within the SARS-CoV-2 genome, observe that subgenomic RNAs can form different

structures, and that WT and Δ382 virus genomes fold differently. Proximity ligation

sequencing identify hundreds of RNA-RNA interactions within the virus genome and between

the virus and host RNAs. SARS-CoV-2 genome binds strongly to mitochondrial and small

nucleolar RNAs and is extensively 2’-O-methylated. 2’-O-methylation sites are enriched in

viral untranslated regions, associated with increased virus pair-wise interactions, and are

decreased in host mRNAs upon virus infection, suggesting that the virus sequesters

methylation machinery from host RNAs towards its genome. These studies deepen our

understanding of the molecular and cellular basis of SARS-CoV-2 pathogenicity and provide a

platform for targeted therapy.
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Coronaviruses (CoVs) are enveloped viruses with positive-
sense single-stranded RNA genomes. They are widespread
in animals and can cause mild to severe respiratory or

enteric disease in humans1,2. There are currently seven CoVs
known to infect humans, which include the four “seasonal”
human CoVs: OC43, 229E, NL63, and HKU13, which can cause
mild cold-like symptoms and three highly pathogenic CoVs:
SARS-CoV, MERS-CoV, and SARS-CoV-2. SARS-CoV emerged
in 2002 and resulted in more than 8,000 human infections with a
case fatality rate of approximately 10%4. This was followed by the
discovery of MERS-CoV in 2012, which has resulted in more than
2000 human infections and over 800 lethal cases with ongoing
sporadic outbreaks in the Middle East5. More recently, the out-
break of SARS-CoV-2 has caused unprecedented social and
economic damage around the world6. Since it was first reported
in Wuhan, China in December 2019, SARS-CoV-2 has resulted in
over 164 million infections and more than 3.4 million deaths as of
20th May 2021, according to WHO. Different variants of SARS-
CoV-2 have been found to circulate within patients. Viruses that
contain deletions of various sizes in the ORF8 region have been
found around the world, including in Singapore, Taiwan, Ban-
gladesh, Australia, and Spain7. In particular, a 382-nucleotide
deletion (Δ382) of the SARS-CoV-2 genome that truncates ORF7
and deletes ORF8 was found in patients in Singapore8. While
patients infected with Δ382 virus showed less severe symptoms
than those infected with wild-type (WT) viruses, the molecular
mechanisms behind virus attenuation in patients are unclear7. It
is hence imperative to understand how SARS-CoV-2 and their
variants function, in order to facilitate effective surveillance,
prevention, and treatment strategies.

CoV genomes are among the largest of the RNA viruses, with
lengths of 26–32 kb2. Upon entry into the cell, the positive-sense
genome is translated from two open reading frames (ORF1a and
ORF1ab) and the resulting polyproteins are cleaved into non-
structural proteins. Non-structural proteins are essential for virus
RNA replication that, in addition to new genomes, also generate
numerous subgenomic RNA (sgRNA) species using dis-
continuous transcription9. These RNAs, together with the full
genome, can interact with host cell proteins and RNAs to regulate
virus infection. Like many other RNA viruses such as dengue
virus (DENV) and Zika virus (ZIKV), the SARS-CoV-2 genomic
RNA can fold into secondary and tertiary structures that are
essential for virus RNA replication and protein translation10–13.
Importantly, elements in the 5’ and 3’ untranslated regions
(UTRs) have been implicated in virus replication and protein
synthesis14,15, and the frameshifting element is important for
ribosome slippage to enable the translation of ORF1ab16,17.
However, how the rest of the virus genomes folds into short- and
long-range structures is still under-studied.

Here, we utilize different high throughput RNA and inter-
actome techniques (SHAPE-MaP18, PORE-cupine19, and
SPLASH20) to comprehensively interrogate the secondary struc-
tures and virus-host interactions along with the WT and Δ382
SARS-CoV-2 genomes to identify potentially functional structure
elements along the virus genome (Fig. 1a). Using PORE-cupine,
we identify sgRNA-specific structures as well as WT and
Δ382 specific structures using Nanopore direct RNA sequencing.
The advantage of long-read sequencing enables us to map our
sequencing reads uniquely to each sgRNA, without needing to
average structure signals across all sgRNAs and full-length RNA
in short-read sequencing, due to ambiguous mapping. SPLASH
further allows us to identify pair-wise RNA interactions using
proximity ligation and sequencing, deepening our knowledge of
how the genome folds along itself for function. In addition to
studying how the virus genome interacts with itself, determining
how the virus genome interacts with host RNAs in its cellular

environment is another key to understanding virus pathogenicity.
Other RNA viruses, including ZIKV, have been shown to directly
interact with host RNAs such as microRNAs to impact virus
infection11. Most host factor studies for SARS-CoV-2 done to
date have been focused on how the host proteins interact with the
virus proteins and genome; much less is known about how SARS-
CoV-2 interacts with host RNAs inside cells21–24. Here, we utilize
proximity ligation sequencing (SPLASH) to identify host RNAs
that interact with the SARS-CoV-2 genome inside infected Vero-
E6 cells (Fig. 1a). We observe that SARS-CoV-2 RNA interacts
strongly with a small nucleolar RNA (snoRNA) SNORD27 and is
2’-O-methylated inside cells. We further show that 2’-O-methy-
lation of host RNAs is decreased in SARS-CoV-2 infected cells,
and that virus-SNORD27 interaction could serve as a mechanism
for SARS-CoV-2 to facilitate host RNA degradation.

Results
SARS-CoV-2 RNA is highly structured in host cells. To study
the secondary structures of SARS-CoV-2 RNAs inside cells, we
infected Vero-E6 cells with WT and Δ382 SARS-CoV-2 and
performed structure probing using the compound NAI
(Methods)10,25. We then performed mutational mapping (MaP)
to determine the location of high reactivity bases, indicating
single-stranded bases, along the virus genome. We confirmed that
mutational rates along with NAI-treated, denatured and DMSO-
treated samples are as expected (Supplementary Fig. 1a,b, Sup-
plementary Data 1). Biological replicates of SARS-CoV-2
SHAPE-MaP show that the reactivities across replicates are
highly reproducible (Supplementary Fig. 1c), cover around 80%
of the entire SARS-CoV-2 genome (Fig. 1b), and map to known
structures in the 5’ and 3’ UTR as expected (Supplementary
Fig. 1d, Supplementary Data 2). SHAPE-MaP reactivities were
used to constrain RNA secondary structure predictions to obtain
accurate structure models of the entire SARS-CoV-2 genome
(Methods, Fig. 1c,d, Fig. 2)26. Our structure models are consistent
with previously identified structural elements in the 5’ and 3’
UTRs (Fig. 1c)27–29 and for TRS-L elements (Supplementary
Fig. 2a)27, confirming that models based on our data are accurate.
As the frameshifting element is a conserved element that is
important for ribosome frameshifting and translation of ORF1b,
multiple structure models based on high throughput structure
probing data have been proposed. We observed that our structure
model resembles the alternative structure presented in Lan et al.
(Fig. 1d, Supplementary Fig. 2b), and mapped our SHAPE-MaP
reactivities onto the different proposed models in the literature.
Out of five different structures, our SHAPE-MaP reactivities
(from both the WT and Δ382 SARS-CoV-2 virus) agree the most
with the in-cell FSE model proposed by Lan et al. (Supplementary
Fig. 3,4). Similar to other RNA viruses like DENV and ZIKV, 57%
of the bases in the SARS-CoV-2 genome are predicted to be
paired, with a median helix length of 5 bases in both WT and
Δ382 genomes (Supplementary Fig. 4b)10. These short helices
enable RNA viruses to escape from host immune responses.

To identify potentially functional structural RNA elements in
the SARS-CoV-2 genome, we used a consensus model between
WT and Δ382, incorporating local SHAPE reactivity, local
Shannon entropy of the structure models and local ScanFold
Z-scores in 150 nt windows (Fig. 2a)29–32. We evaluated window
sizes of 50–300 nt which yielded consistent results (Supplemen-
tary Fig. 6a). We considered a position a consensus candidate if it
had at least four out of six possible characteristics of ‘low average
SHAPE’ as an indication of structuredness at a location, ‘low
Shannon entropy’ as an indication of structural consistency and
limited alternative folding, and ‘low ScanFold Z-score’ as a proxy
for the high stability of putative structural elements in both WT
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and Δ382 (Fig. 2a). Local structure models of consensus regions
were largely consistent with structures obtained in the global
context and identified novel highly structured elements within the
genome (Fig. 2b, Supplementary Fig. 5). As single-stranded
regions present in the SARS-CoV-2 genome could be used for
siRNA targeting, we also identified locations with high reactivities
(top 20%) in both the WT and Δ382 genomes (Supplementary
Fig. 6b, Supplementary Data 3). We identified a total of 21
regions that could be used for siRNA targeting, to facilitate
potential treatments for COVID-19 disease.

SARS-CoV-2 genome contains hundreds of regions involved in
intramolecular long-range interactions. In addition to deter-
mining which bases are paired or unpaired in the SARS-CoV-2
genome, we also wanted to know the identity of pairing partners
within the genome. To identify pair-wise RNA interactions, we
treated SARS-CoV-2 or Δ382 infected Vero-E6 cells with bioti-
nylated psoralen and performed proximity ligation sequencing
using SPLASH20. Biological replicates of SPLASH showed a good
correlation of pair-wise interactions between the samples, indi-
cating that our method is robust (Supplementary Fig. 7a,b). 82.9%
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Fig. 1 Comprehensive structure and interactome mapping of SARS-CoV-2 RNA in cell. a Schematic of the different strategies that were used to probe
WT and Δ382 inside infected Vero-E6 cells. NAI was used to modify single-stranded bases in cells and these modifications are then either read out directly
using Nanopore direct RNA sequencing or converted into a cDNA library for Illumina sequencing. Biotinylated psoralen was used to crosslink pair-wise
RNA interactions in infected cells to capture both intramolecular and intermolecular RNA-RNA interactions. b SHAPE-reactivity along with the WT (black)
and Δ382 (red) SARS-CoV-2 genome. Higher reactivity regions tend to be more single-stranded. c, d Structure models are generated using the program
RNA structure using SHAPE-reactivities as constraints54, and visualized using VARNA57. The modelled structures of 5’ UTR and 3’ UTR (c), and that of the
frameshift element (d) agree with known models in the literature. The frameshift element model is the highest confidence structure generated by RNA
structure using SHAPE-MaP as constraints. Source data are provided as a Source Data file.
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of our chimeric interactions on the 18 S and 28 S rRNA fall within
30 Å in physical space, indicating that our data is capturing pair-
wise interactions as expected (Supplementary Fig. 7c).

We identified 237 and 187 intramolecular interactions along
the WT and Δ382 genomes, respectively (Fig. 3a, Supplementary
Data 4,5). SPLASH pair-wise interaction patterns are largely
consistent between WT and Δ382 genomes, indicating the

robustness of our method (Fig. 3a, Supplementary Fig. 7d, e).
45.6% and 42.3% of the intramolecular interactions occur over a
distance longer than 1 kb in the WT and Δ382 genomes
respectively, indicating that the viral sequences are involved in
extensive long-range interactions (Fig. 3b, Supplementary
Fig. 7f–h). Longer-range interactions (>1 kb) tend to have a
lower number of reads than shorter-range interactions, indicating
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that they are formed more transiently inside cells (Fig. 3c),
consistent with previous literature that longer-range interactions
tend to be disrupted33. As RNA structures could have an impact
on the regulation of virus gene expression, we examined whether
RNA pairing could be associated with translation using publicly
available SARS-CoV-2 ribosome profiling data (Supplementary
Data 6). We observed that ribosome pause sites from cyclohex-
imide experiments have more pair-wise interactions than non-
pause sites (Fig. 3d)34, suggesting that RNA structures could be
associated with translational pauses and thus regulate the
translation of SARS-CoV-2.

Interestingly, we observed that SARS-CoV-2 RNA exhibit
more alternative interactions than DENV and ZIKV RNAs inside
the cell, with 55.6% and 48.1% of the WT and Δ382 pair-wise
interactions involving two or more partners (Fig. 3e)10. This
suggests that SARS-CoV-2 RNA takes on numerous conforma-
tions that are present simultaneously inside host cells. We
observed that a location at the 3’ end of sgRNA N is particularly
promiscuous and interacts with regions throughout ORF1a
(Fig. 3f). Structure modelling of SPLASH identified interactions
using the program RNAcofold revealed that energies calculated
from the predicted pairings are coherent with the SPLASH
interaction counts (Fig. 3g)35, indicating that the relative
abundance of SPLASH counts between different interactions
could serve as a proxy for the relative prevalence of these
interactions inside cells.

SARS-CoV-2 sgRNAs are structurally different. In addition to
the synthesis of the full-length genomes, a nested set of 3’ co-
terminal sgRNAs are made in SARS-CoV-2 infected cells using
discontinuous RNA synthesis9 (Supplementary Fig. 8a). These
sgRNAs range from 2–8 kb long, contain a leader sequence and
are produced at different amounts. While SHAPE-MaP provides
information on single nucleotide SHAPE along the genome,
short-read sequencing makes it difficult to map structure infor-
mation unambiguously to individual sgRNAs. While sgRNAs
have been observed to have different structures from full-length
genomic RNA using enrichments and proximity ligation and
sequencing36, it is unclear whether each individual sgRNA con-
tains unique structures that could be important for sgRNA-
specific functions and regulation.

To address this, we utilize our previously developed method of
coupling RNA structure probing with Nanopore direct-RNA
sequencing (PORE-cupine) to allow us to read out SHAPE
reactivities along long RNA molecules19. Sequencing of two
biological replicates of RNAs extracted from NAI-treated, WT
and Δ382 SARS-CoV-2 infected Vero-E6 cells showed good
structure correlation, indicating that our data is reliable

(Supplementary Fig. 8b, c). We also confirmed that PORE-
cupine reactivity shows a good correlation with SHAPE-MaP
reactivity along the SARS-CoV-2 genome (Supplementary
Fig. 8d). By filtering for the full-length reads that contain leader
sequences, we determined reactivities along individual ORF3a, E,
M, ORF6, ORF7a, ORF7b, ORF8 (WT only), and N sgRNAs
(Fig. 4a, Supplementary Fig. 9a, Supplementary Data 7). We
observed that ORF7b sgRNA contains the highest average
reactivities for both WT and Δ382, suggesting that it is likely to
be the most single-stranded among the different sgRNAs of
SARS-CoV-2 (Fig. 4b, Supplementary Fig. 9b). As structures
around the leader sequences for each sgRNA were previously
shown to have weak correlations with gene expression, we
calculated the correlation between PORE-cupine reactivity
around TRS-B sites for each sgRNA and their relative abundance
from our Nanopore data. We observe a weak positive correlation
between reactivity and transcript abundance, similar to previously
published literature28, for both WT and Δ382 sgRNAs, suggesting
that single-strandedness around the TRS-B region could result in
increased synthesis of corresponding sgRNAs (Fig. 4c, Supple-
mentary Fig. 9c).

To identify structures unique to each sgRNA, we compared the
reactivities among individual sgRNAs to identify highly consis-
tent as well as divergent structural regions (Fig. 4a, Methods). We
found 4 regions in RNAs of WT SARS-CoV-2 that showed
consistent structure differences between different sgRNAs, 3 of
which are also seen in the RNAs of Δ382 sgRNAs (Supplementary
Fig. 9a). While two regions centred around bases 27,800 and
28,250 correspond to the leader sequences of sgRNAs of ORF7b
and N respectively, two other structurally different regions
(centred around 29,300 and in 3’ UTR) are present within all
sgRNAs, and hence cannot be identified using short-read
sequencing (Fig. 4d, e, Supplementary Fig. 9a, d, e). We checked
that the regions that show diverse structures in different sgRNAs
also exhibit multiple interaction partners by SPLASH, confirming
that those regions do exist in alternative conformations (Fig. 4f).
We then visualized the sgRNA-specific structures by incorporat-
ing PORE-cupine reactivities into structure modelling and
observed different structure models for the same sequence region
in different sgRNAs (Fig. 4g, Supplementary Fig. 10a, b), further
confirming that different sgRNAs could exist in different
structures despite sharing the same sequences.

Genomes of WT and Δ382 SARS-CoV-2 contain different RNA
structures. Viruses that contain genomes with various ORF8
deletions have been found in patients around the world7, however
the mechanisms behind how such deletions impact the virus are
still largely unknown. To determine whether virus phenotypes

Fig. 3 SARS-CoV-2 contains hundreds of intramolecular long-range interactions. a Pair-wise RNA-RNA interactions along the WT (blue) and Δ382 (red)
genomes. The thickness of the lines indicates the abundance of chimeric reads for that particular interaction. b Histogram showing the distribution of
interactions that span different lengths along the WT SARS-CoV-2 genome. Interactions over a distance longer than 1 kb are classified as “long-range” and
comprise 45.6% of all interactions. c Boxplot showing the distribution of the abundance of SPLASH chimeric reads for long (> 1 kb) (WT n= 195, Δ382
n= 264) and short (≤ 1 kb) (WT n= 140, Δ382 n= 150) pair-wise interactions in both WT (left) and Δ382 (right) genomes. Long interactions tend to
have lower SPLASH interaction counts, suggesting that they may be formed more transiently. P-values were calculated using a two-sided Wilcoxon Rank
Sum test without adjustments (p= 3.857 × 10−5 and 1.776 × 10−8 respectively). d Boxplot showing the distribution of SPLASH chimeric reads along the
SARS-CoV-2 genome for all sites (left) (n= 29,847) and for sites that show ribosome pausing events (right) (n= 80). Sites with ribosome pausing events
show higher SPLASH chimeric reads, indicating that they reside in more highly structured regions. P-value was calculated using the two-sided Wilcoxon
Rank Sum test without adjustments. In (c, d), the box represents the 25–75th percentiles, and the median is indicated. The whiskers show the minimum
and maximum values. The outliers are presented as dots. e Bar-charts showing the proportion of unique pair-wise interactions, as well as interactions that
have 2 or more alternative partners, along the WT and Δ382 genomes. f Arc plots showing the alternative interactions between N and other positions
along the SARS-CoV-2 genome. g Representative structure models for interactions between N and other regions along the genome. Structure models are
generated using RNAcofold from regions identified by SPLASH. For each interaction, the SPLASH count and predicted energy of folding from RNAcofold is
shown next to the model35. SHAPE-MaP reactivities are mapped onto the bases in the structure models. Source data are provided as a Source Data file.
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could be associated with structural differences, we performed
correlations of SHAPE-MaP reactivities between the two gen-
omes. As expected, structures in WT and Δ382 genomes are
generally highly correlated (R= 0.62, Supplementary Fig. 11a),
although we do observe local structure differences at the deletion
region of around base 28000 (Supplementary Fig. 11b, c).
SPLASH analysis around the deletion region also revealed

differences in pair-wise interactions between WT and Δ382,
confirming the local structure rearrangements between the two
viruses (Supplementary Fig. 11d).

As the deletion occurs around base 28,000 (ORF8), it is present
not only in the full-length genome but also in most of the sgRNAs
(except for sgRNA of N, starts the site of which is located
downstream of the deletion). Due to the extensive amount of
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sequence similarity between the different sgRNAs, it is difficult to
map uniquely to each individual sgRNA using short-read
sequencing. Consequently, it remained unclear whether the
structure differences between WT and Δ382 are present in all
the sgRNAs or only between some specific sgRNAs. To determine
which sgRNA shows reactivity differences between WT and Δ382
genomes, we compared the PORE-cupine reactivity profiles of
individual WT and Δ382 sgRNA to each other (Supplementary
Fig. 12a). While we could only detect very local reactivity
differences immediately before and after the deletion site when all
the WT and Δ382 sgRNA reads are summed and compared to
each other as an aggregate (similar reactivity profiles obtained
using short-read Illumina sequencing), we observed additional
structure differences when individual WT and Δ382 sgRNAs are
compared to each other (Supplementary Fig. 12a–d). We
observed the largest structure differences between WT and
Δ382 in ORF3a and E sgRNAs (Supplementary Fig. 12a). We also
consistently observed a second structurally different region
between WT and Δ382 sgRNAs at the bases 29,200–29,400
(Supplementary Fig. 12b, d), indicating that the deletion could
impact distal structures that are located more than 1 kb away. As
expected, we did not observe reactivity differences between
N-gene sgRNAs of WT and Δ382 viruses as this sgRNA is
transcribed using TRS located downstream of the deletion region.
This finding indicates that the reactivity differences between other
sgRNAs of WT and Δ382 viruses are likely to occur in cis due to
the deletion and not due to factors that may act in trans
(Supplementary Fig. 12a, b). As sgRNA of N is by far the most
abundant sgRNA of SARS-CoV-2 and it did not show structure
differences between WT and Δ382 viruses9, differences in the
reactivity between the 29,300 region in WT and Δ382 genomes
were masked when an aggregate reactivity of all sgRNAs is used
for comparison (Supplementary Fig. 12a, b). As such, using long-
read sequencing to map RNA structures across sgRNAs can yield
novel insights into sgRNA-specific RNA structures.

SARS-CoV-2 genome interacts strongly with mitochondrial
RNAs and snoRNAs. The genomes of RNA viruses can interact
directly with host RNAs to facilitate or restrict viral infection. By
analysing the SPLASH interactions between SARS-CoV-2 and
host cell RNAs, we identified 374 and 334 host RNAs that interact
with the WT and Δ382 SARS-CoV-2 genomes, respectively
(Fig. 5a, b, Supplementary Fig. 13a–c, Supplementary Data 8,9).
The host RNA-virus genome interactions are preferentially
enriched in the coding regions along host mRNAs (Fig. 5c).
STRING analysis of the top 25% of SARS-CoV-2 interactors

showed that they are enriched for proteins that physically interact
with each other (PPI: p < 10−16)37, including genes that are
involved in the mitochondria, ER, GTP hydrolysis, and transla-
tion processes (Fig. 5d). GO term enrichment of interacting
RNAs showed similar enrichments, confirming the importance of
SARS-CoV-2 interactors in mitochondrial and ER function
(Fig. 5e)38,39.

While SARS-CoV-2 RNAs bind to more than 300 RNAs inside
cells, we observed that the top 10 (2.6%) of the strongest
interactors contributed to 17.5% and 24.1% of all WT and Δ382
binding events, indicating that the virus binds to them
particularly strongly (Fig. 5b). These strong interactors include
mitochondrial RNAs such as the mRNA of COX1, which is a
mitochondrially encoded cytochrome-c oxidase, mitochondrial
rRNA and tRNA, and SNORD27, a snoRNA responsible for 18 S
ribosomal RNA methylation (Supplementary Fig. 13b). Using the
program RNAcofold, we observed strong pair-wise interactions
between virus and mitochondria RNAs in SPLASH identified
binding sites (Supplementary Fig. 13d). While generally, SARS-
CoV-2 interacts stronger with more abundant host RNAs, we
observed significantly more interactions between the virus and
host mitochondrial and snoRNAs than expected from abundance
alone (Supplementary Fig. 13e). A previous study using RNA-
GPS had shown that part of SARS-CoV-2 RNAs localized to the
mitochondria and the nucleolus40. SARS-CoV-2 infection also
results in mitochondrial dysregulation23,41. Further experiments
are needed to test whether the direct pairing between SARS-CoV-
2 and mitochondrial RNAs contributes to mitochondrial
dysregulation.

The SARS-CoV-2 infection has been found to have an impact
on almost every aspect of the host transcriptome to control virus
and host gene regulation42. We observed a general decrease of
RNA abundance of SARS-CoV-2 interactors upon virus infection.
Interestingly, however, an opposite trend was observed for the
strong interactors that were selectively stabilized and their
abundance is increased upon SARS-CoV-2 infection (Fig. 5f, g,
Supplementary Fig. 13f, g). qRT-PCR analysis of key interactors
such as COX1 mRNA and MT-rRNA showed that these RNAs
are indeed stabilized upon virus infection, confirming our RNA
sequencing results (Supplementary Fig. 13h–k). Mining of
published SARS-CoV-2 proteomics data revealed that proteins
encoded by SARS-CoV-2 interactors were also preferentially
translated and/or stabilized at the protein level as compared to
proteins produced by non-SARS-CoV-2 interactors (Fig. 5h)43.
Thus, interaction with SARS-CoV-2 RNAs may confer a
stabilizing effect on their overall gene regulation.

Fig. 4 PORE-cupine reveals sgRNA-specific structures. a Top, SPLASH interactions along SARS-CoV-2 from the region 3a to the 3’ UTR. Bottom, PORE-
cupine reactivity signals are averaged across all the signals from the sgRNAs (Sum). PORE-cupine reactivity signals are also shown for 3a (green), E (blue),
M (brown), 6 (purple), 7a (light brown), 7b (navy), 8 (red) and N (dark green). PORE-cupine reactivity signals for each sgRNA are filtered for full-length
sequences that contain leader sequences for each sgRNA. Regions with significant differences are highlighted in grey, p < 0.05, (Methods). b Violin plots
showing the distribution of average reactivities for each sgRNA. Each sgRNA is subsampled for 500 strands before calculating its mean, n= 100. P-values
were calculated by comparing the distribution of the reactivities in each sgRNA against all of the sgRNAs with a two-sided Wilcoxon Rank Sum test. n.s.:
not statistically significant. The box represents the 25–75th percentiles, and the median is indicated. The whiskers show the minimum and maximum
values. c Scatterplot showing the correlation between the PORE-cupine reactivity around TRS-B for each sgRNA (x-axis) against transcript levels inside
cells (y-axis). d,e Reactivity plots of regions that show significant structure differences between the sgRNAs. d P-value for the follow regions are:
27,750–27.850 (p-value= 3.52 × 10−6), 27,800–27,900 (p-value= 2.55 × 10−8), 27,850-27,950 (p-value= 0.02), 27,900–28,000 (p-value= 0.03) and
27,950-28,050 (p-value= 0.04). e P-value for the follow regions are: 29,250–29,350 (p-value= 0.02). f Boxplots showing the distribution of correlation
between reactivities of different sgRNAs for regions that show unique SPLASH interactions (1) and regions that show alternative SPLASH interactions
(≥ 2). Regions that show alternative SPLASH interactions take on different conformations and show lower reactivity correlations between sgRNAs. The p-
value was calculated using a two-tailed Wilcoxon Rank Sum test. The box represents the 25–75th percentiles, and the median is indicated. The whiskers
show the minimum and maximum values. The outliers are presented as dots. g Structure models of WT ORF7b and M sgRNA are generated using the
program RNA structure, using PORE-cupine reactivities as constraints. PORE-cupine reactivities are mapped onto the secondary structure models. The red
and blue arrows indicate the same positions (start for red and end for blue) in the structure models. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25357-1

8 NATURE COMMUNICATIONS |         (2021) 12:5113 | https://doi.org/10.1038/s41467-021-25357-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


SARS-CoV-2 RNA binds to SNORD27 and is 2’-O-methylated.
SNORD27 is one of the strongest host interaction partners for
SARS-CoV-2 RNA (Fig. 6a) and is traditionally known to guide
2’-O-methylation of 18 S ribosomal RNA44. snoRNAs can bind
and methylate cellular RNAs45, and methylation enzymes

including fibrillarin (FBL), rRNA methyltransferase 2 and 3
(MRM2 and MRM3) have been found to be physically associated
with SARS-CoV-2 genome23. We tested whether SARS-CoV-2
RNA could be 2’-O-methylated and whether host RNAs’
methylation levels are changed upon virus infection. We
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performed 2 biological replicates of Nm-seq on total RNA from
HeLa cells, as well as from uninfected and SARS-CoV-2 infected
Vero-E6 cells (Supplementary Fig. 14a, Supplementary
Data 10,11, Methods)46. Biological replicates of Nm-seq from
both cell types show that they are well correlated, suggesting that
Nm-seq data is reproducible (Supplementary Fig. 14b,c). Nm-seq
analysis on human 18 S rRNA accurately identified 36 out of 42
known 2’-O-methylation sites and had a high AUC-ROC curve of
0.96, suggesting that we are able to detect existing 2’-O-methy-
lation sites accurately and sensitively (Supplementary Fig. 14d,e).

Using Nm-seq, we identified a total of 130 2’-O-methylation
sites in the SARS-CoV-2 genome (Fig. 6b), and 4931 sites in 4142
transcripts in the Vero-E6 transcriptome (Supplementary
Fig. 14f,g). We observed that a 2’-O-methylated host mRNA
contains approximately 1.1 modifications per transcript in the
Vero-E6 transcriptome, similar to methylated RNAs in HeLa
cells46. The majority of these host modification sites (60%) were
located in the coding regions and were enriched for codons
encoding charged amino acids (Supplementary Fig. 15a), as
previously described46. In comparison, the SARS-CoV-2 genome
is 19-fold more modified than host mRNAs after normalizing for
transcript length (Fig. 6c). The 2’-O-methylations are enriched in
the 5’ and 3’ UTRs of SARS-CoV-2 (Fig. 6d), depleted in position
2 of codons (Supplementary Fig. 15b), and are enriched for U and
depleted for G bases along the genome (Fig. 6e). 2’-O-methylation
sites on SARS-CoV-2 are also associated with high SPLASH
reads, indicating that they are located near positions with
abundant intramolecular pair-wise interactions (Fig. 6f). As bases
that are 2’-O-methylated cannot be modified by NAI, we tested
whether 2’-O-methylated bases have lower SHAPE-MaP reactiv-
ity. We did not observe a decrease in SHAPE-MaP reactivity in
2’-O-methylated bases as compared to non-methylated bases
(Supplementary Fig. 15c), suggesting that only a fraction of the
SARS-CoV-2 genome at the base is modified.

As the modification of the SARS-CoV-2 genome might sequester
corresponding RNA modification enzymes away from the host
transcriptome, we calculated the changes in modification rates in
the host RNAs in the presence and absence of SARS-CoV-2
infection. We observed a decrease in host RNA 2’-O-methylation
frequency upon virus infection, supporting our hypothesis that they
become less methylated (Fig. 6g). In addition, we also observed that
host RNAs that interact strongly with the SARS-CoV-2 genome

show greater 2’-O-methylation changes, and show large losses and
gains in modification sites within the RNAs (Fig. 6h, i,
Supplementary Fig. 15d, e). We hypothesized that RNAs interacting
with the SARS-CoV-2 genome could be methylated near their
interacting regions, presumably due to proximity to SNORD27,
while methylation sites that are located far away could be lost. To
determine whether 2’-O-methylation sites on SARS-CoV-2 genome
interacting RNAs are closer to the locations of virus-RNA
interactions regions, we calculated the closest distance between
virus-host interaction to host 2’-O-methylation site. We observed
that sites that had 2’-O-methylation were indeed closer to virus-host
RNA interactions sites (Fig. 6j), supporting the hypothesis that
proximity to the SARS-CoV-2 genome might allow interacting
RNAs to be methylated together within a hub.

2’-O-methylation has been shown to stabilize RNAs inside
cells45. Therefore, we hypothesized that the loss of 2’-O-
methylation on host RNA upon virus infection may affect the
stability of the host RNAs. Indeed, we observed that the
abundance of host RNAs that show a decrease in methylation
sites was significantly decreased in infected cells. In contrast, the
abundance of host RNAs that show an increase in methylation
sites was increased (Fig. 6k). Thus, together with the production
of Nsp1 from SARS-CoV-2 to cleave cellular RNAs, the binding
of SARS-CoV-2 RNAs to SNORD27 could serve as part of a
multi-prong mechanism to decrease cellular RNAs and maximize
virus replication (Fig. 6l)47.

Discussion
Studying the molecular basis of virus pathogenicity enables us to
understand how this can be counteracted and how to inhibit and
target the replicating virus. By probing the local and pair-wise
RNA interactions of the SARS-CoV-2 genome and sgRNAs using
high throughput structure probing technologies on both the
Illumina and Nanopore sequencing platforms, we identified
potentially functional structure elements within the genome and
demonstrated that these RNA structures are associated with
ribosome pausing. While the structures along SARS-CoV-2 RNA
have also been probed using other short-read high throughput
strategies including icSHAPE and DMS-MapSeq29, these strate-
gies have limitations in their ability to decipher sgRNA-specific
structures due to extensive sequence similarity between the dif-
ferent sgRNAs. Using long-read sequencing, we identified both

Fig. 5 SARS-CoV-2 interacts with hundreds of host RNAs in vivo. a Pie-chart showing the number of host RNAs from different RNA classes that interact
with WT SARS-CoV-2. b Line plot showing the number of SPLASH reads along the WT SARS-CoV-2 genome. The names of host RNAs that bind strongly
to the virus at a particular location is labelled above the interaction peak. c Bar-chart showing the fraction of host interacting regions that fall in 5’ UTR,
CDS, and 3’ UTR (black), as compared to what is expected from random (grey). Host interacting regions are enriched in CDS and depleted in 3’ UTRs.
Significance was assessed using a one-way Chi-Square test without adjustments. d STRING analysis of the top 25% SARS-CoV-2 host interactors37. The
networks were built based on high confidence (0.7) evidence from protein-protein interaction sources of experiments, databases, and text-mining where
the line thickness indicates the strength of data support. Functional clusters in PPI networks were determined using the Markov Clustering algorithm
(MCL). The PPI enrichment p-value < 10−16. e GO term enrichment of the top 25% SARS-CoV-2 interactors using David functional annotation analysis.
SARS-CoV-2 interactors are enriched for transcripts that reside in the mitochondria, ER, and exosome, and are enriched for molecular functions for iron-
binding, endopeptidase inhibitor activity, and cytochrome-c oxidation activities. The p-value was calculated using a hypergeometric test. f Boxplots showing
the distribution of log2 fold change in gene expression upon SARS-CoV-2 infection in non-interacting genes, in 374 RNAs that interact with SARS-CoV-2
(All), in the top 100 interactors and top 20 interactors ranking by the chimeric read counts. SARS-CoV-2 interactors show a decrease in gene expression
upon virus infection. However, the top interactors show an increase in gene expression upon virus infection, indicating that they are selectively stabilized.
The expression data were calculated from the non-chimeric reads from SPLASH and quantified using DESeq258. The p-value was calculated using the two-
tailed Wilcoxon Rank Sum test. The box represents the 25–75th percentiles, and the median is indicated. The whiskers show the minimum and maximum
values. g Volcano plot showing the distribution of host RNA gene expression upon SARS-CoV-2 infection. The top 20 interactors are highlighted in red and
show a general stabilization in gene expression upon virus infection. The p-value was calculated using the two-tailed Wilcoxon Rank Sum test. h Boxplots
showing the distribution of protein ratio after virus infection in all genes, in 374 RNAs that interact with SARS-CoV-2, in the top 100 interactors and top 20
interactors. The p-value was calculated using the two-tailed Wilcoxon Rank Sum test. The box represents the 25–75th percentiles, and the median is
indicated. The whiskers show the minimum and maximum values. Source data are provided as a Source Data file.
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sgRNA-specific structures, as well as structure differences
between WT and Δ382 genomes, that could serve as a basis for
understanding sgRNA-specific functions in the future.

While existing literature has mostly focused on understanding
SARS-CoV-2: host protein interactions, here we describe that the
virus genomes bind directly to hundreds of host RNAs inside cells
using SPLASH. In addition to a previous report that showed that
SARS-CoV-2 binds to snRNAs that are involved in splicing36, we
identified diverse, functionally related, host mRNA-virus

interactions and found that SARS-CoV-2 binds particularly
strongly to mitochondrial RNAs and snoRNAs. Our results are
consistent with previous predictions of SARS-CoV-2 localization
in the mitochondria and nucleolus40, and the observation that the
mitochondria is dysregulated upon SARS-CoV-2 infection23. In
addition, previous studies have also shown that SNORD27 and
mitochondrial RNAs are enriched on the SARS-CoV-2 genome
when the genome is isolated using formaldehyde crosslinking and
sequencing23. However, it remained unclear if these RNAs bind
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to the virus genome directly or indirectly through protein inter-
actions. Our studies show that SARS-CoV-2 RNA pairs directly
with mitochondrial RNAs and snoRNAs at specific locations on
host RNAs and SARS-CoV-2 genomes. As snoRNAs recruit 2’-O-
methylation modifications on their target RNAs, we additionally
observed that the SARS-CoV-2 genome is extensively 2’-O-
methylated inside cells. Interestingly, the 2’-O-methylation sites
do not coincide with the location of SNORD27 binding. One
hypothesis is that SNORD27 could recruit methylation enzymes
and act as a hub to methylate spatially proximal regions that are
far away in linear space. While more studies need to be performed
to fully comprehend the mechanism of 2’-O-methylation on the
SARS-CoV-2 genome, this study deepens our understanding of
SARS-CoV-2 biology and supports the observation that SARS-
CoV-2 interacts with methylation enzymes, including FBL,
inside cells.

2’-O-methylation of RNA plays important roles inside cells and
can contribute to RNA stabilization as well as key functions in
innate immunity48. A recent study revealed that HIV-1 hijacks
cellular proteins to 2’-O-methylate its genome to escape from
host innate immune sensing by modulating the expression of
type-1 interferons49. Further experiments are needed to deter-
mine if 2’-O-methylation of SARS-CoV-2 RNA could also allow it
to escape host immunity. Another hypothesis for the binding of
SARS-CoV-2 to SNORD27 is that the virus sequesters SNORD27
and methylation complexes towards itself and away from the rest
of the Vero-E6 cell transcriptome. We observed that 2’-O-
methylation sites on SARS-CoV-2 are enriched for paired inter-
actions, in agreement with previous literature that 2’-O-methy-
lation in HIV-1 stabilizes alternative pairing confirmation of the
transactivation response element50. Importantly, we observed that
2’-O-methylation levels in host RNAs decrease after SARS-CoV-2
infection, supporting our hypothesis that the binding of
SNORD27 to SARS-CoV-2 could direct methylation enzymes to
SARS-CoV-2, and away from host RNAs. In addition to the
function of SARS-CoV-2 Nsp1 to degrade host RNAs47, this
could serve as part of a multi-prong strategy for the virus to
degrade host RNA for its own benefit. Further experiments would
be needed to definitively prove this hypothesis.

In summary, our study identifies new potentially functional
structures along the SARS-CoV-2 genome, new host factors, and
alternations of host gene regulation upon SARS-CoV-2 infection,

providing a critical new understanding of the SARS-CoV-2
infection process.

Methods
Cells and viruses. African green monkey kidney, clone E6 (Vero-E6) cells
(ATCC# CRL-1586) were maintained in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 5% fetal bovine serum (FBS). HeLa cells (obtained
from neighboring labs in GIS) were grown in DMEM high-glucose media (Thermo
Fisher Scientific), supplemented with 10% FBS, 1% Pen-Step. SARS-CoV-2 wild-
type (hCoV-19/Singapore/2/2020, GISAID accession ID: EPI_ISL_407987) and
Δ382 mutant (hCoV-19/Singapore/12/2020, GISAID accession ID:
EPI_ISL_414378) were isolated from COVID-19 patients in Singapore, as reported
previously7.

SHAPE-MaP structure probing of SARS-CoV-2 virus in Vero-E6 cells. Vero-E6
cells were infected with SARS-CoV-2 viruses (WT and Δ382) at a multiplicity of
infection (MOI)= 0.01 for 1 h at 37 °C. Following 1 h infection, virus inoculum
was removed and replaced with DMEM-5% FBS. Flasks were incubated for 48 h at
37 °C, 5% CO2.

At 48 hpi, cells were washed once with PBS and trypsin was added to detach the
cells from the flask. The cells were collected and centrifuged at 300 × g for 5 min.
The pellet was resuspended in PBS and the cells were then separated into three
reactions: (1) added 1:20 volume of 1 M NAI (03-310, Merck, 25 µl of NAI in
500 µl of infected cells) and incubated for 15 min at 37 °C for structure probing; (2)
added 1:20 volume of dimethyl sulfoxide (DMSO) and incubated for 15 min at
37 °C, as negative control; and (3) set aside a third portion of the infected cells
without any treatment, for the denaturing control in the downstream library
preparation process. The total RNA was extracted from the cells using E.Z.N.A.
Total RNA Kit (Omega bio-tek) according to the manufacturer’s instructions. We
then performed library preparation following the SHAPE-MaP protocol to
generate cDNA libraries compatible for Illumina sequencing18.

Interactome mapping of SARS-CoV-2 virus in Vero-E6 cells. Vero-E6 cells were
infected with SARS-CoV-2 viruses (WT and Δ382) at a multiplicity of infection
(MOI)= 0.01 for 48 h. The cells were washed once with PBS and trypsin was added
to detach the cells from the flask. The cells were collected and centrifuged at 300 × g
for 5 min. The pellet was resuspended in PBS and the cells were then incubated with
200 µM biotinylated psoralen and 0.01% digitonin in PBS for 10min at 37 °C. The
cells were spread onto a 10 cm dish and irradiated at 365 nm of UV on ice for
20 min. The cells were collected, and the total RNA was then extracted using
E.Z.N.A. Total RNA Kit (Omega bio-tek) according to the manufacturer’s
instructions. We performed SPLASH libraries similarly to the published
protocol20,51. The qRT-PCR primer sequences are listed in Supplementary Table 1.

Direct RNA sequencing using Nanopore. Unmodified and NAI-treated total
RNA from WT and Δ382 SARS-CoV-2 infected Vero-E6 cells were sequenced
using Nanopore direct RNA sequencing 002 kit. The samples are sequenced and
aligned according to the method used by Kim et al. 9. We used EPI_ISL_407987
and EPI_ISL_414378 as the reference for WT and Δ382 strain, respectively.

Fig. 6 2’-O-methylation of SARS-CoV-2 sequesters methylation away from host RNAs. a Structure model of SARS-CoV-2 RNA before and after
SNORD27 binding. The model of SARS-CoV-2 before SNORD27 binding is generated using the RNA structure program54 and incorporating SHAPE-MaP
reactivity as constraints. The model of SARS-CoV-2:SNORD27 pairing is generated using RNAcofold35. SHAPE-MaP reactivities are mapped onto the
structure models. b The distribution of 130 2’-O-methylation sites along WT SARS-CoV-2 genome. The y-axis is the 2’-O-methylation enrichment
measured by the RT-stop fraction against the coverage at each nucleotide. The orange bars indicate enriched sites above control. c Boxplots showing the
distribution of 2’-O-methylation frequency along with the host RNAs and on SARS-CoV-2 RNA from n= 2 biological replicates (total 4 technical
replicates). P-value was calculated using the two-tailed Wilcoxon Rank Sum test. d Bar-plot showing the distribution of 2’-O-methylation sites (black), and
control sites (grey), in the different amino acids, 5’ UTR, 3’ UTR, and non-coding regions (NC) along the SARS-CoV-2 genome. P-value was calculated
using the chi-squared test. e Distribution of 2’-O-methylation sites on SARS-CoV-2 genome (orange) and Vero-E6 transcriptome (blue) at A, C, U, G
bases. The proportion of each nucleotide was normalized by its prevalence in the host transcriptome and SARS-CoV-2 genome, respectively. 2’-O-
methylation sites on SARS-CoV-2 are enriched in Us and depleted in Gs. P-value was calculated using the chi-squared test. f Boxplot showing the
distribution of SPLASH chimeric reads at all sites (n= 29,847) versus 2’-O-methylation sites (n= 485) along the SARS-CoV-2 genome. P-value was
calculated using the two-tailed Wilcoxon Rank Sum test. g Boxplot showing the distribution of 2’-O-methylation frequency along Vero-E6 mRNAs in
uninfected and SARS-CoV-2 infected cells. P-value was calculated using the two-tailed Wilcoxon Rank Sum test. h, i Boxplot showing the distribution of
increase (h) or decrease (i) in methylation frequency in non-interacting RNAs, in all interacting RNAs, in top 100 interacting RNAs, and in top 20
interacting RNAs. P-value was calculated using the two-tailed Wilcoxon Rank Sum test. j Violin plot showing the distribution of the minimum distance
between host 2’-O-methylation site and the location of its interaction with SARS-CoV-2. P-value is calculated using the Wilcoxon Rank Sum test. k Boxplot
showing the distribution of changes in gene expression in Vero-E6 mRNAs that either lost (decrease) or gained (increase) 2’-O-methylation sites. P-value
is calculated using the Wilcoxon Rank Sum test. In (c, f–i, and k), the box represents the 25–75th percentiles, and the median is indicated. The whiskers
show the minimum and maximum values. lModel of our hypothesis. SARS-CoV-2 binds to SNORD27 to sequester methylation enzymes to itself and away
from host mRNA, enhancing host RNA decay. Source data are provided as a Source Data file.
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Nm-Seq library construction. To map RNA nucleotides with 2’-O-methyl mod-
ification, Nm-Seq51 was applied to the total RNA of HeLa, Vero-E6, and Vero-E6
infected with SARS-CoV-2. In brief, eight rounds of oxidation-elimination-
dephosphorylation (OED) were performed to iteratively eliminate non-
modification nucleotides from the 3’ ends of fragmented RNAs, the 2’-O-methy-
lated nucleotides resist the OED and make the 3’ end of reads enriched at the 2’-O-
methylation sites. Two biological replicates of SARS-CoV-2 infected Vero-E6 (total
4 replicates) and uninfected Vero-E6 (total 2 replicates) were used to generate Nm-
Seq libraries. Ten µg of each sample was used following NmSeq protocol and
NEBNext Small RNA library kit with revised customized adaptors46,52 (IDT).
Customized 3’ SR adaptor: 5′-AppNN NNN ATC ACG AGA TCG GAA GAG
CAC ACG TCT-3′. Customized 5’ SR adaptor: 5′-GUU CAG AGU UCU ACA
GUC CGA CGA UC NNNNN-3’. For the input control library without OED, 1 µg
of RNA were used. Libraries were multiplexed and subjected to high-throughput
sequencing using Illumina Next-Seq Hi.

Data analysis. Processing, analysis, and visualization of data were performed using
python-3.6.8, R-3.4.1, and the associated modules numpy-1.17.3, scipy-1.3.1,
matplotlib-3.1.2, and R-scape 1.4.0. Calculation of statistical parameters of data sets
(including means, medians, percentiles, and standard deviations) was performed
using numpy. Statistical tests (t-tests, chi-square tests, and Wilcoxon Rank Sum
tests) employed the appropriate functions in the scipy.stats module. Visualization
was performed using matplotlib for contour plots, bar charts, pie charts, box plots,
and violin plots unless otherwise specified.

Analysis of SHAPE-MaP experiments. Sequencing reads obtained from two
replicates of SHAPE experiments were aligned with the respective sequences for the
strains (WT: EPI_ISL_407987, Δ382: EPI_ISL_414378) and SHAPE values for each
position calculated using ‘Shapemapper-2.15’ of Weeks et al. 53 using Bowtie-2.4.2
for reading alignment. Read depths obtained in the sequencing experiments
allowed for the conclusive determination of SHAPE reactivities at approximately
80% of positions. A reference alignment of WT and Δ382 sequences were obtained
using ‘mafft-7.453’ with the L-INS-I strategy. Subsequently, the local correlation of
SHAPE reactivity between replicates and between WT and Δ382 was calculated
using Pearson correlation. As Pearson correlation between replicates was > 0.9,
replicates were pooled for subsequent analysis.

Modelling of global RNA structure. Using the above SHAPE reactivities and
reference sequences, separate global RNA structure models for WT and Δ382 using
‘Superfold’ with a maximum base-pairing distance of 600 nt, and default SHAPE
slope (1.8) and intercept (−0.6) parameters54. Regions of interest such as the
frameshift element were modelled separately in a local context to search for
pseudoknot structures using the ‘RNAstructure’ tools ‘partition-smp’ and ‘Prob-
Knot-smp’. Additionally, we used ScanFold to assess likely local fold stability. We
used a step size of 10, a window size of 120, and 50 randomizations. Regions were
ranked by Z-score and the lowest 20% Z-scores, corresponding to the highest
stabilizations, were identified (Fig. 2a).

Modelling of individual sgRNA structure from Nanopore data. The distribu-
tions of mutation rates obtained from Nanopore RNA sequencing were compared
with the distribution of SHAPE reactivity values from short-read-based experi-
ments described above. We found that a scale factor of 100 brings the mutation rate
distribution from the Nanopore experiment in line with the distribution observed
for conventional SHAPE experiments. Hence, we applied this scaling factor and
then employed these as SHAPE data in the same ‘Superfold’ protocol as for the full-
length models described above54.

PORE-cupine analysis of direct RNA sequencing data. Filtering for full-length
sgRNA: To separate full-length aligned reads into their sub-genomic transcripts, we
used two filtering conditions for all sgRNAs except for ORF6. One, the aligned
reads need to contain the leader sequence, and two, the aligned positions after the
leader sequence must fall within ± 100 of the annotated sgRNA sequences. For
ORF6, we had to extend the second filter to −300 of the annotated sgRNA
sequence.

We calculated the reactivity for each subgenomic transcript by using PORE-
cupine 1.0, with two adjustments to the analysis. (1) The length filter was removed,
as only full-length transcripts were used for the analysis. (2) To reduce the amount
of computing resources required, 20,000 strands from each subgenomic transcripts
in the unmodified libraries were randomly selected and used for the generation of
models.

To determine the differences between reactivity, the Wilcoxon Rank Sum test
was applied to a 101 bases window with a step size of 25 nucleotides. Reactivity
differences were compared across shared sequences between the different
subgenomic transcripts within each strain (WT or Δ382), and across the two
different strains. For the comparison between WT and Δ382 genome, the region in
the WT strain that was not present in the Δ382 strain was masked. The p-values are
corrected with Hommel’s method. In addition to using the statistical test to
determine the differences, we added the second criteria of Pearson correlation < 0.7.

Analysis of SPLASH experiments. Chimeric reads were divided into host-host,
host-virus and virus-virus interactions for WT and Δ382 genomes. Virus-virus
interactions were normalized to total virus-virus interactions and are shown in
Fig. 3a (WT: blue, Δ382: red). Virus-host interactions were equally normalized and
the main locations for host interactions are shown in Fig. 5b. SPLASH hybrid
structure models are generated using RNAcofold in the Vienna RNA package.

Protein-protein interaction network analysis by STRING. The top 25% of host
RNA interactors with SARS-CoV-2 were used as input for STRING analysis37, a
search tool for retrieval of interacting genes to acquire protein-protein interaction
(PPI) networks. The networks were built based on high confidence (0.7) evidence
from protein-protein interaction sources of experiments, databases, and text-
mining where the line thickness indicates the strength of data support. Functional
clusters in PPI networks were determined using the Markov Clustering algorithm
(MCL). The PPI enrichment p-value < 1.0e−16.

Nm-Seq bioinformatics analysis. We referred to the pipeline from the published
protocol with some modifications52. The adaptors on raw reads were trimmed
using Cutadapt and the reads without 3’ adaptors were discarded55. The PCR
duplication reads were filtered out by the pentamers at the 5’ and 3’ end of the
reads as barcodes using a custom script. The pentamers were then removed and
reads that are shorter than 15 nt were discarded. The reads that passed all these
filters were mapped to the reference which combined the longest transcriptome of
Chlorocebus sabaeus (ensembl ChlSab1.1.101) and SARS-CoV-2 sequence
(WT_EPI_ISL_407987) by bwa-aln56. The multiple mapped reads and reads with
soft and hard clipped alignments were discarded. The depth of each position on the
transcriptome using 3’ end of reads was calculated in both input control and OED
enriched libraries (Dinput, DOED). The depths were normalized by the read counts
of each transcript. The significantly enriched sites over the other regions on the
same transcript were detected by ΔD=DOED − Dinput using Z-test (FDR < 0.05,
DOED >=10, DOED/Dinput > 1.5).

As the SARS-CoV-2 transcripts comprise 16–30% of the total reads, we
subsampled the two uninfected libraries into 4 libraries containing the same reads
on the host transcriptome with the 4 infected replicates respectively, to compare
the Nm sites of host transcriptome fairly. Bases that show 2’-O-methylation
enrichment in 3 out of 4 replicates were recognized as the 2’-O-methylation sites.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data sets generated during and/or analysed during the current study are available in
the GEO repository, GSE165005. The ribosome profiling data is obtained from a
published study34 (https://doi.org/10.1038/s41586-020-2739-1). The proteomics data is
obtained from published study43 (https://doi.org/10.1038/s41586-020-2332-7). The
authors declare that all other data supporting the findings of this study are available
within the article and its Supplementary Information files. Source data are provided with
this paper.
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