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Modifying patients’ expectations by exposing them to expectation violation situations
(thus maximizing the difference between the expected and the actual situational
outcome) is proposed to be a crucial mechanism for therapeutic success for a variety
of different mental disorders. However, clinical observations suggest that patients often
maintain their expectations regardless of experiences contradicting their expectations.
It remains unclear which information processing mechanisms lead to modification or
persistence of patients’ expectations. Insight in the processing could be provided
by Neuroimaging studies investigating prediction error (PE, i.e., neuronal reactions to
non-expected stimuli). Two methods are often used to investigate the PE: (1) paradigms,
in which participants passively observe PEs (”passive” paradigms) and (2) paradigms,
which encourage a behavioral adaptation following a PE (“active” paradigms). These
paradigms are similar to the methods used to induce expectation violations in clinical
settings: (1) the confrontation with an expectation violation situation and (2) an enhanced
confrontation in which the patient actively challenges his expectation. We used this
similarity to gain insight in the different neuronal processing of the two PE paradigms. We
performed a meta-analysis contrasting neuronal activity of PE paradigms encouraging
a behavioral adaptation following a PE and paradigms enforcing passiveness following
a PE. We found more neuronal activity in the striatum, the insula and the fusiform gyrus
in studies encouraging behavioral adaptation following a PE. Due to the involvement
of reward assessment and avoidance learning associated with the striatum and the
insula we propose that the deliberate execution of action alternatives following a PE is
associated with the integration of new information into previously existing expectations,
therefore leading to an expectation change. While further research is needed to directly
assess expectations of participants, this study provides new insights into the information
processing mechanisms following an expectation violation.
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INTRODUCTION

Patients’ expectations have a great influence on their treatment
and outcomes in psychotherapy (Greenberg et al., 2006),
medical conditions as well as in patients undergoing
surgery (Auer et al., 2016; Rief and Glombiewski, 2016).
In addition, negative expectations about psychological
interventions may lead to negative effects of psychotherapy
(Ladwig et al., 2014). Rief et al. (2015) have proposed to
consider dysfunctional expectations to be core features of
mental disorders. It has been argued that dysfunctional
behavior is guided by dysfunctional expectations of situational
associations and outcomes. Hence, behavioral therapy would
only be successful if there is a change of the dysfunctional
expectations guiding the behavior. These dysfunctional
expectations are pre-existing assumptions about contingencies
with a high subjective associative strength, i.e., subjective
certainty. Patients would have to experience an expectation
violation, i.e., a state, in which the expected outcome and
the actual outcome differ, to induce a change in their
expectations about the contingencies. This corresponds
to a relearning of the contingencies, i.e., a state, in which
they perceive a difference between expected outcome and
the actual outcome, which would induce a change in their
expectations about the contingencies. It is hypothesized
that depending on various information processing variables,
expectations might either be changed or maintained after
an expectation violation situation. Thus, the relearning is
either successful and persists over time or the relearning
might be only temporary or depending on contextual
factors.

The particular mechanisms underlying the information
processing and the persistence and change of expectations have
remained unclear. Clinical observations suggests that patients
with mental disorders are particularly resistant to expectation
change and the perception on expectation violations (Rief et al.,
2015; Rief and Glombiewski, 2016). There are promising new
approaches examining immunization as one of the processing
strategies following expectation violation (Kube et al., 2016).
This could explain why even after a successful expectation
violation, the expectation is not changed. The patients perceive
the violation of their pre-existing expectation but attribute
the situation to contextual factors, e.g., the setting. Thus, the
confrontation with an aversive stimulus with aim of reducing an
emotional response, as is commonly used in psychotherapeutic
settings, might not always be enough to induce a persistent
expectation change. Craske et al. (2014) proposed methods
of maximizing such exposure techniques, which are supposed
to increase the inhibitory learning of the old expectation
about the contingencies. One of these methods is the active
testing of the pre-existing expectation. This is suggested to
facilitate the relearning of the contingencies and to stabilize
the newly learned expectation, thus inducing an expectation
change.

The change of dysfunctional expectations is theorized as a
crucial mechanism for therapeutic success. The investigation
of cognitive processes facilitating an expectation change vs.
maintenance following an expectation violation might pose a
promising approach for cognitive behavioral therapy. Thus, we
propose to compare the cognitive processing of a more passive
confrontation with the aim of reducing an emotional response
and an active approach by testing the expectation.

FIGURE 1 | Overview of the literature selection process.
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TABLE 1 | Overview of the prediction error studies included in the meta-analysis.

Reference Number of subjects Task Behavioral adaptation possible?

Abler et al., 2006 11 Reward probability Yes

Behrens et al., 2007 18 Reward probability Yes

Cohen, 2007 17 Reward probability Yes and No

Daniel and Pollmann, 2012 18 Visual classification Yes and No

Delgado et al., 2008 11 Aversive conditioning No

den Ouden et al., 2010 20 Auditory classification Yes

Diuk et al., 2013 28 Reward probability Yes

Gläscher et al., 2010 18 Markov decision task Yes

Gläscher et al., 2009 20 Reversal learning Yes

Gradin et al., 2011 20 Reward learning Yes

Ham et al., 2013 35 Simon Task Yes

Hampton et al., 2006 16 Reversal learning Yes

Haruno and Kawato, 2006 20 Association learning Yes

Hester et al., 2010 16 Association learning Yes

Hester et al., 2008 17 Spatial learning task Yes and No

Kahnt et al., 2011 20 Orientation discrimination Yes

Kim et al., 2006 16 Instrumental choice Yes

Klein et al., 2007 26 Probabilistic learning Yes

Kumar et al., 2008 18 Reward conditioning No

Landmann et al., 2007 16 Trial-and-error learning Yes

Li et al., 2011 17 Fear conditioning No

Li et al., 2006 46 Reward probability Yes

Limongi et al., 2013 15 Michotte’s Launching effect No

McClure et al., 2003 18 Reward conditioning No

Metereau and Dreher, 2013 20 Pavlovian conditioning No

Morris et al., 2012 16 Reward conditioning Yes

Murray et al., 2007 12 Reward learning Yes

Niv et al., 2012 16 Reward probability Yes

O’Doherty et al., 2004 12 Reward conditioning Yes

Ploghaus et al., 2000 12 Fear conditioning No

Ramnani et al., 2004 6 Instrumental conditioning No

Rodriguez et al., 2006 15 Visual classification Yes

Schiller et al., 2008 17 Fear conditioning No

Schlerf et al., 2012 10 Motoric learning No

Schonberg et al., 2010 17 Reward probability Yes

Seymour et al., 2007 24 Reward conditioning No

Seymour et al., 2005 19 Aversive conditioning No

Spoormaker et al., 2011 40 Fear conditioning No

Takemura et al., 2011 23 Reward conditioning No

Tobler et al., 2006 22 Reward blocking Yes and No

Valentin and O’Doherty, 2009 17 Reward probability Yes and No

Watanabe et al., 2013 20 Reward probability Yes

The neuroimaging research on learning provides
experimentally designed expectation violations. One of the
concepts consistently associated with successful learning is
the so-called prediction error, i.e., the neurological response
to an unexpected stimulus. Learning research has mainly
focused on reinforcement learning, whereby the expectations
comprises predictions about reward and/or punishment
(Karuza et al., 2014). Many studies use partial reinforcement
or probabilistic learning paradigms. It can be argued that
changes in behavioral strategies in these paradigms also reflect

changes in underlying expectations regarding the contingencies
of reward and punishment. Hence, in paradigms, in which no
behavioral adaptation is necessary, i.e., a passive observation
of contingencies, might diminish the attention on expectation
violations. We argue that participants in both paradigms compute
prediction errors and their relearning of the contingencies is
successful. In alignment with the approach by Craske et al.
(2014) to maximize inhibitory learning by actively testing the
expectation, we hypothesize a different cognitive processing of
“active” paradigms, which encourage a behavioral adaptation and
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FIGURE 2 | Overview of the meta-analysis results for all studies (p < 0.05, FDR). The significant clusters are comprised of activity in the superior frontal gyrus, middle
frontal gyrus, anterior cingulate, cingulate gyrus, claustrum, insula, caudate head, precentral gyrus, putamen, lateral globus pallidus, caudate body, red nucleus,
thalamus, parahippocampal gyrus, superior parietal lobule, declive, lingual gyrus and the fusiform gyrus (from left to right). MNI coordinates are presented below
each coronal view.

“passive” paradigms, in which contingencies are observed. Since
the concepts of prediction error and expectation violation are
identical in matters of meaning for the preexisting expectation,
it seems likely that clinical research can benefit from an insight
of neuroimaging research on prediction error. Examining the
functional magnetic resonance imaging (fMRI) results provided
by research on prediction error might provide insights in the
cognitive processes associated with the information processing
during expectation violations.

Our aim is to review fMRI studies investigating two
different prediction error paradigms. The first paradigm
encourages strategic behavioral changes throughout the course of
experiments while the second one requires a passive observation.
A contrast analysis will be performed to identify differences
in brain activity between these two paradigm categories.
A meta-analysis summarized the current findings on brain
areas associated with prediction error (Garrison et al., 2013).
They found a consistent association of the pallidum, the
striatum and medio-frontal structures with prediction error.
These structures are also associated with the fronto-striatal
circuits. The circuit is defined as circular connections between
the caudate nucleus, putamen, thalamus and prefrontal regions
(Leh et al., 2007). Dysfunctions in this circuit are associated
with impaired behavioral adaptation such as poor set shifting
performance, e.g., in a go/no-go tests or stimulus-bound behavior
(Mega and Cummings, 1994). Several disorders are linked
to fronto-striatal circuit dysfunctions, such as Huntington’s
disease (Beste et al., 2012), Parkinson’s Disease (Owen, 2004)
and obsessive-compulsive disorder (Maltby et al., 2005; Marsh

et al., 2014). All clinical pictures are associated with behavioral
and cognitive perseverations (Mega and Cummings, 1994). It
therefore seems likely to assume the fronto-striatal circuit to be
involved in the expectation violation processing and the resulting
expectation and behavioral adaptation. We will perform a meta-
analysis involving prediction error followed by a behavioral
adaptation to an uncertain environment. We expect a consistent
activation in the striatum and media-frontal areas.

MATERIALS AND METHODS

Literature Selection
We conducted a systematic literature search to identify
neuroimaging studies of prediction error using PubMed1, Web of
Science2, and Neurosynth3 databases. We searched for articles in
the English language using the keywords “prediction error” AND
“fMRI” and did not specify a time span for date of publication.
The search revealed 8’610 results as of July 2016. To narrow
the results, a second search was performed using the keywords
“prediction error” AND “fMRI” AND “behavior change” as
well as “prediction error” AND “fMRI” AND “observational
learning”. Again, no time span was specified. These searches
revealed 111 results and four results, respectively. The abstracts
of these articles were examined to select potential matches for
our inclusion criteria. We also scanned the reference lists of

1http://www.ncbi.nlm.nih.gov/pubmed
2http://apps.webofknowledge.com/
3http://neurosynth.org/
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TABLE 2 | Details of the clusters revealed by the analysis across all studies.

Cluster MNI coordinates Cluster size [mm3]

X Y Z

Caudate Head R 12 8 0 10’712

R 16 14 −4

Putamen R 24 6 −8

R 28 4 6

Insula R 42 16 −4

Lateral Globus Pallidus R 22 0 −12

Claustrum R 30 22 −4

Medial Globus Pallidus L −10 2 −4 9’296

Lateral Globus Pallidus L −16 6 −6

Putamen L −18 6 −10

L −26 0 4

Caudate Body L −12 6 8

Red Nucleus L −8 −18 −6 1’704

Claustrum L −32 22 −6 928

Precentral Gyrus L −44 8 4 528

L −46 6 34 488

Cingulate Gyrus R 6 28 32 368

Parahippocampal Gyrus R 22 −30 −14 312

Middle Frontal Gyrus R 34 44 30 312

Superior Frontal Gyrus R 32 48 24

Declive L −30 −68 −18 272

Fusiform Gyrus L −34 −86 −10 232

Cingulate Gyrus L −4 10 42 232

Thalamus R 8 −22 2 224

Anterior Cingulate L 0 34 18 216

Cingulate Gyrus L −2 0 48 120

Superior Frontal Gyrus L −12 54 18 104

Lingual Gyrus R 24 −82 −6 88

Precentral Gyrus L −40 −10 54 72

Medial Frontal Gyrus R 4 0 60 64

Middle Frontal Gyrus L −32 48 24 56

Superior Parietal Lobule L −26 −56 44 56

Threshold Method = FDR; Thresholding Value = 0.05; Chosen min. cluster
size = 50 mm3; R, Right; L, Left.

the results to search for additional articles, which met our
inclusion criteria. We retrieved the full text of 72 articles for
further examination. We predefined study selection criteria to
minimize ambiguousness in the study selection. The criteria can
be requested of the corresponding author. Studies were included
when they met the following criteria: (1) experimental prediction
error paradigm and (2) report of voxel-wise-brain analysis for a
prediction error main effect, which yielded a total of 59 articles.
We excluded studies which did not report prediction error for
healthy adults or used medication in their experiment (n = 6
studies excluded). We did this to include only prediction errors
which arise from an unexpected change in contingencies in
alignment with the clinical model. Of these studies, we precluded
those articles failing to experimentally induce a prediction error
by changing the contingencies between stimuli and outcome
(n = 10 studies excluded). A flowchart of the selection process
is shown in Figure 1. The studies included in the meta-analysis
are listed in Table 1.

Contrast Selection
We included all analyses which contrasted prediction error brain
activity with brain activity during expectation confirming trails or
paradigm specific variations of these contrasts. Of the 43 studied
that met all inclusion criteria, we included 60 contrasts in the
analysis. If the coordinates were reported in Talairach space they
were transformed to Montreal Neurologic Institute (MNI) space
using the GingerAle software (Eickhoff et al., 2009, 2012), which
utilizes the icbm2tal transform algorithm (Lancaster et al., 2007).
In total, we included 446 foci into the analysis.

Activation Likelihood Estimation (ALE)
We performed an activation likelihood estimation (ALE) analysis
using the Software GingerAle (Eickhoff et al., 2009, 2012). The
algorithm assesses above-chance clustering between experiments,
using a probability distribution centered at each of the foci
used in the analysis. Since the spatial relationship is assumed
to be fixed in each experiment, the ALE analysis infers random
effects (Eickhoff et al., 2009). We used the algorithm described in
Turkeltaub et al. (2012), which organizes the foci by subject group
(as opposed to study affiliation). This prevents an influence of
multiple foci from one experiment on the Meta-Analysis results
(Turkeltaub et al., 2012). We performed three Meta-Analyses:
(1) studies which encourage a behavioral strategic adaptation
following a prediction error, (2) studies, which employed a
passive observational paradigm, and (3) an analysis of all studies,
which was necessary to perform the contrast analysis. In line
with previous studies (Garrison et al., 2013), we defined a false
discovery rate (FDR) method with p < 0.05 and a minimal
cluster volume of 50 mm3. We then performed a contrast
analysis of the “active” behavioral subset and the “passive”
observational study subset. This analysis allows the subtraction
of two datasets to compare differences in brain activity between
these two. To this end, a pooled dataset is created, which then
serves as basis for two randomly created datasets with the
same number of foci as the original datasets. A permutation of
subtractions of simulated datasets are compared to the results of
the original datasets. We used an uncorrected p-value p < 0.05
since the single analyses were already corrected with FDR
(Eickhoff et al., 2011). We chose a minimal cluster volume
of 50 mm3 for the contrast analysis. Papaya4 was used to
superimpose the ALE cluster results on a T1 brain template
(Colin27_T1_seg_MNI.nii5).

RESULTS

Meta-Analysis across All Studies of
Prediction Error
Twenty-one significant clusters were identified by the ALE meta-
analysis of all 43 studies. The results show activation in the right
basal ganglia and the right insula (see details in Figure 2 and
Table 2). There was no clear indication of laterality in the main
analysis.

4http://ric.uthscsa.edu/mango/papaya.html
5http://www.brainmap.org./ale/
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FIGURE 3 | Overview of the meta-analysis results for the studies reporting active behavioral paradigms (p < 0.05, FDR). The significant clusters are comprised of
activity in the superior frontal gyrus, middle frontal gyrus, anterior cingulate, cingulate gyrus, claustrum, insula, caudate head, inferior frontal gyrus, caudate body,
putamen, medial globus pallidus, thalamus, substancia nigra, red nucleus, transverse temporal gyrus, parahippocampal gyrus, fusiform gyrus and inferior occipital
gyrus (from left to right). MNI coordinates are presented below each coronal view.

Meta-Analyses for Behavioral and
Observational Paradigms
When analyzing all prediction error studies, which employed a
behavioral reaction following a prediction error, the ALE meta-
analysis revealed 17 significant clusters. We found activation in
the striatum, the insula and the claustrum (see details in Figure 3
and Table 3).

The ALE meta-analysis of all prediction error studies, which
employed a passive paradigm revealed four significant clusters.
We found activation in the putamen, the lateral globus pallidus,
declive and the lingual gyrus (see details in Figure 4 and
Table 3).

In both analyses, no clear indication of laterality was found.

Subtraction Analysis
The details of the ALE subtraction analysis are shown in Table 4
and Figure 5. In the contrast behavior – passive, we found
five significant clusters, comprising parts of the striatum, the
insula and the fusiform gyrus. There was a tendency of left
sided structures to be more active in prediction error paradigms
encouraging behavioral adaptation. We found no significant
clusters in the contrast passive – behavior.

It is often suggested to apply corrected thresholds to the
contrast analyses, such as a FDR threshold. Therefore, we
replicated the subtraction analyses with more conservative
thresholds. We applied a corrected FDR threshold of p < 0.05
to the subtraction analysis. We found no significant clusters
in the contrast passive – behavior. The significant clusters of
the contrast behavior – passive do not survive the corrected
threshold.

DISCUSSION

We performed a subtraction analysis of two different prediction
error paradigms. One encourages a behavioral adaptation to
changing contingencies while the second paradigm requires a
passive observation of contingencies. Our aim was to gain a
better understanding of why and how psychological interventions
focusing on expectation violation lead to behavioral changes
in some but not all cases. Therefore, we analyzed differences
in prediction error involving on one hand the execution of
an action alternative and on the other hand no behavioral
change. We wanted to identify cognitive processes being involved
in underlying expectations about contingencies guiding the
behavior. As a major result when contrasting studies employing
the two paradigms discussed earlier, we found significantly more
activation in the left medial globus pallidus, the left caudate body,
the right caudate head and putamen as well as the left fusiform
gyrus and the left insula.

All Studies of Prediction Error
When performing a meta-analysis containing all prediction error
studies our results are in line with previous research (Garrison
et al., 2013). We found activation in the striatum, the insula,
thalamus as well as fronto-medial structures. The Putamen and
the Caudate body are part of the striatum whose association
with memory processes is consistent with previous literature
(Grahn et al., 2009; Provost et al., 2015). The insula has been
associated primarily with fear conditioning (Kircher et al., 2013)
but also with reinforcement learning for reward (Lawrence et al.,
2014) as well for avoidance learning (Palminteri et al., 2012).

Frontiers in Psychology | www.frontiersin.org 6 July 2017 | Volume 8 | Article 1253

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-01253 July 26, 2017 Time: 12:18 # 7

D’Astolfo and Rief Learning about Expectation Violation

TABLE 3 | Details of the clusters revealed by the analyses of the behavioral and
passive studies.

Cluster MNI coordinates Cluster size [mm3]

X Y Z

Behavioral paradigms

Medial Globus Pallidus L −10 2 −4 8’528

Caudate Body L −10 4 12

Putamen L −16 0 4

L −20 16 2

Claustrum L −32 22 −4

Caudate Head R 16 14 −4 4’896

Claustrum R 30 22 −4

Putamen R 28 4 6

Thalamus L 8 −18 −4 608

Substantia Nigra L −8 −20 −14

Red Nucleus L −4 −22 −18

Insula R 42 16 −4 480

Fusiform Gyrus L −34 −86 −10 344

Cingulate Gyrus R 6 28 30 208

Insula L −32 48 24 144

Inferior Frontal Gyrus L −46 6 32 136

Insula L −42 −4 14 120

Parahippocampal Gyrus R 22 −30 −14 104

Cingulate Gyrus L −2 0 48 104

Superior Frontal Gyrus R 32 48 24 96

Inferior Occipital Gyrus R 38 −88 −12 88

Transverse temporal Gyrus L −52 −24 12 64

Anterior Cingulate L −2 34 16 64

Middle Frontal Gyrus R 36 46 32 56

Passive paradigms

Putamen L −20 6 10 720

Lateral Globus Pallidus R 20 −2 −12 680

Putamen R 22 6 −10

Declive L −30 −68 −18 80

Lingual Gyrus R 24 −82 −6 80

Threshold Method = FDR; Thresholding Value = 0.05; Chosen min. cluster
size = 50 mm3; R, Right; L, Left.

Consistent with our hypothesis we also found activation in the
areas associated with the fronto-striatal circuits (Leh et al., 2007).
In addition to the striatum, we found activation in the globus
pallidus, the thalamus and frontal structures, i.e., the left superior,
media and middle frontal gyrus.

Prediction Error Followed by Behavioral
Adaptation or Passive Observation
When contrasting the differences in neuronal activity of
prediction errors computed in active behavioral adaptation and
passive observational paradigms we found higher activation in
the striatum, the insula and the fusiform gyrus.

The medial globus pallidus is part of the four corticostriatal
loops, which are responsible for executive function, visual
processing, motor function and motivational evaluation (Seger,
2006). It serves as an output nucleus of the basal ganglia and
projects to the thalamus, the centromedian nucleus, and the

pedunculopontine nucleus (Nauta and Mehler, 1966). These
structures are associated with goal-directed motor actions as well
as reward learning and evaluation (Hong and Hikosaka, 2008;
Haber and Knutson, 2009; Sescousse et al., 2013).

The putamen is associated with novel motoric executions as
well as in ambiguous action tendencies, i.e., if the best motoric
strategy is unclear (Grahn et al., 2009). Moreover, due to findings
of strong connectivity of the putamen with prefrontal regions, it
is suggested that the putamen has a cognitive rather than solely
motoric function (Provost et al., 2015).

The caudate body has been shown to be involved in cognitive
tasks such as categorization and reward information assessment
in monkeys (Yanike and Ferrera, 2014) as well as in humans
(Packard and Knowlton, 2002). Further, it has been suggested,
that the caudate nucleus is involved in evaluating outcomes
post-decision (Badre, 2012; Kepecs and Mainen, 2012).

Most studies do not specifically differentiate between distinct
parts of the striatum, but investigate the striatum in its entirety.
The striatum has been associated with strategizing in avoidance
learning (Palminteri et al., 2012), failure or success to learn
associations in instrumental conditioning (Schönberg et al.,
2007; Horga et al., 2015), decision making and motor initiation
(Nagano-Saito et al., 2014).

The insula is associated with the perception and processing
of interoception of emotional states (Zaki et al., 2012; Simmons
et al., 2013).

The fusiform gyrus is associated with facial and body
recognition (Peelen and Downing, 2005) as well as a sensitivity to
visual words (McCandliss et al., 2003). The area of the fusiform
gyrus showing peak activation is also associated with object
recognition (Bar et al., 2001).

The functions of these areas can be incorporated into
the processing of prediction errors computed in a behavioral
paradigm. The higher activation of the putamen in prediction
errors with behavioral changes might be due to the determination
of a novel motoric behavior and its initiation. Due to its’
evaluative properties, the caudate nucleus could function as
a constant evaluation unit, comparing expected and actual
outcomes. The involvement of the insula cannot be explained by
the emotional valence of the stimuli used in the studies, since not
all the studies comprising the insula cluster contained emotional
content, such as negative feedback. They share, however, a
high level of uncertainty in their paradigms, e.g., temporal
uncertainty or ambiguous stimuli or categories. The processing
of uncertainty has also been shown to be associated with insula
activity (Simmons et al., 2008; Sarinopoulos et al., 2010), which
could be interpreted as an aversive and thus emotional state.

Integration into a Clinical Model of
Expectation Change and Persistence
Rief et al.’s (2015) model proposes that following an expectation
violation, various information processing mechanisms decide
whether an expectation is changed and integrated or maintained
and reinforced. In order to shed light on the cognitive processes
involved in an expectation change following an expectation
violation, we investigated the brain areas more active in
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FIGURE 4 | Overview of the meta-analysis results for the studies reporting passive observational paradigms (p < 0.05, FDR). The significant clusters are comprised
of activity in the putamen, lateral globus pallidus, declive and the lingual gyrus (from left to right). MNI coordinates are presented below each coronal view.

FIGURE 5 | Overview of the meta-analysis results of the behavior – no behavior subtraction analysis (p < 0.05, uncorrected). The significant clusters are comprised
of activity in the putamen, caudate head, caudate body, insula, medial globus pallidus, and the fusiform gyrus (from left to right). MNI coordinates are presented
below each coronal view.

TABLE 4 | Details of the clusters revealed by subtraction analysis.

Cluster MNI coordinates Cluster size [mm3]

X Y Z

Behavior – no behavior

Medial Globus Pallidus L −8 2 −12 1’296

Caudate Body L −6 2 18 848

L −12 4 18

L −10 8 16

L −10 2 14

L −6 4 12

L −14 −2 16

Caudate Head R 12 12 −8 704

Putamen R 20 16 −4

R 24 16 −2

Fusiform Gyrus L −38 −84 −12 200

L −34 −84 −8

Insula L −42 −6 16 72

No behavior – behavior

n.s.

Threshold Method = Uncorrected P-value; Thresholding Value = 0.05;
Thresholding Permutations= 10000; Chosen min. cluster size= 50 mm3; R, Right;
L, Left.

paradigms encouraging a behavioral strategic change following
a prediction error.

The striatum might be involved in learning the specific
contingencies between stimulus and outcome. This might
eventually form an expectation about the action strategies
resulting in a rewarding outcome. However, when facing an
expectation violation, the caudate body might signal a non-
rewarding outcome, even though the same behavioral strategy
has been employed. On the other hand, if the environment
encourages a passive behavior, i.e., no action has to be
taken following an expectation violation, the individual is not
required to determine a behavioral alternative. The difference
in expectation and outcome could be solved by mechanisms
such as immunization, leading to an expectation persistence
(Kube et al., 2016). In contrast, if the environment encourages
or even enforces the use of action alternatives, e.g., an active
prediction error paradigm or a therapeutic setting, a behavioral
reaction to the situation would be necessary. In such a case,
the putamen could be involved in determining a novel behavior
and initiate the action alternative by projecting to the medial
globus pallidus. This structure could then initiate the motoric
aspect of the action alternative. The thalamus, the centromedian
nucleus, and the pedunculopontine nucleus could be involved in
assessing the reward when employing the new behavior. If the
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action alternative leads to a satisfying result, i.e., a rewarding
outcome, the behavior is integrated and leads to an expectation
change.

The involvement of the insula especially in prediction
error paradigms encouraging behavioral adaptation suggests an
emotional component to be important. Due to its association
with avoidance learning, the insula might be involved in assessing
aversive outcomes following an action alternative. This contrasts
with the reward assessment of thalamus, centromedian nucleus
and pedunculopontine nucleus. It might be possible, that the
avoidance of an unwanted outcome, e.g., a negative emotional
state, is as important as the gain of a rewarding outcome. The
aversion of a negative emotional state might be a rewarding
outcome in itself which has to be considered when assessing the
reward of an action alternative.

Limitations
A few methodological limitations have to be considered. First,
the studies we included used various paradigms, showing a wide
range of stimuli, tasks and underlying mathematical models.
However, there is evidence of different brain activity involved in
various types of learning and in particular in model-based (i.e.,
goal-directed actions) vs. model-free (i.e., habit-based actions)
approaches (Maia, 2009; Wunderlich et al., 2012). Moreover, the
ALE meta-analysis itself has a few limitations. Coordinate-based
analyses accumulate power across studies (Costafreda, 2009) and
cannot reproduce the same quality in results as image-based
meta-analyses (Salimi-Khorshidi et al., 2009). A third limitation
is that the results of the subtraction analysis do not survive a FDR
corrected threshold. Considering this restriction, the results of
the contrast analysis have to be interpreted with caution. Eickhoff
et al. (2016) recommend a minimal sample size of 17 studies for
the ALE meta-analysis. We could only include 19 studies using a
passive observational paradigm. This suggests that the statistical
power may be rather small for the subtraction analysis, explaining
why our results did not survive the FDR corrected threshold. For
future research, it is necessary to repeat the analyses with a larger

study sample to increase the statistical power. This will allow a
more decisive analysis of the differences in neurological activity
between active behavioral and passive observational prediction
error paradigms.

CONCLUSION

This meta-analysis sheds light into the cognitive processes
involved in the execution of action alternatives following an
expectation violation. The information processing involved is
strongly associated with reward evaluation of newly found
behavioral adaptations. However, further research is needed in
order to explicitly investigate the expectations of participants of
prediction error paradigms regarding their behavioral strategies.
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