ORIGINAL RESEARCH

A fine-scale phylogenetic assessment of digenean trematodes in central Alberta reveals we have yet to uncover their total diversity

Michelle A. Gordy 💿 🕴 Patrick C. Hanington 💿

School of Public Health, University of Alberta, Edmonton, Alberta, Canada

Correspondence

Patrick C. Hanington, School of Public Health, University of Alberta, Edmonton, AB, Canada. Email: pch1@ualberta.ca

Funding information

Alberta Innovates, Grant/Award Number: 2078 and 2332; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: 418540; NSERC CREATE Host-Parasite Interactions student scholarship

Abstract

Despite over 100 years of digenean trematode parasite species descriptions, from a wide diversity of vertebrate and invertebrate host species, our ability to recognize the diversity of trematode species within a single lake remains an incredible challenge. The most challenging aspect is the identification of species from larval stages derived from intermediate hosts, due to the disjointed data of adult worm morphological descriptions, from which species are named, and links to corresponding molecular identifiers in depauperate databases. Cryptic species also play a significant role in the challenge of linking trematode larvae to adults, species identifications, and estimating diversity. Herein, we utilize a large, longitudinal dataset of snail first-intermediate host infection data from lakes in Alberta, Canada, to infer trematode larval diversity using molecular phylogenetics and snail host associations. From our assessments, we uncover a diversity of 79 larval trematode species among just five snail host species. Only 14 species were identified to a previously described species, while the other 65 species are either cryptic or otherwise unrepresented by mitochondrial genes in GenBank. This study currently represents the largest and most diverse singular molecular survey of trematode larval fauna composed of over one thousand mitochondrial sequences. Surprisingly, rarefaction analyses indicate we have yet to capture the complete diversity of trematodes from our sampling area.

KEYWORDS

Alberta, cercariae, digenea, diversity, phylogenetics, trematoda

1 | INTRODUCTION

Trends in the ecology of pathogens are reliant upon an accurate identification of both pathogen and host species. However, the precise identification of endoparasites can be precarious, due to the lack of hard, morphological structures that arthropod ectoparasites have (Mathison & Pritt, 2014). Furthermore, larval and immature endoparasites often lack reproductive structures used to identify their adult counterparts. Both of these problems are common

among helminths (Jensen & Bullard, 2010; Roeber, Jex, & Gasser, 2013; Schell, 1985). Additionally, the revelation of cryptic species is becoming more common, as molecular methods expose diversity not identifiable by traditional, morphological methods (Detwiler, Bos, & Minchella, 2010; Detwiler, Zajac, Minchella, & Belden, 2012; Georgieva, Selbach et al., 2013; Herrmann, Poulin, Keeney, & Blasco-Costa, 2014; Locke, McLaughlin, Dayanandan, & Marcogliese, 2010; Miura, Kuris, & Torchin, 2005; Nadler & León, 2011; Pérez-Ponce de León & Poulin, 2018). Finally, there is a lack of general survey data

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

 $\ensuremath{\mathbb{C}}$ 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

WILEY_Ecology and Evolution

on parasites, causing gaps in our understanding of diversity and richness for defined geographical locations (Adlard, Miller, & Smit, 2015; Adlard & O'Donoghue, 1998; Mollaret et al., 1997). Taken together, plastic and cryptic morphology, with a lack of survey data, makes it more difficult to correctly identify a parasite sample from a new location.

Recent meta- and spatial analyses have shown that our understanding of parasite diversity is biased toward location, time, and parasite class, correlating with when and where taxonomists are most active during their careers, and it is argued that more taxonomists are needed (Poulin, 2014: Poulin & Jorge, 2018). Molecular methods have come a long way in allowing faster and more precise species identifications and the ability to make hypotheses about species relationships and evolution considering cryptic morphology. However, even with these methods, regional checklists of hostparasite relationships remain incomplete (Poulin, Besson, Morin, & Randhawa, 2016). One major issue is depauperate and biased databases, directly related to research and funding interests, expertise, and the natural evolution of improving methodologies over time. So, not only do we need more taxonomists, but we need them to study more broadly to fill in these gaps in our understanding of parasite diversity.

Ecologically speaking, most parasites have incomplete life cycle descriptions. Likewise, our understanding of their distributions and interactions within and among host species is limited due to a lack of surveillance records and repeated or long-term studies. The dispersion of parasite data constrains our knowledge of the finer details of their ecology across broad geographic ranges. Additionally, unreliable morphological assessments in survey data present the caveats that (a) the species identities may not be accurate and (b) the survey may not represent true diversity within the area, missing cryptic species all together and underestimating overall diversity. Furthermore, the onset of molecular methods for species identifications has widened the knowledge gap through revelations of prior undetected diversity that cannot always be traced to a described species. In fact, the revelation of cryptic species is enhanced with greater sequencing effort, and more so for trematodes than any other group of parasitic helminth (Pérez-Ponce de León & Poulin, 2018). This, overall, can make it incredibly difficult to understand the larger picture when it comes to parasite ecology because we are lacking long-term, field studies, and precision in data collection.

Digenean trematodes are a very large group of parasitic helminths, with complex life cycles. The adult worms infect vertebrate hosts, in which their eggs are passed into the environment with the feces of the animal. The eggs hatch and infect a snail (or other mollusk), in which their larval development occurs. Larvae will emerge from their obligate, snail, first-intermediate host to then infect either a second-intermediate host or a definitive host, depending on the species. Current estimates for the number of trematode species range from 18,000 (Cribb et al., 2001) to 24,000 (Poulin & Morand, 2004).

Traditionally, taxonomic descriptions of trematodes are from morphological traits of adult worm stages derived from vertebrate

hosts, as their most prominent features are fully developed and measurable, contrasting the less developed features of the larval stages (Schell, 1985). With the onset of molecular barcoding, not only have we realized the problems of cryptic morphology and the need for multiple lines of evidence for species delineation, but that for trematodes, we can now use larval stages to delineate species (Detwiler et al., 2010, 2012; Georgieva, Selbach et al., 2013; Gordy, Locke, Rawlings, Lapierre, & Hanington, 2017; Locke, Mclaughlin et al., 2010; Schwelm, Soldánová, Vyhlídalová, Sures, & Selbach, 2018; Soldánová et al., 2017). This is advantageous in that it is considerably easier to collect larvae from snail, first-intermediate hosts. The disadvantage is the lack of a direct connection between adult morphological records and molecular records.

The goal of this study was to capture an accurate identification of the trematode biodiversity among snail first-intermediate hosts to establish a better, ecological understanding of trematode communities and how they differ geographically and change over time. In this study, we use molecular phylogenetic methods to assess species relationships, to identify collected specimens, and account for possible cryptic morphology. Snails and trematodes were collected from six lakes in central Alberta, Canada, over 3 years, from June to September. This longitudinal dataset provides novel contributions to the species diversity of trematodes, new geographical species records in central Alberta, and snail host association records, to better connect trematode life cycles. Though the data collected for this study were a continuation of our previous long-term dataset (Gordy, Kish, Tarrabain, & Hanington, 2016), the use of phylogenetic methods herein both expand and improve upon our understanding of trematode diversity and clarify identification issues we confronted previously.

Several trematode families have previously been given a considerable amount of attention in molecular phylogenies, more than others (e.g., Diplostomidae and Echinostomatidae). Therefore, species delimitation methods and acceptable sequence divergence limits have been tested for specific genes within these, well-studied, trematode families (Blasco-Costa & Locke, 2017; Detwiler et al., 2012; Georgieva et al., 2014; Georgieva, Selbach et al., 2013). Most trematode families have not been given such attention. Though there are general assumptions extrapolated from previous studies, such as 5% sequence divergence of cytochrome c oxidase subunit 1 (cox1) as an acceptable limit for species delimitation (Vilas, Criscione, & Blouin, 2005), this remains to be tested for all trematode families. Herein, we test this 5% assumption for delimitation using cox1 across seven trematode families.

The resulting diversity estimates from this study exemplify both the power and utility of molecular phylogenetics for species identification, but this study also identifies gaps and caveats that trematode taxonomists may face in future studies. Therefore, we provide commentary on the current caveats of the field of trematode taxonomy, cryptic species, depauperate databases, and areas in need of further research. We also provide a current record of trematode and host associations within Alberta and encourage the continued effort

FIGURE 1 Sample collection locations. Map of the six lakes from which snails and trematodes were collected in central Alberta, Canada. Depth of lake is given as a mean depth in meters

to better understand trematode diversity from both a regional and global context.

2 | METHODS

2.1 | Trematode and snail sample collection and selection

As a continuation of the 2-year survey described in Gordy et al. (2016), snails were collected for an additional year in the same manner from the following sites: Lake Isle, Lake Wabamun, Gull Lake—Aspen Beach, and Buffalo Lake—Pelican Point, Rochon Sands, and The Narrows (Figure 1). All methods regarding collection and sample processing, including molecular methods, were the same as previously described (Gordy et al., 2016, 2017).

Briefly, snails were collected from sites previously established and brought back to the laboratory for examination of patent infection by larval trematodes. Trematode infections, when patent, resulted in larval cercariae emerging from the snail into the surrounding water. Free-swimming cercariae were detected with a dissecting microscope, collected from the sample well, and preserved for downstream molecular work. Our original aim was to extract DNA and barcode every parasite sample. However, with over 2,400 samples, this goal was not feasible in cost and time. Nearly half the trematodes derived from the total collection were xiphidiocercariae, and previous sequencing efforts revealed these samples to be closest to Plagiorchis sp. (Gordy et al., 2016). Therefore, much of the sequencing efforts went to all other morphotypes for which there were enough cercariae available for sequencing (i.e., >10 cercariae, to keep a voucher stored in ethanol). For cost feasibility, we chose to sequence only 70 haphazardly sampled xiphidiocercariae samples,

representative of sites and snail host species from which they were found. The sequencing effort strategy for all other morphotypes was complete coverage.

2.2 | DNA isolation, sequencing, and analysis

DNA was extracted from cercariae preserved in 50% RNAlater or 95% ethanol, as previously described (Gordy et al., 2016). The partial NADH dehydrogenase subunit 1 (nad1) mitochondrial gene was sequenced for all cercariae for which morphological characterization or previous mitochondrial cox1 sequencing attempts (Gordy et al., 2016) placed them in the family Echinostomatidae. Because of high saturation within the cox1 gene for this family, nad1 has been the gene of choice in the literature (Detwiler et al., 2010, 2012; Georgieva et al., 2014; Morgan & Blair, 1998) and best represented the samples within GenBank for comparisons. For all other families, partial cox1 was used (Gordy et al., 2016, 2017; Moszczynska, Locke, McLaughlin, Marcogliese, & Crease, 2009; Van Steenkiste, Locke, Castelin, Marcogliese, & Abbott, 2014). Nucleotide sequence inspection, trimming, alignments, model testing for best-fit substitution models, and maximum-likelihood (ML) and Bayesian inference (BI) phylogenetic analyses were as described in Gordy et al. (2017). Model testing, utilizing BIC scores for determining bestfit, was implemented in MEGA7 (Kumar, Stecher, & Tamura, 2016). All BI analyses were run in the MrBayes (Huelsenbeck & Ronguist, 2001) plugin with chain length 10,000,000, subsampling frequency 100,000, four heated chains (chain temp 0.2), and burn-in length of 1,000,000. All ML analyses were run with the PhyML plugin (Guindon et al., 2010), estimating parameters, and with 1,000 bootstrap iterations. All molecular analyses were run using Geneious version 11 (http://www.geneious.com, Kearse et al., 2012).

Phylogenies were first constructed using a broad sampling of taxa within each family. Sequences of the same gene (either cox1 or nad1) were gathered from each species available in GenBank within that family. Because there are no standard methods yet employed for molecular taxonomic analysis within the Digenea, and much sequencing effort has been based on personal preference, we were unable to consistently attain a good representation of the species or even genera for several families, including Psilostomidae, Notocotylidae, and Plagiorchiidae. Because of issues with substitution saturation at broader taxonomic groupings for some families, their phylogenies were further refined into either genera or groups of closely related genera that were previously published as such (e.g., *Hypoderaeum* is paraphyletic to *Echinoparyphium* within the family Echinostomatidae (Detwiler et al., 2010; Kostadinova & Herniou, 2003)).

Phylogenies were constructed at a family-level with nonredundant sequences to understand species relationships. These family-based phylogenies were used as a benchmark for later phylogenies, in which redundant sequences were included for identification of individual sequences (specimen samples). Because there were many sequences, some phylogenies were divided to reduce the computation time (i.e., Strigeidae, Diplostomidae, and Echinostomatidae). We only present the information relevant to species identification phylogenies below, as the species relationships were the same as those within the nonredundant familylevel phylogenies.

2.3 | Species delimitation

Trematode samples were first separated by gross morphology, evidenced by previously published larval trematode descriptions (Schell, 1985). Then, percent nucleotide identities by tBLASTn (Altschul, Gish, Miller, Myers, & Lipman, 1990), phylogenies from the literature where available (Blasco-Costa, Poulin, & Presswell, 2016; Detwiler et al., 2010; Gordy et al., 2017; Hernández-Mena, García-Varela, & Pérez-Ponce de León, 2017; Locke, Mclaughlin et al., 2010), and species names given to the sequences in GenBank to which they most closely matched from BLAST results were used to group samples into trematode families and hypothesized genera.

After phylogenetic analyses, because many of our sequences were not directly within monophyletic groups of previously identified species, we employed additional tools to further distinguish taxa. The web app, Automatic Barcode Gap Discovery (ABGD; Puillandre, Lambert, Brouillet, & Achaz, 2012), was used in combination with a priori assumptions of a 5% cutoff in sequence divergence for species delimitation using *p* distances calculated in MEGA7 (Gordy et al., 2017; Kumar et al., 2016). For ABGD, nucleotide alignments were inserted and tested using all three distance measurements (Jukes-Cantor, Kimura 2.0, and simple distance) to look for agreements on grouping and prior maximal distance, using the default minimum slope of 1.5. Other specific methods will be described separately for each trematode family below. The one family that was included in downstream diversity analyses, but not described below is the Schistosomatidae because their phylogeny from this dataset was described and previously published (Gordy, Cobb, & Hanington, 2018).

2.3.1 | Family Notocotylidae

A final alignment of 98 cox1 sequences with a length of 327 bp was used for phylogenetic analyses. *Echinostoma hortense* (KR062182) was used as an out-group because of its prior demonstrated phylogenetic relationship to the notocotylid *Ogmocotyle sikae* (KR006934.1; Liu et al., 2016), which was one of only two sequences from GenBank we were able to use for comparison. The *E. hortense* sequence did cause one small gap in the final alignment. Only *O. sikae* and *Notocotylus* sp. BOLD (KM538104) were used for comparison to the 95 sequences from this study, due to a lack of Notocotylid *cox1* sequences available with significant overlap. HKY + G was the best substitution model and was used for phylogenetic analyses.

2.3.2 | Family Psilostomidae

A cox1 nucleotide alignment was made for 11 sequences, six from this study and five from GenBank, for a final length of 498 bp. *Echinochasmus japonicus* (NC_030518) was used as the out-group for phylogenetic analyses because of its previously demonstrated relationship outside of Psilostomidae, but within the superfamily Echinostomatoidea (Tkach, Kudlai, & Kostadinova, 2016). Three other species were used for comparison, namely *Sphaeridiotrema globulus* (GQ890329), *S. pseudoglobulus* (GQ890328 & FJ477222), and *Pseudopsilostoma varium* (JX468064). HKY + G was the best-supported nucleotide substitution model and was used for phylogenetic analyses. Because there were so few sequences, and therefore groups of species, ABGD was not utilized for confirmation.

2.3.3 | Family Haematoloechidae

A final nucleotide alignment consisted of seven sequences, one from *Plagiorchis* sp. (FJ477214) as the out-group, two from GenBank (KM538096–KM538097: *Haematoloechus* sp. BOLD), and four from this study. The *Plagiorchis* sequence was used as the out-group, based on previous use as such for phylogenies of Haematoloechidae sequences (Snyder & Tkach, 2001). The alignment was 469 bp with a few short gaps due to the out-group sequence. HKY + G + I was the best-supported nucleotide substitution model.

2.3.4 | Family Plagiorchiidae

A final nucleotide alignment of 56 cox1 sequences was 437 bp in length. A sequence for *Haematoloechus* sp. (KM538096) was used as the out-group (for reasons previously specified). Model test results showed the best nucleotide substitution model was HKY + I, which was utilized in BI and ML analyses.

	Buffalo Lake—Pelican Point	Buffalo Lake–Rochon Sands	Buffalo Lake—The Narrows	Gull Lake—Aspen Beach	Isle Lake	Lac La Nonne	Lac La Nonne site #2	Pigeon Lake— Provincial Park	Wabamun Lake— Provincial Park Beach	Grand total
Helisoma trivolvis	I	I	145	4	202	123	23	I	669	1,166
Lymnaea stagnalis	1	I	462	28	1	I	I	I	24	516
Physa gyrina	209	257	329	195	831	138	324	4	1,577	3,864
Planorbula armigera	I	I	I	1	I	I	I	1	1	1
Stagnicola elodes	3,567	368	36	399	3,457	1,179	370	I	129	9,505
Unidentified lymnaeid	I	I	I	1,192	I	I	I	1	1,060	2,252
Unidenitifed planorbid	I	I	78	7	1	I	I	I	57	143
Grand Total	3,777	625	1,050	1,825	4,492	1,440	717	4	3,517	17,447

2.3.5 | Family Echinostomatidae

Though *nad1* was the primary gene of interest for this family, based on previous work, many samples from this study were first (or only) analyzed using *cox1* sequences. To resolve the issue of having some samples of one gene and some of another, sequencing of both genes for a few samples was done to make the link between gene trees. The only successful sequences from this attempt were from isolates MGC16B, MGC1214, and MGC1665. These sequences allowed the comparison between *nad1* and *cox1* phylogenies.

An alignment was made for all echinostome *cox1* sequences from this study along with those gathered from GenBank to represent as many species as available and that covered the same region of the gene. The final alignment included 113 sequences and was 391 bp long. Two sequences for *Euparyphium capitaneum* (KY636235–KY636236) were used as the out-group (Tkach et al., 2016). From GenBank, sequences from the genera *Drepanocephalus*, *Hypoderaeum*, and *Echinostoma* were included in the alignment, as those were all that were available. Sequences included in the alignment from this study were from the genera *Echinoparyphium* and *Echinostoma*, and while there were no reference sequences within certain clades, there was overlap from the *nad1* gene tree to confirm the identity of these clades. The best-fit model was GTR + G for both genes and for all genera within this family. The *nad1* phylogenies were split into multiple groups as discussed below.

Drepanocephalus

The final nucleotide alignment (*nad1*) was 390 bp and included two *Drepanocephalus auritus* (KP053262 and KP053263) sequences, one *Drepanocephalus* sp. (KP053264), two unknowns from the current study (MGC2147 and MGC2353), and a *Fasciola hepatica* (KT893744) sequence as the out-group. Minor gaps were present between base pairs 180 and 190 where *F. hepatica* has a couple base pair differences. Because there were so few sequences, ABGD was not used for confirmation.

Neopetasiger

The final nucleotide alignment (*nad1*) of 21 sequences was 313 bp in length, and minor gaps occurred between base pairs 108 and 116 due to *F. hepatica* (KT893744), which was used as an out-group for this alignment.

Echinostoma

A final nucleotide alignment (*nad1*) of 73 sequences was 386 bp long and included 31 unknown sequences from this study and all available species with significant overlap in the same region from GenBank. As in Soldánová et al. (2017), among others, *Isthmiophora melis* (AY168948) was used as an out-group.

Echinoparyphium/Hypoderaeum

The final nucleotide alignment for *nad1* was 304 bp, with some minor gaps at position 81, 84, and 298, due to the out-group, and included 262 sequences. Once again, *I. melis* was used as an out-group. Both *Hypoderaeum* and *Echinoparyphium* sequences were included in

Counts of snail species by collection site

TABLE 1

FIGURE 2 Molecular phylogeny of the Notocotylidae and Psilostomidae based on *cox1*. Bayesian inference phylogenies are given. Branches are colored by support values from phylogenetic analyses, with blue having the highest support. Posterior probabilities >0.50 and bootstrap values >50 are reported near the nodes, respectively. Accession numbers are given after species names. Emboldened taxa with three asterisks represent novel species from molecular analyses. (a) Notocotylidae. (b) Psilostomidae

this alignment, because previous phylogenies have shown them as paraphyletic (Detwiler et al., 2010).

2.3.6 | Superfamily Diplostomoidea

Family Diplostomidae

Based on recent phylogenies by Hernández-Mena et al. (2017), and to reduce the overall size of the analysis, the Diplostomidae were divided into two groups for phylogenetic analyses utilized for identifications. Diplostomidae-I included the genera *Austrodiplostomum*, *Tylodelphys*, and *Diplostomum* and resulted in a final nucleotide alignment of 197 sequences at 347 bp, using *Ornithodiplostomum scardinii* (KX931425) as out-group. Diplostomidae-II included the genera *Bolbophorus*, *Posthodiplostomum*, *Ornithodiplostomum*, *Neodiplostomum*, and *Alaria*, with a final alignment of 104 sequences at 317 bp and using *Crocodillicola pseudostoma* (MF398317– MF398318) as the out-group. For both groups, GTR + G + I was the best substitution model and used for phylogenetic analyses.

Family Strigeidae

Like the Diplostomidae, the Strigeidae were divided into two groups for analyses and named after the ordering found in Hernández-Mena et al. (2017). Strigeidae-I included the genera *Cardiocephaloides*, *Cotylurus*, and *Ichthyocotylurus*. The final alignment was 356 bp long and included 152 sequences. *Tylodelphys scheuringi* (FJ477223) was used as the out-group for phylogenetic analyses. Strigeidae-II included genera from *Apatemon* and *Australapatemon*, with *Apharyngostrigea* spp. as the out-group (HM064884-HM064885, JX977777, & JF769451). The final nucleotide alignment was 392 bp and included 313 sequences. The best nucleotide substitution model for the Strigeidae was HKY + G + I and used in all phylogenetic analyses.

2.4 | Richness and recovery calculations

The following packages were utilized in R version 3.4.3 (R Core Team, 2017) to calculate richness and diversity metrics and plot them: *vegan* (Oksanen et al., 2018) and *dplyr* (Wickham, François, Henry, & Müller, 2017). Species richness was derived using the diversityresult (*vegan*) command to add unique species by site as well as pooled species richness for all sites, by snail species, and to view how they were represented by lake. Species accumulation and rarefaction were analyzed using the specaccum (*vegan*) command, utilizing the "collector" method to derive site richness in the order the data were collected and the "rarefaction" method to view an individual-based, rather than site-based, method for species accumulation, respectively. An Arrhenius nonlinear model was fit to a species accumulation curve to view the species-area relationship utilizing the specaccum (*vegan*) with "random" method and fitspecaccum (*vegan*)

commands. If we assume that morphological identification of larval trematodes gives the greatest confidence at the taxonomic scale of family, we predict that accumulation curves will plateau faster than with information derived from molecular phylogenetic identifications that can provide confidence to the species-level. To show this, we repeated the same accumulation and rarefaction analyses at the level of trematode family. This process was repeated for snail species, with exception of the Arrhenius nonlinear model, which would not converge.

3 | RESULTS

A total of 17,447 snails were collected over the 3-year period across all 11 sites (Figure 1 and Table 1). Snail species abundances are as follows: *Stagnicola elodes* = 9,505 (54.48%), *Lymnaea stagnalis* = 516 (2.96%), unidentified lymnaeid = 2,252 (12.91%), *Helisoma trivolvis* = 1,166 (6.68%), *Planorbula armigera* = 1 (0.01%), unidentified planorbid = 143 (0.82%), and *Physa gyrina* = 3,864 (22.15%). Of these collections, only 2,452 (14%) snails carried patent trematode infections, meaning cercariae were actively emerging from the snail. Unidentified lymnaeids and planorbids mentioned above were all uninfected. Most infections were found among *S. elodes* snails (1,892/77.16%), followed by *P. gyrina* (354/14.44%), *L. stagnalis* (123/5.02%), *H. trivolvis* (82/3.34%), and finally *P. armigera* (1/0.04%). Of these infections, 1,149 (46.8%) were classified as xiphidiocercariae by morphology (by having a clearly defined stylet in the anterior rim of the oral sucker (Schell, 1985)).

A total of 1,091 trematode cercariae samples were successfully extracted and sequenced for downstream molecular phylogenetic analyses. Less than 200 cercariae samples, excluding xiphidiocercariae, were not included in the final diversity analyses, either because of low quantities of cercariae, low quantity or quality of DNA, or bad sequencing results. Phylogeny results will be discussed in the same order as above, by family, in the sections below.

Several new lineage and singletons have emerged from these phylogenies, and we refer to them below as "species." We acknowledge the limitations of using molecular phylogenies for species identifications, without further supporting evidence (e.g., sequences from adult specimens) and that others would refer to them as operational taxonomic units (OTUs). However, we prefer to use the term species to remain consistent with our previous publications and sequence names.

3.1 | Family Notocotylidae

Despite there being 19 different species represented in GenBank from the superfamily Pronocephaloidea, only five species had cox1

FIGURE 3 Molecular phylogeny of the Haematoloechidae and Plagiorchiidae based on *cox1*. Bayesian inference phylogenies are given. Clades representing a single species have been condensed for space. Branches are colored by support values from phylogenetic analyses, with blue having the highest support. Posterior probabilities >0.50 and bootstrap values >50 are reported near the nodes, respectively. Accession numbers are given after species names. Numbers in parentheses after taxon names correspond to the number of sequences within the clade. The first number is number of GenBank sequences and the second number, if given, represents number of sequences from this study. Emboldened taxa with three asterisks represent novel species from molecular analyses. (a) Haematoloechidae. (b) Plagiorchiidae

sequences available at the time of this analysis, and one of those sequences was from a region other than the typical barcoding region (Folmer). Two of the sequences, Notocotylidae gen. sp. 1 NZ and sp. 2 NZ, were eventually removed from analyses because they did not align well. Therefore, the only sequences from GenBank left for phylogenetic comparisons with our sequences were *Ogmocotyle sikae* (mitochondrion, complete genome: NC_027112.1:6904-8460), *Notocotylus* sp. BOLD (KM538104), and Notocotylidae sp. MSB (KX670216).

3.1.1 | The former Gorgoderidae

From BLAST results, several sequences in our dataset matched most closely to the sequence for *Gorgoderina* sp. (FJ477202) in GenBank. When attempting to find other sequences for use in downstream analyses, we found that nearly every species in this family was only represented by 28S or ITS. A *cox1* sequence was available from *Pseudophyllodistomum macrobranchiola* (LC002523); however, the sequence was downstream of the Folmer region and did not overlap with our sequences. Upon further investigation, we found that these sequences matched very close to our other sequences for Notocotylidae sp., despite no BLAST matches from GenBank to Notocotylids. We therefore dissolved the Gorgoderidae sequence group, merging these sequences with the other Notocotylidae sequences, and have updated our previously published sequence (KT831348).

Our phylogenetic analyses have revealed four Notocotylid species from our samples. Both ML and BI trees agreed on topology with strong statistical support (Figure 2a). Though all ABGD methods agreed, they only split the groups into three (JC $p_{max} = 0.0215$; K2 and simple $p_{max} = 0.0129$): *E. hortense*, *O. sikae*, and *Notocotylus* sp. The only GenBank sequence to group with our sequences was *Notocotylus* sp. BOLD (KM538104).

Based on pairwise distances, however, *Notocotylus* sp. as a single group determined by ABGD was not supported based on the 5% cutoff, as several sequences within the group were more than 5% different from others, despite the average intraspecific divergence being 3.0% for all. Two sequences, isolates MGC683 and MGC1730, expressed 6.8%-10.2% and 5.0%-10.2% intraspecific divergence, respectively. Without including these sequences, the range of intraspecific divergence was 0.0%-5.6%, which is more reasonable for a single lineage, however, still beyond the cutoff. We suspected further division within the tree topology, as some sequences continued to be closer or above the 5% divergence cutoff. Those that grouped outside of the primary clade (identified as *Notocotylus* sp. A) and closer to MGC683 were then separated

further and support by intraspecific divergence was then within the cutoff range. In doing this, the average interspecific divergence between *Notocotylus* sp. A and D is 3.8% with a range of 2.8%–5.6% (Appendix: Table A1).

In considering the snail host species, *Notocotylus* sp. B (MGC1730) and C (MGC683), utilized *P. gyrina* and *H. trivolvis*, respectively, clearly supporting differentiation. However, the other isolates within *Notocotylus* sp. A and D used both *P. gyrina* and *S. elodes* as hosts, but curiously, *Notocotylus* sp. A was a primary *Physa* infecting species (36 *P. gyrina*/three *S. elodes*), while *Notocotylus* sp. D was a primary *Stagnicola* infecting species (49 *S. elodes*/five *P. gyrina*).

3.2 | Family Psilostomidae

Only a few species within the Psilostomidae had representation by *cox1* in GenBank and significant overlap with our sequences. In molecular phylogenies, none of the sequences from this study grouped with any of the GenBank species representing the Psilostomidae family, but created their own monophyletic group, sister to *P. varium*. Both BI and ML trees agreed on topology (Figure 2b). The six sequences from this study were 0%–0.8% divergent from each other, with an average intraspecific divergence of 0.4%, and interspecific divergence of 14.3%–24.6% (Appendix: Table A2). Because of the low identity to any of the available genera from this family, the sequences from this study have therefore been identified broadly as Psilostomidae gen. sp. A. All six samples were derived from cercariae emerging from *H. trivolvis* snails.

3.3 | Family Haematoloechidae

Despite there being 18 *Haematoloechus* spp. with *cox1* sequences available in GenBank at the time, only two sequences from this database overlapped with our sequences because of different choices in sequenced *cox1* regions. In addition, no other genera within the Haematoloechidae were currently represented in GenBank.

The four Haematoloechidae sequences from this study were 100% identical to each other, but 13.4%–25.8% divergent from GenBank sequences (Figure 3a and Appendix: Table A3). These four sequences were generalized to Haematoloechidae gen. sp. A, because there were no specific species within GenBank or other evidence that could provide more specificity at this time. Both BI and ML trees agreed with strong support for topology, as suspected for such little information. All four sequences were derived from samples that came from *S. elodes* snails collected at Pelican Point at Buffalo Lake.

FIGURE 4 Molecular phylogeny of the Echinostomatidae: *Drepanocephalus* and *Neopetasiger* genera based on *nad1*. Bayesian inference phylogenies are given. Branches are colored by support values from phylogenetic analyses, with blue having the highest support. Posterior probabilities >0.50 and bootstrap values >50 from BI and ML analyses are reported near the nodes, respectively. Accession numbers are given after species names. Clades representing a single species have been condensed for space. Numbers in parentheses after taxon names correspond to the number of sequences within the clade. The first number is number of GenBank sequences and the second number, if given, represents number of sequences from this study. (a) *Drepanocephalus*. (b) *Neopetasiger*

3.4 | Family Plagiorchiidae

Most Plagiorchiidae sequences in GenBank use a different region of the cox1 gene, downstream from the Folmer region. The only sequence that aligned with ours was one Plagiorchis sp. (FJ477214). Phylogenetic analyses of Plagiorchiid sequences resulted in both ML and BI trees agreeing on topology with strong statistical support for external nodes and moderate support for internal nodes (Figure 3b). All methods within ABGD supported the differentiation of lineages within the tree to nine groups other than the out-group $(p_{\max (AII)} = 0.004 - 0.0599)$. Pairwise and averaged intraspecific divergence values were supported by the 5% cutoff, and the highest value was 2.1% within Lineage 1. The average interspecific divergence had a range from 8.9% to 18.8% (Appendix: Table A4). Further support for the differentiation of some lineages was found among intermediate host use, as Lineage 6 utilized H. trivolvis, Lineage 7 used L. stagnalis, and all other lineages were found emerging from S. elodes. Because this diversity was greater than we had expected by morphology (indicating possibly two species based on relative size) and prior BLAST results, we were unable to assign the unsequenced samples to these nine different lineages. Therefore, in downstream diversity analyses that require abundance information, these lineages have been conservatively lumped into one species, called Plagiorchis sp.

3.5 | Family Echinostomatidae

For each separate alignment, ML and BI phylogenies were compared and found to agree on major topology. In instances where external node topology disagreed between the two methods, this was identified as a separate tree.

3.5.1 | Drepanocephalus

Both *nad1* sequences from this study grouped monophyletically with *D. auritus* sequences. *Drepanocephalus* sp. was paraphyletic to the *D. auritus* group and displayed a nucleotide divergence range to the *D. auritus* group of 14.4%–15.5% (Figure 4a). The intraspecific divergence within the *auritus* group ranged from 0.0% to 4.4%, with an average of 2.2% (Appendix: Table A5). Both samples from this study came from *H. trivolvis* snails, which match with other records of specimens derived from planorbid snails in different geographical regions, specifically the United States and Brazil (Table 3). Recent work has revealed the synonymy of *D. auritus* with *Drepanocephalus spathans*, with *spathans* as the chosen name (Hernández-Cruz, Hernández-Orts, Sereno-Uribe, Pérez-Ponce de León, & García-Varela, 2018). Therefore, we have identified our sequences according to this.

3.5.2 | Neopetasiger

The 10 sequences from this study all grouped within *Neopetasiger* sp. 4 and were <1% different in nucleotide identity from *Neopetasiger* sp. 4 (KM191817), with an average intraspecific divergence of 0.2% and an interspecific divergence of 21.1%–28.2% (Figure 4b and Appendix: Table A6). All *Neopetasiger* sp. samples from this study were derived from *H. trivolvis* snails, further indicating their specialization for planorbid snails, as indicated by other studies (Table 3).

3.5.3 | Echinoparyphium/Hypoderaeum

All methods in ABGD agreed on separation of the alignment into 17 groups ($p_{max (all)}$ = 0.0129; Figure 5a). This separation was further supported by considering the range of intraspecific divergence values reported previously for several of these same lineages (Detwiler et al., 2010). Furthermore, most groups supported a clear separation of lineages by first-intermediate host use, confirmed from both Indiana and Alberta. For most lineages, the average within-group nucleotide divergence was <5%. Despite ABGD results, some lineages with >5% divergence, upon further inspection, revealed evidence for further splitting, including Echinoparyphium sp. Lineage 3 and Hypoderaeum sp. Lineage 1. For example, though ABGD showed Echinoparyphium sp. Lineage 3 to be one group made of four sequences, their p distance values were very divergent. The two sequences from GenBank previously identified as Lineage 3 were 2.7% divergent from each other, but 9.7%-11% divergent from the two sequence from our study that were 3.7% divergent from each other. To us, this was a clear split and was also highly supported by posterior probabilities and bootstrap values in phylogenetic analyses as well. We therefore derived a new lineage, Echinoparyphium sp. Lineage 4.

Within the *Hypoderaeum* sp. Lineage 1 clade, there was an obvious split occurring with three sequences forming their own clade (MGC577, MGC650, and MGC824). This split was not supported by ABGD or by host use, as all utilized *S. elodes* snails. The nucleotide divergence, however, ranged between 0.3% and 5.4%. The small clade that was found diverging from the rest was 0.3%–0.7% different from each other and 5.0%–5.4% different from the others. The split was obvious and well supported within the phylogenies. We have therefore split this lineage into two groups, now including *Hypoderaeum* sp. Lineage 2 (Figure 5a).

Several additional new lineages have been added to the genus *Echinoparyphium* because of our sequencing efforts. We have labeled these as *Echinoparyphium* sp. A–E, and for the two that are close to the previously identified *Echinoparyphium* sp. Lineage 1, we have labeled as *Echinoparyphium* sp. Lineage 1 A–B (Figure 5a).

0.51 Posterior probabilities

FIGURE 5 Molecular phylogeny of the Echinostomatidae: *Echinoparyphium/Hypoderaeum* genera based on *nad1* and *cox1*. Bayesian inference phylogenies are given. Branches are colored by support values from phylogenetic analyses, with blue having the highest support. Posterior probabilities >0.50 and bootstrap values >50 from BI and ML analyses are reported near the nodes, respectively. Accession numbers are given after species names. Clades representing a single species have been condensed for space. Numbers in parentheses after taxon names correspond to the number of sequences within the clade. The first number is number of GenBank sequences and the second number, if given, represents number of sequences from this study. Emboldened taxa with three asterisks represent novel species from molecular analysis. (a) *nad1*. (b) *cox1*

One group we could not clearly delineate further, despite divergence higher than the cutoff. *Echinoparyphium* sp. Lineage 2 displayed above 5% intraspecific divergence, with an intraspecific range of 0.0%–5.7% and an average of 1.2%. The one isolate responsible for this greater divergence value is MGC369 that ranges from 1.7% to 5.7% from all other isolates within this lineage. All other isolates in this lineage have an intraspecific divergence range from 0.0% to 4.3% without MGC369. While this difference would seem a clear divergence, the phylogeny does not support the placement of MGC369 outside of this lineage. From host use, we find that MGC369 utilized *L. stagnalis*, whereas the majority of Lineage 2 isolates used *S. elodes*.

While this would also seem to support differentiation, one other member MGC16B also utilized *L. stagnalis*, with very close sequence homology to other Lineage 2 members (0.3%-4.3%). Because neither the phylogenies nor host use supports further differentiation for this group, MGC369 remains in this lineage.

The *cox1* phylogenies for the Echinostomatidae (Figure 5b), for the most part, were well supported and matched patterns seen within the *nad1* phylogenies for this family. Because a few samples had both *cox1* and *nad1* sequences available, the lineage identities were informed by *nad1* because there were not many GenBank *cox1* sequences that matched. Overall, there was only one lineage within

FIGURE 6 Molecular phylogeny of the Echinostomatidae based on *nad1*. Bayesian inference phylogenies are given. Branches are colored by support values from phylogenetic analyses, with blue having the highest support. Posterior probabilities >0.50 and bootstrap values >50 from BI and ML analyses are reported near the nodes, respectively. Accession numbers are given after species names. Clades representing a single species have been condensed for space. Numbers in parentheses after taxon names correspond to the number of sequences within the clade. The first number is number of GenBank sequences and the second number, if given, represents number of sequences from this study

FIGURE 7 Molecular phylogenies of the Diplostomidae-I Group based on *cox1*. Clades representing a single species have been condensed for space. Branches are colored by support values from phylogenetic analyses, with blue having the highest support. Bootstrap values >50 and posterior probabilities >0.50 are reported near the nodes. Numbers in brackets after taxon names correspond to the number of sequences within the clade. The first number is number of GenBank sequences and the second number, if given, represents number of sequences from this study. Emboldened taxa with three asterisks represent novel species from molecular analyses. (a) Maximum-likelihood tree. (b) Bayesian inference tree

_Ecology and Evolution

WILEY

the *cox1* phylogeny that had no overlapping sequences, and these have been labeled broadly as Echinostomatidae gen. sp.

There were two unexpected patterns found within the *cox1* phylogeny as compared to the *nad1*. The lineage we identified as *Echinoparyphium* sp. Lineage 2 by *nad1* had a split, with very large divergence from isolate MGC16B to the other members of the lineage, upwards of 22.7%. Because there were no clear trends to help us understand this difference between the two genes, we have chosen to continue to include it within this same lineage, with the noted caveat.

The other unexpected pattern was within the lineage Echinoparyphium sp. A. Like the previous example, the lineage has split based on the cox1 gene. The range of pairwise distance within this group, including members of both split lineages, was 0.0%-21.4%, with an average intraspecific divergence of 10.5%. Without further evidence, one might conclude that this could be due to oversaturation in cox1, as previously noted for the echinostomes. We did see that one defining feature also separating these clades was intermediate host use. The clade that includes the isolate MGC1143 utilized S. elodes snails, whereas members of the clade with isolate MGC658 all used P. gyrina snails. By nad1, MGC1143 diverged from the other members of this clade by 1.0%-4.7%. MGC658 diverged by 0.3%-3.3%. Both could be considered within an acceptable range, leaving the decision of lump or split nearly impossible based on sequences alone. Host use, especially for the first-intermediate snail host, is strong evidence that these are more likely to be two different species. In considering that these snails are members of different families and that the only other examples of different snail species being used within other genera of this family utilize species within the same snail family, namely, S. elodes or L. stagnalis, both members of the Lymnaeidae, our best judgment is to split this into two species, based on host use (Appendix: Tables A7 and A8).

3.5.4 | Echinostoma

There was strong nodal support by both BI and ML trees for the topology of the Echinostoma species (Figure 6). All ABGD distance methods supported the separation of the alignment into 15 groups (p_{max} (JC & K2) = 0.0359; p_{max} (simple dist.) = 0.02154). Intraspecific divergence values, based on the delineation cutoff, did not always support the same groups. For instance, Echinostoma miyagawai, Echinostoma robustum, and Echinostoma revolutum all exhibited ranges >5%, despite the average being lower, except for E. robustum whose average was 5.4%. Placement of one sequence within the tree did not match expectations but had high statistical support; E. robustum (GQ463053) grouped within a clade of E. miyagawai. The inclusion of the robustum sequence did explain the greater intraspecific divergence within this clade, but there was not support for its placement with the other robustum sequences that also exhibit high intraspecific divergence. Further inspection of this particular robustum sequence has shown previous assessments that have identified this same trend, indeed showing it to be E. miyagawai (Georgieva et al., 2014).

Sequences labeled/identified as *Echinostoma trivolvis* from GenBank resulted in two paraphyletic groups within the tree, the

separation of which was confirmed by ABGD and within-group divergence values of <5%. These observations confirmed previous lineage separation by Detwiler et al. (2010).

The Echinostoma sequences from the present study all fit within two clades, either E. revolutum or E. trivolvis Lineage A. The revolutum group exhibited higher than expected intraspecific divergence that ranged from 0.0% to 6.0%. Though not supported by ABGD, there did appear to be two separate groups emerging, one that has been found among S. elodes snails (Lineage B) and the other among Lymnaea spp. and ducks (Lineage A). By splitting these lineages, we saw more reasonable intraspecific divergence values within Lineage B (0.0%–1.6%), yet Lineage A continued to exhibit divergence higher than the cutoff (0.0%–5.7%; Appendix: Table A9). Because Lineage B isolates all utilized the same snail host, we were more confident in the grouping of this lineage, but believe that further sampling will likely show greater differentiation within Lineage A.

3.6 | Family Diplostomidae

For both Diplostomidae-I and Diplostomidae-II groups, BI and ML phylogenies agreed on minor topologies, with greater support for external nodes and less support and agreement between the two methods for internal nodes (Figure 7). For Diplostomidae-I, all distance methods in ABGD agreed on 41 total groups ($p_{max} = 0.059$), further supported by the 5% cutoff. A result worth noting from this phylogeny is that a sequence we previously identified as T. scheuringi (KT831356) has now split from this group into a separate, new lineage we are now calling Tylodelphys sp. A. Several sequences from this study did not group specifically with any available GenBank sequences and have formed distinct lineages among the Diplostomum species. These have been identified as Diplostomum spp. A-C (Figure 7 and Appendix: Table A10). Other lineage splits seen within Diplostomum baeri and Tylodelphys sp. 2 have previously been described (Soldánová et al., 2017) and are further supported with our phylogeny.

Twenty-three groups were identified for Diplostomidae-II, supported by all distance methods of ABGD ($p_{max} = 0.059$) and the 5% cutoff. Two lineages made up of sequences from this study did not group within a specific clade of previously identified sequences and have thus been identified generally as Diplostomidae gen. sp. O and sp. X. One such sequence was previously identified as being most like *Ornithodiplostomum* sp. 4 (KT831363); however, in this phylogeny, it grouped far from the other *Ornithodiplostomum* sequences. Of note is that a sequence from GenBank previously identified as *Posthodiplostomum* sp. 3 (FJ477217) grouped with high statistical support with sequences of *Posthodiplostomum centrarchi* (KX931421–KX931423), supporting a very recent report of this same identification (Stoyanov et al., 2017; Figure 8 and Appendix: Table A11).

3.7 | Family Strigeidae

Few species with sequences across the *cox1* barcoding region were available from GenBank for comparison within the Strigeidae-I

II **FV**_Ecology and Evolution

group. At the start of our analyses, only two species had matched with some of our sequences, Cotylurus cornutus and Cotylurus gallinulae. More recently, more Cotylurus species have been added to GenBank (Locke et al., 2018), and these additions helped define three previously unidentifiable lineages from phylogenies. Both ML and BI trees agreed with strong statistical support for the division of all aligned sequences into 16 groups, which was further supported by ABGD ($p_{max(all)} = 0.0077-0.0129$). Sequences from the present study were all more closely related to Cotylurus as opposed to Ichthyocotylurus, based on p distances. Five could be identified to previously named species (C. cornutus, C. gallinulae, Cotylurus flabelliformis, Cotylurus marcogliesei, and Cotylurus strigeoides), and six other lineages did not match to any GenBank sequences and have been identified as Cotylurus sp. A-F. Clade division is further supported by intermediate host use. While intraspecific divergence was within the cutoff for all species, there was lower than expected interspecific divergence between C. cornutus and C. flabelliformis (4.2%; Figure 9a and Appendix: Table A12).

The Strigeidae-II group utilized the previously published phylogenies of Blasco-Costa et al. (2016) and Gordy et al. (2017) as a starting point, with new sequence additions. Unfortunately, there were still no additional species in GenBank to add that would help inform this phylogeny further. However, the addition of new sequences from the present study has revealed even greater diversity than found previously and has supported the previously derived lineages. While both ML and BI trees agreed on topology and provided medium to strong node support, ABGD methods did not agree with the number of groups informed by previous phylogenies or across methods (JC: 26 groups $[p_{max} = 0.0077]$, 21 groups $[p_{max} = 0.0129 - 0.0215]$, 14 groups [p_{max} = 0.0359]; K2: 26 groups [p_{max} = 0.0129], 21 groups $[p_{max} = 0.0215 - 0.0359]$, 13 groups $[p_{max} = 0.059]$; and Simple: 29 groups $[p_{max} = 0.007]$, 28 groups $[p_{max} = 0.0129]$, 18 groups $[p_{max} = 0.0215]$, 13 groups $[p_{max} = 0.0359]$). Examining divergence based on p distances better supported the phylogenetic results, with 23 groups (including out-group sequences from Apharyngostrigea spp.) having been within the 5% intraspecific cutoff and having >5% interspecific divergence, all except for Australapatemon burti LIN1, which had an intraspecific divergence range of 0.0%-6.4% and an average of 1.1%. There were only a few sequences that reached the highest part of that range, one new sequence, MGC1629 that came from S. elodes, and five previously published sequences: four from Gordy et al. (2017) (KY587401, HM385485, KY587400, and HM385486), all cercariae derived from Planorbis sp. snails in California, and JX977727, an adult from Mexico. Though they differed from some other LIN1 sequences >5%, they were more similar to other LIN1 sequences with divergence <5%, which made it

difficult to clearly delineate whether there was one monophyletic clade or more. Currently, there is not enough evidence to clearly support more than one clade within Lineage 1.

Therefore, with the best supported information, there appeared to be 23 groups within the Strigeidae-II, which revealed three new species of *Apatemon*: species A, which included our previously published *Apatemon* sp. (KT831859), and species B and C. Though these three species all utilized *S. elodes*, they were molecularly divergent.

Within the Australapatemon clade, a new lineage appeared from isolate MGC2030 that utilized *P. gyrina* identified herein as Lineage 10. Lineage 9, with the addition of more sequences, as predicted in Gordy et al. (2017), has revealed the greater likelihood and separation of this lineage into two, which we have called Lineage 9A and Lineage 9B, both of which were hosted by *S. elodes* snails (Figure 9b and Appendix: Table A13).

3.8 | Species richness and rarefaction

Based on our estimates of species, as described above and evidenced from molecular phylogenies, we have recovered 79 trematode species from five snail host species across six lakes in central Alberta. Richness recoveries were greatest at Isle Lake (38 trematode species/four snail species), followed by Wabamun Lake (27/5), Gull Lake (24/3), Lac La Nonne Site #1 (18/3), Lac La Nonne Site #2 (16/3), Buffalo Lake—Pelican Point (16/3), Buffalo Lake—Rochon Sands (13/2), Buffalo Lake—The Narrows (13/4), and finally, Pigeon Lake Provincial Park (3/1) (Tables 1–4).

Of the 79 total trematode species reported here, 59 are newly identified species in this report that have resulted in 15 updated identifications for previously published sequences (Table 3). Thirtynine of the 59 new identifications represent novel lineages/singletons (represented by "a" in Table 3), with another two lineages that represent a recent split (*Australapatemon* sp. LIN9A/9B). The remaining 20 species were previously identified, and for 15 of them, we have added further sequenced specimens, confirming their previous identifications and adding to our understanding of species presence and abundances in Alberta lakes (Table 3 and Appendix: Table A14).

Examining the relationship of trematode species richness and sample size (by sites/area and individuals) through rarefaction and nonlinear models revealed a stark contrast between whether confidence for delimitation was at a family-level (morphological analysis) or a species-level (molecular analysis; Figure 10a-c). Considering the accumulation of trematode families, the curves plateaued (individual-based) or approached one (site-based), suggesting we likely captured the available trematode families within our samples and

FIGURE 8 Molecular phylogenies of the Diplostomidae-II Group based on *cox1*. Clades representing a single species have been condensed for space. Branches are colored by support values from phylogenetic analyses, with blue having the highest support. Bootstrap values >50 and posterior probabilities >0.50 are reported near the nodes. Numbers in parentheses after taxon names correspond to the number of sequences within the clade. The first number is number of GenBank sequences and the second number, if given, represents number of sequences from this study. Emboldened taxa with three asterisks represent novel species from molecular analyses. Black diamonds represent sequences identified uniquely in GenBank that have high similarity and likelihood of being the same as a different species. (a) Maximum-likelihood tree. (b) Bayesian inference tree

II FY_Ecology and Evolution

sample region. However, when looking at the curves based on trematode species accumulation, there was no plateau, suggesting that there was potentially greater trematode species diversity than we captured from our sampling. Snails, on the other hand, plateaued in rarefaction analyses (Figure 10d,e). This was not at all surprising, considering that over 3 years of collections, we had yet to find more than seven species.

The greatest richness recoveries by snail host species were found among *S. elodes* (40 trematode species), followed by *P. gyrina* (26), *H. trivolvis* (15), *L. stagnalis* (10), and *P. armigera* (1), following the same trend as identified previously (Gordy et al., 2016), but with more total species (Table 5). Specificity for snail host species was high (55 specialist trematode species) among all but 15 trematodes, of which were found to infect two or more snail species (generalists). Some trematodes were found infecting snails from completely different families, these were *A. burti* LIN1 (*S. elodes, L. stagnalis, H. trivolvis, P. gyrina*), *Echinoparyphium* sp. LIN1A (*S. elodes, H. trivolvis, P. gyrina*), and Notocotylus sp. A/D (*S. elodes, P. gyrina*).

4 | DISCUSSION

Fine-scale molecular analyses of trematodes in central Alberta have revealed many new and important insights about their diversity. What is perhaps most surprising is that species accumulation curves would suggest we have yet to capture all the possible trematode species within our sample area. Comparing the species-level to family-level accumulation clearly demonstrates how important the molecular phylogenetic perspective is. Herein, we have used the family-level as a proxy for the type of results achieved by morphological analysis only, in considering trematode larval stages. While morphological identification of trematode larvae can be less costly in terms of materials, it does not afford a very high level of confidence because of the issues surrounding cryptic species and underdeveloped, definable features. Family-level accumulation based on individuals and sites is achieved at a much higher rate than species, as expected, and reaches a plateau earlier. If, for instance, this representation is true of the number of species attained by a typical survey, it is likely that trematode surveys are missing much of the actual diversity present. This is important to note because of the potential impact on how we might interpret community assembly and structure in natural environments, especially in consideration of cryptic species.

Overall, the trematode species richness found by this longitudinal survey exceeded expectations, and the number of snail species needed in a community to maintain a diverse set of trematodes was surprisingly small. In our original morphological assessments, we expected 29 trematode species. With the use of molecular assessments, based on BLAST identities and fewer sequenced samples, generated from the first 2 years of the study, we had expanded our view to 39 identified species (Gordy et al., 2016). Now, with more available sequence information, and the use of more stringent methods, we have, in total, recovered double the species from previous assessments at a total of 79 trematode species, 55 of which are new records to Alberta from this study alone. This raises the recorded trematode species in Alberta to 114, representing 16 families (Appendix: Table A14).

For an ecoregion that has previously been considered speciespoor (Hoberg, Galbreath, Cook, Kutz, & Polley, 2012), sub-Arctic lake ecosystems have presented a surprising amount of trematode diversity from recent surveys. From one lake in Norway, on the 69th parallel, 24 different trematode species were recovered, representing seven different, common families from lakes in the Northern hemisphere (e.g., Strigeidae, Diplostomidae, Schistosomatidae, Echinostomatidae, Notocotylidae, Plagiorchiidae; Soldánová et al., 2017). Though further South, between the 54th and 52nd parallel, our study is still considered within the sub-Arctic region and has uncovered a range of 3-38 trematode species representing 3-8 families, each, among six lakes (the lower end, from Pigeon Lake and Lac La Nonne, was only sampled in 1 year as opposed to 3 years for the other lakes). In between, sampling of fish from the Saint Lawrence River in Quebec (between the 49th and 44th parallel) has revealed 47 species of just diplostomoids (Locke, Mclaughlin et al., 2010). From these surveys, it is apparent that our perspective of what constitutes incredible or unexpected diversity is changing and will continue to change as we take a closer look with molecular data. In all three of these studies, the unveiling of cryptic diversity has been a large component. From a recent meta-analysis of 110 studies, it has been noted that there is a trend, particularly among trematodes, that sequencing effort positively correlates with more cryptic species as opposed to any other group of helminths. This has been attributed to differences in trematode biology, and our ability as taxonomists to identify them by their morphological characters, or lack thereof (Pérez-Ponce de León & Poulin, 2018).

From a basic search of the GenBank database, we can see that trematodes are not a neglected group, as there are 877,472 molecular records specific to digeneans (as of August 2018). However, this is not to say that specific groups of digenean are not neglected nor that representation is not highly skewed to particular gene regions or to those species most important to human or veterinary health. Of the digenean sequences in GenBank, 15,185 were of mitochondrial origin. Considering the two most used mitochondrial genes for

FIGURE 9 Molecular phylogenies of the Strigeidae based on *cox1*. Bayesian inference phylogenies are given. Clades representing a single species have been condensed for space. Branches are colored by support values from phylogenetic analyses, with blue having the highest support. Posterior probabilities >0.50 and bootstrap values >50 are reported near the nodes, respectively. Accession numbers are given after species names. Numbers in parentheses after taxon names correspond to the number of sequences within the clade. The first number is number of GenBank sequences and the second number, if given, represents number of sequences from this study. Emboldened taxa with three asterisks represent novel species from molecular analyses. (a) Strigeidae-II

TABLE 2 Trematode species c	ounts by collection	n site								
	Buffalo Lake—Pelican Point	Buffalo Lake—Rochon Sands	Buffalo Lake—The Narrows	Gull Lake-Aspen Beach	Isle Lake	Lac La Nonne	Lac La Nonne site #2	Pigeon Lake— Provincial Park	Wabamun Lake—Provincial Park Beach	Grand total
Apatemon sp. A	1	1		1	16		I	1	1	16
Apatemon sp. B	1	1	I	1	1	I	1	I	1	1
Apatemon sp. C	I	I	ı	ı	4	I	I	I	1	4
Australapatemon burti LIN1	I	1	2	24	165	2	5	I	6	204
Australapatemon mclaughlini	I	2	1	1	I	I	I	1	-	2
Australapatemon sp. LIN10	I	I	1	1	I	I	I	I	1	1
Australapatemon sp. LIN3	1	I	1	1	Т	I	I	1	-	1
Australapatemon sp. LIN4	I	1	I	1	ı	I	1	I	1	2
Australapatemon sp. LIN5	1	1	1	1	Т	I	1	1	-	1
Australapatemon sp. LIN6	1	1	1	1	4	I	1	1	1	7
Australapatemon sp. LIN8	1	4	ı	1	e	I	I	I	1	9
Australapatemon sp. LIN9A	1	2	I	7	9	2	1	I	1	17
Australapatemon sp. LIN9B	ო	1	I	I	I	I	I	I	1	4
Avian schistosomatid sp. A	1	ო	2	I	2	I	I	I	1	7
Avian schistosomatid sp. B	I	I	I	I	I	I	1	I	I	1
Avian schistosomatid sp. C	I	I	I	I	I	I	I	I	1	1
Bolbophorus sp.	I	I	6	I	2	I	I	I	2	10
Cotylurus cornutus	I	I	I	2	32	I	1	I	1	35
Cotylurus flabelliformis	I	I	I	I	1	I	I	I	I	1
Cotylurus marcogliesei	1	I	I	З	2	1	I	I	I	7
Cotylurus sp. A	I	I	I	I	34	1	1	I	3	39
Cotylurus sp. B	I	I	I	I	1	I	I	I	I	1
Cotylurus sp. C	I	I	e	I	I	I	I	I	I	ი
Cotylurus sp. D	I	1	I	I	I	I	I	I	I	1
Cotylurus sp. E	2	1	I	2	5	2	I	I	I	12
Cotylurus sp. F	1	I	4	I	I	I	I	I	2	6
Cotylurus strigeoides	I	1	1	I	11	1	6	I	2	22
Diplostomidae gen. sp. O	6	19	I	6	2	I	I	I	1	34
Diplostomidae gen. sp. X	I	I	I	I	1	I	I	I	I	1
Diplostomum baeri LIN2	I	1	I	I	с	I	I	I	2	5
Diplostomum indistinctum	I	I	I	1	I	I	I	I	1	1
Diplostomum sp. 1	I	I	I	1	1	I	I	1	5	6
Diplostomum sp. 3	I	I	I	I	I	I	I	I	3	e
Diplostomum sp. 4	9	I	I	7	24	I	1	I	30	71
Diplostomum sp. A	1	I	1	I	1	I	I	I	I	1
Diplostomum sp. B	I	I	I	1	1	I	1	1	1	1
Diplostomum sp. C	I	I	I	1	10	I	I	I	1	12
									(0	continues)

\sim
0
(1)
v
_
•
_
_
<u> </u>
_
•
_
_
<u> </u>
_
\sim
· · J
()
\sim
\sim
~
2
2
3
2
2
2
Е 2
E 2
Е 2
LE 2
LE 2
LE 2
3LE 2
3LE 2
BLE 2
BLE 2
NBLE 2
ABLE 2
ABLE 2
ABLE 2
ABLE 2

UT AND H	ANI	NG	UN	I																			_E	colc	gy a	and	Evo	oluti	on 	Open A	ccess	-V	VI	LI	EY	r
Grand total	4	46	7	6	25	1	6	97	1	89	2	33	2	4	4	6	ო	1	1	10	39	1	1	54	1	4	1,145	2	6	10	1	8	2	5	2,183	
Wabamun Lake—Provincial Park Beach	1	7	I	I	I	I	I	23	1	3	1	1	1	I	I	1	I	1	1	7	6	1	I	I	1	I	78	I	2	1	I	I	I	5	200	
Pigeon Lake— Provincial Park	1	2	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	1	I	I	I	I	I	I	I	ı	4	
Lac La Nonne site #2	ı	7	1	I	1	I	I	46	I	4	I	1	I	I	I	I	I	I	I	I	6	I	I	1	I	I	26	I	I	I	I	I	I	I	110	
Lac La Nonne	ī	2	2	6	16	I	I	18	I	27	I	7	2	I	I	I	2	I	I	I	6	I	1	4	I	I	132	I	I	I	1	I	I	ı	241	
Isle Lake	1	22	I	I	I	I	I	10	1	13	I	2	2	I	I	I	1	I	I	2	12	I	I	23	I	ю	173	2	4	I	I	8	I	ī	610	
Gull Lake—Aspen Beach	1	4	4	I	8	I	6	I	I	29	I	11	I	I	I	5	I	I	I	I	1	I	I	21	I	I	257	I	I	3	I	I	1	ı	407	
Buffalo Lake—The Narrows	0	I	I	I	I	I	I	I	I	I	1	I	I	I	I	I	I	I	I	1	I	I	I	I	{	I	58	I	I	6	I	I	1	I	89	
Buffalo Lake–Rochon Sands	1	I	I	I	I	I	I	I	I	1	I	I	I	I	I	I	I	I	I	I	1	I	I	1	I	I	78	I		I	I	I	I	I	116	
Buffalo Lake–Pelican Point	1	2	I	I	I	1	I	I	I	12	I	11	I	4	4	I	I	1	I	I	1	I	{	4	I	I	343	I	I	I	I	I	I	I	406	
	Drepanocephalus spathans	Echinoparyphium sp. A	Echinoparyphium sp. A2	Echinoparyphium sp. B	Echinoparyphium sp. C	Echinoparyphium sp. D	Echinoparyphium sp. E	Echinoparyphium sp. Lineage 1A	Echinoparyphium sp. Lineage 1B	Echinoparyphium sp. Lineage 2	Echinoparyphium sp. Lineage 4	Echinostoma revolutum B	Echinostoma trivolvis Lineage A	Echinostomatidae gen. sp.	Haematoloechidae gen. sp. A	Hypoderaeum sp. Lineage 1	Hypoderaeum sp. Lineage 2	Neodiplostomum americanum	Neopetasiger islandicus	Neopetasiger sp. 4	Notocotylus sp. A	Notocotylus sp. B	Notocotylus sp. C	Notocotylus sp. D	Ornithodiplostomum sp. 2	Ornithodiplostomum sp. 8	Plagiorchis sp. ^a	Posthodiplostomum sp. 4	Psilostomidae gen. sp. A	Schistosomatium douthitti	Trichobilharzia physellae	Trichobilharzia stagnicolae	Trichobilharzia szidati	Tylodelphys sp. A	Grand total	^a lncludes all lineages.

			Host		GenBank Accession Number(s)		
Family	Species	Host	Type	Location	cox1 mad1	Reference	
Diplostomidae	Alaria sp. 1	Lithobates pipiens	0	Canada: Quebec, Saint Lawrence River	JF769439	(Locke, McLaughlin, Lapierre, Johnson, & Marcogliese, 2011)	
Diplostomidae	Alaria sp. 2	Pseudacris regilla, Anaxyrus boreas	2	USA: California, Bart's Pond; San Martin, Weed Pond	JF904535, JF904534, JF904536	(Locke et al., 2011)	
Diplostomidae	Austrodiplostomum ostrowskiae	Biomphalaria obstructa, Dorosoma cepedianum	1, 2	USA: Noxubee County, MS;USA: Dallas County, AL	КТ728795, КТ728798, КТ728799	(Rosser et al., 2016)	
Diplostomidae	Austrodiplostomum sp. 1	Pomoxis nigromaculatus	2	USA: Florida, Tampa, Lake Seminole	KR271029	(Locke et al., 2015)	
Diplostomidae	Austrodiplostomum sp. 2	Mugil cephalus	2	USA: Florida, Tampa, Lake Seminole	KR271032	(Locke et al., 2015)	
Diplostomidae	Austrodiplostomum sp. 2	Menidia beryllina, Ictalurus punctatus	2	USA: Mississippi	KU707943, KU707945	(Rosser et al., 2016)	
Diplostomidae	Bolbophorus damnificus	Menidia beryllina	2	USA: Mississippi	KU707937	(Rosser et al., 2016)	
Diplostomidae	Bolbophorus sp.	Pimephales promelas	N	Canada: Alberta, Coaldale, McQuillan Lake	KM538081	(Van Steenkist: Locke, Casteli Marcogliese, ⁽ Abbott, 2014)	te, & (lin,
Diplostomidae	Bolbophorus sp.	Menidia beryllina	2	USA: Mississippi	KU707938, KU707939	(Rosser et al., 2016)	
Diplostomidae	Bolbophorus sp.	Helisoma trivolvis	ц.	Canada: Alberta, Buffalo Lake	KT831373	(Gordy, Kish, Tarrabain, & Hanington, 2016)	
Diplostomidae	Bolbophorus sp.	Helisoma trivolvis	1	Canada: Alberta, Buffalo Lake, Isle Lake, Wabamun Lake	MH368843, MH368847, MH368850, MH368862, MH368871, MH368892, MH368918, MH368919	Present study	
Diplostomidae	Crocodillicola pseudostoma (out)	Rhamdia guatemalensis	0	Mexico: Veracruz, Catemaco Lake	MF398317, MF398318	(Hernández- Mena, García-Varela Pérez-Ponce León, 2017)	a, & de
Diplostomidae	Diplostomidae gen. sp. 0***	Physa gyrina	Ţ	Canada: Alberta, Buffalo Lake	KT831363 [§]	(Gordy et al., 2016)	
						(Contir	inues)

TABLE 3 Host associations, geographical origins, and life stages of specimen sequences used in phylogenies.

			Host		GenBank Accession Number(s)		
Family	Species	Host	Type	Location	cox1	nad1	Reference
Diplostomidae	Diplostomidae gen. sp. O***	Physa gyrina	£	Canada: Alberta, Buffalo Lake, Wabamun Lake, Gull Lake, Isle Lake	MH36825, MH368851, MH368854, MH368855, MH368879, MH3688880, MH368881, MH368882, MH368883, MH368884, MH368885, MH368886, MH36887, MH368893, MH368903, MH368900, MH368905, MH368906, MH368904, MH368905, MH368917, MH368934, MH368935, MH368937, MH368934, MH368935, MH368937, MH368934, MH368938, MH368937, MH368940, MH368941, MH368942		Present study
Diplostomidae	Diplostomidae gen. sp. X***	Physagyrina	-	Canada: Alberta, Isle Lake	MH368907		Present study
Diplostomidae	Diplostomum ardeae	Ardea herodias	с С	Canada: Quebec, Montreal	KR271033		(Locke et al., 2015)
Diplostomidae	Diplostomum baeri LIN1	Perca fluviatilis	2	Germany: Lake Constance	JQ639181, JQ639182		(Behrmann- Godel, 2013)
Diplostomidae	Diplostomum baeri LIN2	Not given	ო	Canada: Quebec, Montreal	GQ292501		(Locke, McLaughlin, Dayanandan, & Marcogliese, 2010)
Diplostomidae	Diplostomum baeri LIN2	Stagnicola elodes	7	Canada: Alberta, Wabamun Lake, Isle Lake	MH368863, MH368874, MH368875, MH368928		Present study
Diplostomidae	Diplostomum huronense	Notemigonus crysoleuca, Larus delawarensis	3° 3	Canada: Ontario	FJ477197		(Moszczynska, Locke, McLaughlin, Marcogliese, & Crease, 2009)
Diplostomidae	Diplostomum huronense	Perca flavescens, Notemigonus crysoleucas	2	Canada: Quebec, St. Lawrence River, Lake Saint Louis, Beauharnois, Dorval Island	HM064671, HM064672		(Locke, McLaughlin, Dayanandan, et al., 2010)
Diplostomidae	Diplostomum indistinctum	Catostomidae	ო	Canada: Quebec	FJ477196		(Moszczynska et al., 2009)

3175

(Continues)

WILEY

_
ed
inu
ont
<u>U</u>
က
Е 3
BLE 3

BLE 3 (Contin	ued)					
			Host		GenBank Accession Number(s)	
nily	Species	Host	Type	Location	cox1 nad1	Reference
olostomidae	Diplostomum indistinctum	Neogobius melanostomus	7	Canada: Quebec	GQ292482	(Locke, McLaughlin, Dayanandan, et al., 2010)
plostomidae	Diplostomum indistinctum	Catostomus commersoni	0	Canada: Quebec, St. Lawrence River, Lake Saint	HM064673	(Locke, McLaughlin, & Marcogliese, 2010)
iplostomidae	Diplostomum indistinctum	Stagnicola elodes	Ч	Canada: Alberta, Gull Lake	KT831379	(Gordy et al., 2016)
iplostomidae	Diplostomum mergi	Radix auricularia	L	Germany: Hengsteysee	KR149526, KR149527, KR149528	(Selbach, Soldánová, Georgieva, Kostadinova, & Sures, 2015)
iplostomidae	Diplostomum parviventosum	Radix auricularia	Ļ	Germany: Hengsteysee	KR149510, KR149511, KR149512	(Selbach et al., 2015)
iplostomidae	Diplostomum pseudospathaceum	Stagnicola palustris	H	Germany: Hengsteysee	KR149544, KR149545, KR149546	(Selbach et al., 2015)
iplostomidae	Diplostomum sp. 1	Larus delawarensis	т	Canada: Quebec, Laurentides	GQ292479, GQ292480, GQ292481	(Locke. McLaughlin, Dayanandan, et al., 2010)
iplostomidae	Diplostomum sp. 1	Stagnicola elodes	Ł	Canada: Alberta, Wabamun Lake, Isle Lake	MH368857, MH368896, MH368932, MH368943, MH368945	Present study
iplostomidae	Diplostomum sp. 2	Pimephales notatus	0	Canada: Quebec, St. Lawrence River	GQ292486	(Locke, McLaughlin, Dayanandan, et al., 2010)
iplostomidae	Diplostomum sp. 3	Micropterus salmoides	N	Canada: Quebec, St. Lawrence River	GQ292487	(Locke, McLaughlin, Dayanandan, et al., 2010)
iplostomidae	Diplostomum sp. 3	Lymnaea stagnalis	4	Canada: Alberta, Wabamun Lake	KT831358	(Gordy et al., 2016)
iplostomidae	Diplostomum sp. 3	Lymnaea stagnalis	4	Canada: Alberta, Wabamun Lake	MH368837, MH368858	Present study
iplostomidae	Diplostomum sp. 4	Larus delawarensis	ю	Canada: Quebec, Laurentides	GQ292494, GQ292495	(Locke, McLaughlin, Dayanandan, et al, 2010)

(Continues)

						Open Access	NILEY		
	Reference	(Gordy et al., 2016)	Present study	(Locke, McLaughlin, Dayanandan, et al., 2010)	(Locke, McLaughlin, Dayanandan, et al., 2010)	(Locke, McLaughlin, Dayanandan, et al., 2010)	(Locke, McLaughlin, Dayanandan, et al., 2010)	Present study	(Continues)
	nad1		13, 316, 320, 320, 823, 836, 840, 845, 845, 864, 864, 864, 864, 914, 714, 714, 714, 714, 726, 730, 726, 730,						
GenBank Accession Number(s)	cox1	KT831354	MH368808, MH368809, MH368809, MH3688 MH368814, MH368815, MH3688 MH368814, MH368815, MH3688 MH368824, MH368822, MH3688 MH368824, MH368825, MH3688 MH3688234, MH368835, MH3688 MH368833, MH368835, MH3688 MH368833, MH368835, MH3688 MH368845, MH368843, MH3688 MH368845, MH368844, MH3688 MH368853, MH368845, MH3688 MH368855, MH368845, MH3688 MH368865, MH368875, MH3688 MH368865, MH368873, MH3688 MH368895, MH368873, MH3688 MH3688971, MH368973, MH3688 MH3688973, MH368973, MH3688 MH368971, MH368973, MH3688 MH368971, MH368973, MH3688 MH368971, MH368973, MH3688 MH368974, MH368973, MH3688 MH368974, MH368974, MH3688 MH368974, MH368974, MH368976 MH368974, MH368877, MH368974, MH368976 MH368974, MH368974, MH368976 MH368974, MH368974, MH368976 MH368974, MH368974, MH368976 MH368974, MH368877, MH368976 MH368974, MH368877, MH368976 MH368974, MH368976 MH368977	GQ292499	GQ292500	GQ292497	GQ292496	MH368817	
	Location	Canada: Alberta, Isle Lake	Canada: Alberta, Wabamun Lake, Isle Lake, Gull Lake, Lac La Nonne Nonne	Canada: Quebec, St. Lawrence River	Canada: Quebec, St. Lawrence River	Canada: Quebec, Monteregie	Canada: Quebec, St. Lawrence River	Canada: Alberta, Buffalo Lake	
Host	Type	4	4	5	5	2	7	1	
	Host	Stagnicola elodes	Stagnicola elodes	Pimephales notatus	Pimephales notatus	Rana pipiens	Percina caprodes	Stagnicola elodes	
	Species	Diplostomum sp. 4	Diplostomum sp. 4	Diplostomum sp. 6	Diplostomum sp. 7	Diplostomum sp. 8	Diplostomum sp. 9	Diplostomum sp. A***	
	Family	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	

3177

			Host		GenBank Accession Number(s)	
Family	Species	Host	Type	Location	cox1 nad1	Reference
Diplostomidae	Diplostomum sp. B***	Stagnicola elodes	1	Canada: Alberta, Isle Lake	MH368933	Present study
Diplostomidae	Diplostomum sp. C***	Stagnicola elodes	4	Canada: Alberta, Gull Lake, Wabamun Lake, Isle Lake	KT831360 ^{\$} , KT831378 ^{\$} , KT831382 [§]	(Gordy et al., 2016)
Diplostomidae	Diplostomum sp. C***	Stagnicola elodes, Helisoma trivolvis (MGC208)	1	Canada: Alberta, Gull Lake, Wabamun Lake, Isle Lake	MH368810, MH368811, MH368812, MH368852, MH368895, MH368902, MH368921, MH368922, MH368923	Present study
Diplostomidae	Diplostomum sp. clade Q	Radix auricularia	Ţ	Germany: Hengsteysee	KR149554	(Selbach et al., 2015)
Diplostomidae	Diplostomum sp. LIN6	Gasterosteus aculeatus	7	Norway: Troms, Takvatnet	KM212051, KM212052, KM212053	(Kuhn et al., 2015)
Diplostomidae	Diplostomum spathaceum	Acanthobrama marmid, Perca fluviatilis, Barbus luteus	7	Iraq: Saladin, Tikreet, Tigris River; Italy: Lecco, Lake Como, Oliveto Lario	KR271467, KR271468, KR271469	(Locke, McLaughlin, Dayanandan, et al., 2010)
Diplostomidae	Diplostomum spathaceum	unknown		unknown, likely China	KT736038	Dang, R., et al., 2015, Unpublished
Diplostomidae	Hysteromorpha triloba	Catostomus, Notemigonus crysoleucas	N	Canada: Nova Scotia, Sackville, Feely Lake; Canada: Quebec, Outaouais, Ottawa River, Wendover	JF769475, JF769476	(Locke et al., 2011)
Diplostomidae	Neodiplostomum americanum	Lithobates aurora	7	USA: California, HMB 05	JF904537, JF904538, JF769455	(Locke et al., 2011)
Diplostomidae	Neodiplostomum americanum	Stagnicola elodes	сı	Canada: Alberta, Buffalo Lake	KT831357 [§]	(Gordy et al., 2016)
Diplostomidae	Ornithodiplostomum scardinii	Scardinius erythrophthalmus	2	Czech Republic: Lake Macha	KX931425	(Stoyanov et al., 2017)
Diplostomidae	Ornithodiplostomum scardinii (out)	Scardinius erythrophthalmus	2	Czech Republic: Lake Macha	KX931425	(Stoyanov et al., 2017)
Diplostomidae	Ornithodiplostomum sp. 1	Etheostoma nigrum	7	Canada: Ontario, St. Lawrence River	FJ477208	(Moszczynska et al., 2009)
						(Continues)

RE	DY AND	HAN	NINGTON						!	Ecology and Eve	Olution	-WILE	Y	3179
		Reference	(Locke, McLaughlin, & Marcogliese, 2010)	(Gordy et al., 2016)	(Locke, McLaughlin, & Marcogliese, 2010)	(Moszczynska et al., 2009)	(Gordy et al., 2016)	(Locke, McLaughlin, & Marcogliese, 2010)	(Moszczynska et al., 2009)	(Locke, McLaughlin, & Marcogliese, 2010)	(Moszczynska et al., 2009)	(Locke, McLaughlin, & Marcogliese, 2010)	(Gordy et al., 2016)	(Continues)
	oer(s)	nad1												
	GenBank Accession Numl	cox1	HM064742	KT831368	HM064766, HM064768	FJ477210	KT831368	HM064782, HM064780	FJ477211	HM064786, HM064788	FJ477212	HM064789	KT831383	
		Location	Canada: Quebec, St. Lawrence River, Lake Saint Francois, Pointe Dupuis (LSF-2)	Canada: Alberta, Wabamun Lake	Canada: Quebec, St. Lawrence River, Lake Saint Louis, Beauharmois	Canada: Quebec, St. Lawrence River, Lake Saint Louis	Canada: Alberta, Wabamun Lake	Canada: Quebec, St. Lawrence River, Lake Saint Francois, Pointe Dupuis (LSF-2), Beauharmois	Canada: Quebec, St. Lawrence River, Lake Saint Francois, Pointe Dupuis (LSF-2), Beauharnois	Canada: Quebec, St. Lawrence River, Lake Saint Francois, Pointe Dupuis (LSF-2), Beauharnois	Canada: Quebec, St. Lawrence River, Lake Saint Francois, Pointe Dupuis (LSF-2), Beauharnois	Canada: Quebec, St. Lawrence River, Lake Saint Pierre, Ile aux Ours	Canada: Alberta, Pigeon Lake	
	Host	Type	р	-	р	7	-	0	N	Ν	N	0	4	
		Host	Etheostoma nigrum	Physa gyrina	Notemigonus crysoleucas	Notemigonus crysoleucas	Physa gyrina	Pimephales notatus	Pimephales notatus	Pimephales notatus	Pimephales notatus	Pimephales notatus	Physa gyrina	
		Species	Ornithodiplostomum sp. 1	Ornithodiplostomum sp. 2	Ornithodiplostomum sp. 2	Ornithodiplostomum sp. 2	Ornithodiplostomum sp. 2	Ornithodiplostomum sp. 3	Ormithodiplostomum sp. 3	Ornithodiplostomum sp. 4	Ormithodiplostomum sp. 4	Ornithodiplostomum sp. 8	Ornithodiplostomum sp. 8	
		Family	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	

TABLE 3 (Continu	(ed)						
			+co 		GenBank Accession Number(s)		
Family	Species	Host	Туре	Location	cox1 nad1	Reference	
Diplostomidae	Ornithodiplostomum sp. 8	Physa gyrina	Ţ	Canada: Alberta, Isle Lake	МНЗ68908, МНЗ68910, МНЗ68920	Present stud	ły
Diplostomidae	Posthodiplostomum brevicaudatum	Perca fluviatilis, Gasterosteus aculeatus	7	Czech Republic: Lake Macha; Bulgaria: Lake Atanasovsko	KX931418, KX931419, KX931420	(Stoyanov et 2017)	t al.,
Diplostomidae	Posthodiplostomum centrarchi	Lepomis gibbosus, Ardea cinerea	3 7	Bulgaria: Lake Atanasovsko; Spain: Lagoon Bassa de les Olles, Ebro Delta; Slovakia: River Danube near Sturovo	KX931421, KX931422, KX931423	(Stoyanov et 2017)	t al.,
Diplostomidae	Posthodiplostomum cuticola	Planorbis planorbis	сц	Lithuania: Curonian Bay near Juodkrante	KX931424	(Stoyanov et 2017)	t al.,
Diplostomidae	Posthodiplostomum sp. 1	Ambloplites rupestris	0	Canada: Ontario, St. Lawrence River	FJ477215	(Moszczynsh al., 2009)	ka et
Diplostomidae	Posthodiplostomum sp. 2	Lepomis gibbosus	7	Canada: Quebec, St. Lawrence River, Lake Saint Pierre, Ile aux Ours	FJ477216	(Moszczyns al., 2009)	(a et
Diplostomidae	Posthodiplostomum sp. 3*	Lepomis gibbosus	7	Canada: Quebec, St. Lawrence River, Beauharnois	FJ477217	(Moszczyns al., 2009)	<a et<="" td="">
Diplostomidae	Posthodiplostomum sp. 4	Lepomis gibbosus	7	Canada: Quebec, St. Lawrence River, Lake Saint Pierre, Ile aux Ours	FJ477218	(Moszczyns) al., 2009)	<a et<="" td="">
Diplostomidae	Posthodiplostomum sp. 4	Ardea herodias	က	Canada: Quebec, Lac Saint-Pierre, Grand Ile	HM064844	(Locke, McLaughlin Marcoglies 2010)	ب و, کې
Diplostomidae	Posthodiplostomum sp. 4	Physa gyrina	с-	Canada: Alberta, Isle Lake	MH368909, MH368912	Present stud	ł
Diplostomidae	Posthodiplostomum sp. 5	Lepomis gibbosus	N	Canada: Quebec, St. Lawrence River, Lake Saint Pierre, Iles aux Sables	FJ477219	(Moszczynsł al., 2009)	<a et<="" td="">
Diplostomidae	Posthodiplostomum sp. 7	Perca flavescens	7	Canada: Quebec, St. Lawrence River, Lake Saint Pierre, Iles aux Sables	FJ477221	(Moszczyns) al., 2009)	<a et<="" td="">

3180 WILEY Ecology and Evolution

(Continues)

ntinued)	
3 (Co	
BLE	
TAI	

DY A	ND H	ANINGTON						Ecolog	y and Evoluti	ON Open Access	–W	ILEY	3181
	Reference	(Locke, McLaughlin, & Marcogliese, 2010)	(Locke, McLaughlin, & Marcogliese, 2010)	(García-Varela, Sereno-Uribe, Pinacho- Pinacho, Domínguez- Domínguez, & Pérez-Ponce de León, 2016)	(Behrmann- Godel, 2013)	(Georgieva, Soldánová, et al., 2013)	(Locke et al., 2015)	(Chibwana et al., 2013)	(Locke et al., 2015)	(Locke et al., 2015)	(Chibwana et al., 2013)	(Moszczynska et al., 2009)	(Continues)
	nad1		10										
GenBank Accession Number(s)	cox1	HM064865, HM064871	HM064873, HM064874, HM064875	KT175367, KT175368, KT175369	JQ639201, JQ639202, JQ639203, JQ639204	JX986908	KR271478, KR271479, KR271480	KC685344	KR271491, KR271492, KR271493	KR271494, KR271495, KR271496	KC685340, KC685341, KC685342, KC685343	FJ477223	
	Location	Canada: Quebec, St. Lawrence River, Beauharnois	Canada: Quebec, St. Lawrence River, Lake Saint Pierre, Iles aux Sables	Mexico	Germany: Lake Constance	Germany: Hengsteysee	Romania: Danube Delta;Italy: Lombardy, Brescia, Oglio River;Italy: Lecco, Lake Como, Oliveto Lario	Czech Republic: Pond Bohdanec	Canada: Quebec, Bas-Saint-Laurent, Central, riviere Bic; Montreal	Argentina: Buenos Aires, La Plata, Urban canal	Tanzania: River Msimbazi, River Ruvu	Canada: Quebec, St. Lawrence River, Lake Saint Pierre, Iles aux Sables	
Host	Type	7	Ν	7	2	г	р	Ţ	2, 3	7	7	Ν	
	Host	Perca flavescens	Micropterus dolomieu	Skiffia lermae, Gila conspersa	Perca fluviatilis	Radix auricularia	Perca fluviatilis	Planorbarius corneus	Salvelinus fontinalis, Gavia immer	Cnesterodon decemmaculatus	Clarias gariepinus	Ambloplites rupestris	
	Species	Posthodiplostomum sp. 7	Posthodiplostomum sp. 8	Tylodelphys aztecae	Tylodelphys clavata	Tylodelphys clavata	Tylodelphys clavata	Tylodelphys excavata	Tylodelphys immer	Tylodelphys jenynsiae	Tylodelphys mashonensis	Tylodelphys scheuringi	
	Family	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	Diplostomidae	

(Continues)

			Host		GenBank Accession Number(s)		
Family	Species	Host	Type	Location	cox1	nad1	Reference
Diplostomidae	Tylodelphys scheuringi	Perca flavescens, Ambloplites rupestris	0	Canada: Ontario, St. Lawrence River, Lake Saint Francois, LSF-1; Lake Saint Louis, Dorval Island	HM064914, HM064915		(Locke, McLaughlin, & Marcogliese, 2010)
Diplostomidae	Tylodelphys scheuringi	Ambloplites rupestris, Perca flavescens	7	Canada: Ontario, St. Lawrence River, Pointe Dupuis (LSF-2)	KR271508, KR271509		(Chibwana et al., 2013)
Diplostomidae	Tylodelphys sp.	Mystus tengara	7	India	KU725888, KU725889		Chaudhary, A., et al., 2016, Unpublished
Diplostomidae	Tylodelphys sp.	Gobiomorphus cotidianus	7	New Zealand	KU588147, KU588148, KU588149		(Blasco-Costa, Poulin, & Presswell, 2016)
Diplostomidae	Tylodelphys sp. 2 LIN1	Clarias gariepinus	7	Tanzania: Lake Victoria	KC685358		(Chibwana et al., 2013)
Diplostomidae	Tylodelphys sp. 2 LIN2	Micropterus salmoides, Oreochromis leucostictus	7	Kenya: Rift Valley, Nakuru District, Lake Naivasha	KF809488, KF809494		(Otachi, Locke, Jirsa, Fellner-Frank, & Marcogliese, 2015)
Diplostomidae	Tylodelphys sp. 3	Lepomis microlophus	2	USA: Mississippi, Ascension Parish	KR271513, KR271514, KR271515		(Locke et al., 2015)
Diplostomidae	Tylodelphys sp. 4	Gobiomorus maculatus	7	Mexico: Oaxaca, Costa Chica, Playa Ventanilla, Laguna Ventanilla	KR271517, KR271518, KR271519		(Locke et al., 2015)
Diplostomidae	Tylodelphys sp. 5	Dormitator latifrons, Gobiomorus maculatus	7	Mexico: Oaxaca, Costa Chica, Playa Ventanilla, Laguna Ventanilla	KR271520, KR271521		(Locke et al., 2015)
Diplostomidae	Tylodelphys sp. 6	Poecilia latipinna	2	USA: Mississippi, Ascension Parish	KR271522, KR271523		(Locke et al., 2015)
Diplostomidae	Tylodelphys sp. A***	Helisoma trivolvis	~	Canada: Alberta, Wabamun Lake	KT831356 [§]		(Gordy et al., 2016)
Diplostomidae	Tylodelphys sp. A***	Helisoma trivolvis	-	Canada: Alberta, Wabamun Lake	MH368842, MH368878, MH368894, MH368897		Present study
Echinostomatidae	Drepanocephalus auritus	Planorbella trivolvis, Biomphalaria straminea	t1	USA; Brazil		KP053262, KP053263	(Pinto, Griffin, Quiniou, Ware, & Melo, 2016)
Echinostomatidae	Drepanocephalus auritus	Helisoma trivolvis	1	Canada: Alberta, Isle Lake,	Buffalo Lake	MH368951, MH368952	Present Study (<i>Continues</i>)

(pən
ntin
Ů
ო
ш
BL

											Open Acces	• • • • I]	LEY	
	Reference	(Van Steenkiste et al., 2014)	(Kudlai, Kostadinova, Pulis, & Tkach, 2015)	(Pinto et al., 2016)	(Gordy et al., 2016)	Present study	(Hernández- Cruz, Hernández- Orts, Sereno-Uribe, Pérez-Ponce de León, & García-Varela, 2018)	(Pinto et al., 2016)	(Hernández-Cruz et al., 2018)	(Kostadinova & Herniou, 2003)	(Stoyanov et al., 2017)	(Stoyanov et al., 2017)	(Kostadinova & Herniou, 2003)	(Soldánová et al., 2017)
	nad1							KP05264		AY168946, AY168947	KY436405, KY436406	KY436403, KY436404	AY168943, AY168944	KY513267, KY513269
GenBank Accession Number(s)	cox1	KM538090	KP683125, KP683126, KP683127, KP638128, KP683129, K638130, KP638131, KP638132	KR259644	KT831381	MH369294	KY636228, KY636229		KY636233, KY636234					
	Location	Canada: Ontario, Lake Erie	USA: lake Near Lakota, Nelson County, North Dakota: Lower Red Lake, Beltrami County, Minnesota: George County, Mississippi	USA	Canada: Alberta, Buffalo Lake	Canada: Alberta, Buffalo Lake, Isle Lake	Mexico: Tobasco, Teapa	Brazil	Mexico: Durango, Rio Guatimape: Oaxaca, Presa Rio Verde	Finland: Lake Pyykosjarvi	New Zealand: Clutha River System, Central Otago District, South Island	New Zealand: Pauerau, Central Otago District, South Island	UK: Wales, Lake Ceunant	Norway: Lake Takvatn
Host	Type	e	ო	7	-	7	ო	-	ო	1, 2	т	ო	1	7
	Host	Phalacrocorax auritus	Phalacrocorax auritus	Planorbella trivolvis	Helisoma trivolvis	Helisoma trivolvis	Phalacrocorax brasilianus	Biomphalaria straminea	Phalacrocorax brasilianus	Lymnaea stagnalis	Anas platyrhynchos	Cygnus atratus	Lymnaea peregra	Pisidium casertanum, Sphaerium sp.
	Species	Drepanocephalus auritus	Drepanocephalus auritus	Drepanocephalus auritus	Drepanocephalus auritus	Drepanocephalus auritus	Drepanocep halus mexicanus	Drepanocephalus sp.	Drepanocephalus spathans	Echinoparyphium aconiatum	Echinoparyphium ellisi	Echinoparyphium poulini	Echinoparyphium recurvatum	Echinoparyphium recurvatum
	Family	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae

(Continues)

I

			Host		GenBank Accession Number(s)		
nily	Species	Host	Type	Location	cox1	nad1	Reference
inostomatidae	Echinoparyphium sp. 1A***	Physa gyrina, Stagnicola elodes (MGC1954, MGC2104), Helisoma trivolvis (MGC2090)	-	Canada: Alberta, Lac La Nonne, Wabamun Lake, Isle Lake		MIH368998, MIH368999, MIH369001, MIH369005, MIH369003, MIH369007, MIH369005, MIH369005, MIH3690014, MIH369015, MIH369013, MIH369012, MIH369012, MIH369013, MIH369012, MIH369012, MIH369013, MIH369025, MIH369028, MIH369024, MIH369025, MIH369028, MIH369024, MIH369025, MIH369028, MIH369045, MIH369044, MIH369028, MIH369045, MIH369065, MIH369056, MIH369059, MIH369055, MIH369056, MIH369059, MIH369055, MIH369056, MIH369059, MIH369055, MIH369056, MIH369059, MIH369055, MIH369056, MIH369059, MIH369055, MIH369056, MIH369059, MIH369055, MIH369056, MIH369059, MIH3690512, MIH369056, MIH369059, MIH3690512, MIH369056, MIH369054, MIH3690512, MIH369056, MIH369054, MIH3690512, MIH369056, MIH369054, MIH369125, MIH369054, MIH369125, MIH369126, MIH369122, MIH369125, MIH369126, MIH369122, MIH369125, MIH369126, MIH369122, MIH369125, MIH369126, MIH369122, MIH369125, MIH369126, MIH369122, MIH369126, MIH369126, MIH369122, MIH369126, MIH369126, MIH369122, MIH369126, MIH369126, MIH369122, MIH369126, MIH369126, MIH369126, MIH369126, MIH369126, MIH369126, MIH369126, MIH369120, MIH369126, MIH369126, MIH369126, MIH369120, MIH369126, MIH369126, MIH369126, MIH369126, MIH369120, MIH369126, MIH369126, MIH369126, MIH369120, MIH369126, MIH369126, MIH369126, MIH369120, MIH369126, MIH369126, MIH369126, MIH369126, MIH369120, MIH369126, MIH369126, MIH369126, MIH369126, MIH369126, MIH369120, MIH369126, MIH369126, MIH369126, MIH369120, MIH369	Present study
ninostomatidae	Echinoparyphium sp. 1A***	Physa gyrina	1	Canada: Alberta, Lac La Nonne	KT831361 [§]		(Gordy et al., 2016)
hinostomatidae	Echinoparyphium sp. 1A***	Physa gyrina, Stagnicola elodes (MGC1954, MGC2104), Helisoma trivolvis (MGC2090)	Ţ	Canada: Alberta, Lac La Nonne, Wabamun Lake, Isle Lake	MH369243, MH369245, MH369246, MH369249, MH369250, MH369253, MH369255, MH369272, MH369273, MH369274, MH369277, MH369299, MH369300, MH369301, MH369302, MH369303, MH369304, MH369305		Present study
hinostomatidae	Echinoparyphium sp. 1B***	Physa gyrina	7	Canada: Alberta, Isle Lake		MH369181	Present study
							(Continues)

			Hoet		GenBank Accession Number(s)		
Family	Species	Host	Type	Location	cox1	nad1	Reference
Echinostomatidae	Echinoparyphium sp. A***	Physa gyrina, Stagnicola elodes (MGC1932)	r.	Canada: Alberta, Burfalo Lake, Wabamun Lake, Isle Lake, Lac La Nonne, Gull Lake, Pigeon Lake		MH369011, MH369035, MH369043, MH369051, MH369038, MH369061, MH369064, MH369068, MH369081, MH369082, MH369083, MH369084, MH369085, MH369113, MH369120, MH369128, MH369113, MH369126, MH369128, MH369124, MH369127, MH369175, MH369174, MH369177, MH369176, MH369177, MH369187, MH369180, MH369185, MH369187, MH369180, MH369185, MH369187, MH369180, MH369185, MH369187, MH369180	Present study
Echinostomatidae	Echinoparyphium sp. A***	Physa gyrina, Stagnicola elodes (MGC1932)	H	Canada: Alberta, Buffalo Lake, Wabamun Lake, Isle Lake, Lac La Nonne, Gull Lake, Pigeon Lake	MH369223, MH369247, MH369254, MH369257, MH369266, MH369289, MH369290, MH369291, MH369298, MH369306, MH369307, MH369308, MH369309, MH369310		Present study
Echinostomatidae	Echinoparyphium sp. A2***	Stagnicola elodes	4	Canada: Alberta, Gull Lake, Lac La Nonne		MH369181	Present study
Echinostomatidae	Echinoparyphium sp. A2***	Stagnicola elodes	1	Canada: Alberta, Lac La Nonne	KT831367 [§]		(Gordy et al., 2016)
Echinostomatidae	Echinoparyphium sp. A2***	Stagnicola elodes	1	Canada: Alberta, Gull Lake, Lac La Nonne	МН369232, МН369251, МН369258, МН369260, МН369265, МН369288		Present study
Echinostomatidae	Echinoparyphium sp. B***	Stagnicola elodes	H	Canada: Alberta, Lac La Nonne		MH368969, MH368970, MH368971, MH368987, MH368988, MH369041, MH369074, MH369086, MH369092	Present study
Echinostomatidae	Echinoparyphium sp. C***	Stagnicola elodes	4	Canada: Alberta, Gull Lake, Lac La Nonne		MH369088, MH369152	Present study
Echinostomatidae	Echinoparyphium sp. C***	Stagnicola elodes	T.	Canada: Alberta, Gull Lake, Lac La Nonne	MH369226, MH369228, MH369233, MH369234, MH369236, MH369237, MH369238, MH369239, MH369240, MH369241, MH369244, MH369252, MH369256, MH369259, MH369264, MH369262, MH369253, MH369264, MH369267, MH369283, MH369280, MH369282, MH369285, MH369296		Present study
Echinostomatidae	Echinoparyphium sp. D***	Stagnicola elodes	H	Canada: Alberta, Buffalo Lake		MH369189	Present study

3185

WILEY

(Continues)

-	-
τ	5
٥	ر
Ξ	2
-2	
+	-
2	5
č	í
2	2
3	2
ц	1
-	1
2	1
	ſ
2	2

186		WI	LEY-	Ecology a	nd Evoluti بع	ON G
		Reference	Present study	Present study	(Detwiler, Bos Minchella, 2010)	Present study
		nad1	MH369109, MH369129, MH369134, MH369135, MH369159		GQ463103, GQ463104, GQ463105	MH368953, MH368954, MH368955, MH368955, MH368955, MH368956, MH368956, MH368966, MH368965, MH368965, MH368965, MH368965, MH368976, MH368976, MH368976, MH368976, MH368976, MH368976, MH368976, MH368976, MH368985, MH368985, MH368989, MH368989, MH368989, MH368989, MH368999, MH368999, MH368999, MH368999, MH368992, MH368992, MH368999, MH368992, MH368921, MH369023, MH369124, MH369123, MH369124, MH369126, MH369124, MH369126, MH369126, MH369124, MH369126, MH369124, MH369126, MH369124, MH369126, MH369126, MH369124, MH369126, MH369124, MH369124, MH369124, MH369126, MH3691244, MH369126, MH3691246, MH3691246, MH3691246, MH369126, MH3691246, MH3691246, MH3691246, MH369124,
	GenBank Accession Number(s)	cox1		МН369275, МН369276		
		Location	Canada: Alberta, Gull Lake	Canada: Alberta, Gull Lake	USA: Wisconsin	Canada: Alberta, Gull Lake, Isle Lake, Buffalo Lake, Wabamun Lake, Lac La Nonne Lac La Nonne
	Hoct	Type	1	Ţ	м	4
		Host	Stagnicola elodes, Lymnaea stagnalis (MGC1878)	Stagnicola elodes, Lymnaea stagnalis (MGC1878)	Ondatra zibethicus	Stagnicola elodes, Lymnaea stagnalis (MGC16A/B, MGC369), Helisoma trivolvis (MGC219)
iued)		Species	Echinoparyphium sp. E***	Echinoparyphium sp. E***	Echinoparyphium sp. Lineage 1	Echinoparyphium sp. Lineage 2
TABLE 3 (Contir		Family	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae

(Detwiler et al., 2010)

GQ463119, GQ463120, GQ463121

USA: Indiana, Pond A

-

Lymnaea elodes

Echinoparyphium sp. Lineage 2

Echinostomatidae

\sim
ð
ne P
Ē
Ē
2
Ũ
\sim
ო
щ
-
◄

DY AN	ID HA	NINGION									Ecc	ology and Evo	olution	-WI	LEY	3187
	Reference	Present study	(Gordy et al., 2016)	Present study	(Detwiler et al., 2010)	Present study	(Georgieva et al., 2014)	(Morgan & Blair, 1998)	(Kostadinova & Herniou, 2003)	(Morgan & Blair, 1998)	(Liu et al., 2016)	(Stoyanov et al., 2017)	(Georgieva et al., 2014)	(Georgieva et al., 2014)	(Stoyanov et al., 2017)	(Continues)
	nad1			MH369130, MH369158	GQ463122, GQ463123		KP065608, KP065621	AF025837, AF025838	AY168937	AF025836		KY436400	KP065632, KP065640	KP065659, KP065674	KY436398, KY436399	
GenBank Accession Number(s)	cox1	МНЗ69224, МНЗ69225, МНЗ69283, МНЗ69293	KT831350 [§]			MH369270					KR062182					
	Location	Canada: Alberta, Gull Lake, Isle Lake, Buffalo Lake, Wabamun Lake, Lac La Nonne	Canada: Alberta, Lac La Nonne	Canada: Alberta, Wabamun Lake, Buffalo Lake	USA: Indiana, Pond A	Canada: Alberta, Wabamun Lake, Buffalo Lake	Slovakia: Danube at Gabcikovo	Madagascar; Egypt; Cameroon	UK: Wales, Pwll Penarth	Nigeria: Niger	China	New Zealand: Clutha River System, Central Otago District, South Island	Czech Republic: Pond Louzek; vicinities of Tovacov	Slovakia: Danube at Gabcikovo; Czech Republic: Pond Hluboky u Hamru	New Zealand: Clutha River System, Central Otago District, South Island	
Host	Type	L I	4	-	1, 2	Ţ	-		-		б	ო	1, 3	4	ო	
	Host	Stagnicola elodes, Lymnaea stagnalis (MGC16A/B, MGC369), Helisoma trivolvis (MGC219)	Stagnicola elodes	Helisoma trivolvis	Helisoma trivolvis	Helisoma trivolvis	Viviparus acerosus	unknown	Planorbis sp.	unknown	Dog	Anas platyrhynchos	Planorbis planorbis, Aythya fuligula	Planorbarius corneus	Anas platyrhynchos	
	Species	Echinoparyphium sp. Lineage 2	Echinoparyphium sp. Lineage 2	Echinoparyphium sp. Lineage 3	Echinoparyphium sp. Lineage 3	Echinoparyphium sp. Lineage 3	Echinostoma bolschewense	Echinostoma caproni	Echinostoma cf. friedi	Echinostoma deserticum	Echinostoma hortense (out)	Echinostoma miyagawai	Echinostoma miyagawai	Echinostoma nasincovae	Echinostoma novazealandense	
	Family	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	Echinostomatidae	

TABLE 3 (Continu	ued)						
			Host		GenBank Accession Number(s)		
Family	Species	Host	Type	Location	cox1	nad1	Reference
Echinostomatidae	Echinostoma paraensei	Glyptophysa	4	Brazil; Australia: North Queensland, Townsville		AF025834, AF026282	(Morgan & Blair, 1998)
Echinostomatidae	Echinostoma paraulum	Lymnaea stagnalis, Aythya fuligula	1, 3	Germany: pond near Poppenwind; Czech Republic: vicinities of Tovacov		KP065677, KP065680	(Georgieva et al., 2014)
Echinostomatidae	Echinostoma revolutum Lineage A	Lymnaea peregra	1	Bulgaria: Grigorevo		AY168934	(Kostadinova & Herniou, 2003)
Echinostomatidae	Echinostoma revolutum Lineage A	Lymnaea stagnalis, Aythya fuligula	1, 3	Czech Republic: Pond Vlkovsky; vicinities of Tovacov; Pond Hluboky u Hamru		KP065646, KP065653, KP065658	(Georgieva et al., 2014)
Echinostomatidae	Echinostoma revolutum Lineage A	Domestic duck	ი	Thailand		KP455631, KP455632, KP455633	(Nagataki et al., 2015)
Echinostomatidae	Echinostoma revolutum Lineage A	Columba livia f. domestica	су.	Poland		KT726380	Ledwon, A., et al., 2015, Unpublished
Echinostomatidae	Echinostoma revolutum Lineage B	Stagnicola elodes	t	Canada: Alberta, Buffalo Lake, Gull Lake, Wabamun Lake, Isle Lake, Lac La Nonne		MH369192, MH369193, MH369194, MH369195, MH369196, MH369197, MH369200, MH369206, MH369202, MH369204, MH369206, MH369210, MH369208, MH369213, MH369214, MH369211, MH369213, MH369214, MH369211, MH369213, MH369220, MH3692214, MH3692220, MH369220, MH369221, MH3692220,	Present study
Echinostomatidae	Echinostoma revolutum Lineage B	Lymnaea elodes	4	USA: Indiana, Pond A		GQ463056, GQ463057	(Detwiler et al., 2010)
Echinostomatidae	Echinostoma revolutum Lineage B	Stagnicola elodes	7	Canada: Alberta, Buffalo Lake, Gull Lake, Wabamun Lake, Isle Lake, Lac La Nonne	MH369227, MH369229, MH369230, MH369231, MH369235, MH369242, MH369248, MH369268, MH369279, MH369281, MH369284, MH369286, MH369287, MH369292		Present study
Echinostomatidae	Echinostoma robustum	Lymnaea elodes, Biomphalaria glabrata, Gallus gallus	1, 1, 3	USA: Indiana, Pond A; Minnesota; Brazil		GQ463053*, GQ463054, GQ463055	(Detwiler et al., 2010)
Echinostomatidae	Echinostoma sp.	Hydromys chrysogaster	ო	Australia: North Queensland, Townsville		AF026290	(Morgan & Blair, 1998)
							(Continues)

3188 WILEY_Ecology and Evolution

GORDY AND HANINGTON
(par
ntinı
Ů
ო
Ш
AB
F

			Host		GenBank Accession Number(s)		
Family	Species	Host	Type	Location	cox1	nad1	Reference
Echinostomatidae	Echinostoma sp. IG	Radix auricularia	1	Germany: Hengsteysee		KC618449, KC618450	(Georgieva, Selbach, et al., 2013)
Echinostomatidae	Echinostoma sp. NZ-Ad*	Branta canadensis	ი	New Zealand		AF026289*	(Morgan & Blair, 1998)
Echinostomatidae	Echinostoma trivolvis	Ondatra zibethicus	ო	Canada: Ontario, Lake Opinicon	KM538091		(Van Steenkiste et al., 2014)
Echinostomatidae	Echinostoma trivolvis Lineage A	Helisoma trivolvis	Ļ	Canada: Alberta, Isle Lake, Wabamun Lake, Lac La Nonne		MH369198, MH369199, MH369203, MH369205, MH369212	Present study
Echinostomatidae	Echinostoma trivolvis Lineage A	Helisoma trivolvis	₽.	Canada: Alberta, Isle Lake, Wabamun Lake, Lac La Nonne	MH369271		Present study
Echinostomatidae	Echinostoma trivolvis Lineage B	Ondatra zibethicus, Lymnaea elodes	3, 1	USA: Wisconsin; Minnesota		GQ463051, GQ463052, GQ463113	(Detwiler et al., 2010)
Echinostomatidae	Echinostoma trivolvis Lineage B	Ondontra zibethicus	с	USA: Virginia		JQ670857, JQ670859, JQ670850	(Detwiler, Zajac, Minchella, & Belden, 2012)
Echinostomatidae	Echinostoma trivolvis Lineage B	unknown		North America		AF025831	(Morgan & Blair, 1998)
Echinostomatidae	Echinostomatidae gen. sp.***	Stagnicola elodes	4	Canada: Alberta, Buffalo Lake	МН369269, МН369295, МН369297		Present study
Echinostomatidae	Euparyphium capitaneum (out)	Anhinga anhinga	т	Mexico: Veracruz, Tecolutla; Nayarit, La Tovara	KY636235, KY636236		(Hernández-Cruz et al., 2018)
Echinostomatidae	Fasciola hepatica (out)	Cattle	ო	Iran		KT893744	Akhlaghi, E., et al., 2015, Unpublished
Echinostomatidae	Hypoderaeum conoideum	Lymnaea peregra	4	Bulgaria: Grigorevo		AY 168949	(Kostadinova & Herniou, 2003)
Echinostomatidae	Hypoderaeum conoideum	Anas discors	n	Canada: Manitoba, Lake Manitoba, South shore, Delta Marsh	KM538101		(Van Steenkiste et al., 2014)
Echinostomatidae	H <i>ypoderaeum</i> sp. Lineage 1	Lymnaea elodes	4	USA: Indiana, Pond A		GQ463100, GQ463101, GQ463102	(Detwiler et al., 2010)
Echinostomatidae	Hypoderaeum sp. Lineage 1	Stagnicola elodes	4	Canada: Alberta, Gull Lake, Lac La Nonne, Wabamun Lake, Isle Lake		MH368958, MH369020, MH369030, MH369040, MH369080, MH369108, MH369110, MH369145, MH369157	Present study

TABLE 3 (Continu	ied)						
			Host		GenBank Accession Number(s)		
Family	Species	Host	Type	Location	cox1	nad1	Reference
Echinostomatidae	Isthmiophora melis (out)	Planorbis sp.	1	UK: Wales, Llyn Mawr		AY168948	(Kostadinova & Herniou, 2003)
Echinostomatidae	Neopetasiger islandicus	Planorbula armigera	-	Canada: Alberta, Wabamun Lake		КТ831342	(Gordy et al., 2016)
Echinostomatidae	Neopetasiger neocomense	Podiceps cristatus	с	Czech Republic		JQ425591	(Georgieva, Kostadinova, & Skirnisson, 2012)
Echinostomatidae	Neopetasiger sp. 1	Gyraulus albus	4	Germany: Lake Hennetalsperre		KM191808, KM191809	(Selbach et al., 2014)
Echinostomatidae	Neopetasiger sp. 2	Gyraulus albus	4	Germany: Lake Hennetalsperre		KM191810, KM191811	(Selbach et al., 2014)
Echinostomatidae	Neopetasiger sp. 3	Planorbis planorbis, Gyraulus albus	₽.	Germany: Lake Kleiner Ploener See; Lake Hennetalsperre		KM191814, KM191815, KM191816	(Selbach et al., 2014)
Echinostomatidae	Neopetasiger sp. 4	Gasterosteus aculeatus	5	Canada: Lake Gosling		KM191817	(Selbach et al., 2014)
Echinostomatidae	Neopetasiger sp. 4	Helisoma trivolvis	4	Canada: Alberta, Wabamun Lake		КТ831343, КТ831345	(Gordy et al., 2016)
Echinostomatidae	Neopetasiger sp. 4	Helisoma trivolvis	с	Canada: Alberta, Wabamun Lake, Isle Lake, Buffalo Lake		MH369311, MH369312, MH369313, MH369314, MH369315, MH369316, MH369317, MH369318	Present study
Haematoloechidae	Haematoloechidae gen. sp. A***	Stagnicola elodes	4	Canada: Alberta, Buffalo Lake	KT831372 [§]		(Gordy et al., 2016)
Haematoloechidae	Haematoloechidae gen. sp. A***	Stagnicola elodes	Ţ	Canada: Alberta, Buffalo Lake	МН369319, МН369320, МН369321		Present study
Haematoloechidae	Haematoloechus sp.	Rana pipiens	м	Canada: Quebec, Outaouais, Ottawa River, Wendover; Ontario, Southern Ontario, Chatham- Kent, East of Lake St.Clair and St. Clair National Wildlife Area	KM538096, KM538097		(Van Steenkiste et al., 2014)
Notocotylidae	Notocotylidae gen. sp. A***	Stagnicola elodes	-	Canada: Alberta, Gull Lake	KT831348 ⁵ , KT831364		(Gordy et al., 2016)

RDY	ND HA	ANINGTON Ecology	nd Evolu	Ution Open Acc	-WIL	.EY-	3191
	Reference	Present study	(Van Steenkiste et al., 2014)	Ma, J., et al., 2015, Unpublished	Present study	Present study	Present study (Continues)
	nad1	. ୬ ๙ ๙ ๙ ๗ ๗ ๗ ๗ ๗ ๙ ๖ ๙ ๙ ๙ ๙ ๙ ๙ ๙ ๙ ๙ ๙			2. 35. 31.		56
GenBank Accession Number(s)	cox1	MH369323, MH369405, MH369324, MH369323, MH369405, MH369324, MH369328, MH369409, MH369323 MH369328, MH369331, MH369333 MH369333, MH369333, MH369333, MH369333 MH369345, MH369343, MH369343 MH369345, MH369343, MH369343 MH369345, MH369345, MH369343 MH369345, MH369345, MH369354 MH369356, MH369354, MH369355 MH369355, MH369355, MH369355 MH369355, MH369355, MH369355 MH369356, MH369355, MH369355 MH369355, MH369356, MH369355 MH369355, MH369356, MH369355 MH369355, MH369355, MH369355 MH369355, MH369355, MH369355 MH369355, MH369355, MH369355 MH369356, MH369355, MH369355 MH369356, MH369355, MH369355 MH369356, MH369355, MH369355 MH369356, MH369351, MH369357 MH369356, MH369351, MH369357 MH369372, MH369351, MH369373 MH369373, MH369373, MH369373 MH369373, MH369373, MH369373 MH369373, MH369373, MH369373 MH369372, MH369373, MH369373 MH369383, MH369381, MH369373, MH369388 MH369393, MH369393, MH3693938 MH369393, MH369393, MH3693938 MH369393, MH369393, MH3693938 MH369393, MH369393, MH3693938 MH369399, MH369393, MH3693938 MH3693941, MH369393, MH3693938 MH369399, MH369383, MH369393 MH369399, MH369404, MH369383 MH369399, MH369404, MH3693938 MH369399, MH369399, MH369402, MH369400 MH36940402, MH3694002, MH3694000	KM538104	KR006934(NC_027112:6904-846C	MH369420, MH369421, MH369422 MH369433, MH369434, MH36943 MH369441, MH369460, MH36946 MH369463, MH369464	MH369467	МН369442, МН369454, МН36946
	Location	Canada: Alberta, Wabamun Lake, Isle Lake, Guil Lake, Buffalo Lake, Lac La Nonne Nonne	Canada: Quebec, Hudson, Le Nichoir	China: Hunan Province, Jishou City	Canada: Alberta, Gull Lake, Lac La Nonne, Buffalo Lake	Canada: Alberta, Buffalo Lake	Canada: Alberta, Buffalo Lake
Host	Type	~	ო		-	1	7
	Host	Physa gyrina, Stagnicola elodes	Mergus merganser	Unknown	Stagnicola elodes	Stagnicola elodes	Stagnicola elodes
	Species	Notocotylidae gen. sp. A***	Notocotylus sp.	Ogmocotyle sikae	Plagiorchis sp. Lineage 1	Plagiorchis sp. Lineage 2	Plagiorchis sp. Lineage 3
	Family	Notocotylidae	Notocotylidae	Notocotylidae	Plagorchiidae	Plagorchiidae	Plagorchiidae

TABLE 3 (Continued)

			Host		GenBank Accession Number(s)		
Family	Species	Host	Type	Location	cox1	nad1	Reference
Plagorchiidae	Plagiorchis sp. Lineage 4	Stagnicola elodes	T.	Canada: Alberta, Gull Lake, Lac La Nonne, Buffalo Lake, Wabamun Lake, Isle Lake	MH369418, MH369423, MH369425, MH369428, MH369429, MH369431, MH369432, MH369436, MH369437, MH369440, MH369447, MH369452, MH369453, MH369456, MH369462, MH369471		Present study
Plagorchiidae	Plagiorchis sp. Lineage 5	Stagnicola elodes	4	Canada: Alberta, Gull Lake, Lac La Nonne	МН369419, МН369426, МН369427		Present study
Plagorchiidae	Plagiorchis sp. Lineage 6	Helisoma trivolvis	7	Canada: Alberta, Buffalo Lake	MH369470		Present study
Plagorchiidae	Plagiorchis sp. Lineage 7	Lymnaea stagnalis	t-	Canada: Alberta, Buffalo Lake, Gull Lake	MH369438, MH369448, MH369455, MH369458, MH369468, MH369469		Present study
Plagorchiidae	Plagiorchis sp. Lineage 8	Stagnicola elodes	£1	Canada: Alberta, Buffalo Lake, Gull Lake	MH369449, MH369450, MH369451, MH369459, MH369465		Present study
Plagorchiidae	Plagiorchis sp. Lineage 9	Stagnicola elodes	1	Canada: Alberta, Lac La Nonne, Buffalo Lake	MH369424, MH369430, MH369439, MH369443, MH369444, MH369445, MH369446		Present study
Plagorchiidae	Plagiorchis sp.	Larus delawarensis	ი	Canada: Quebec, St. Lawrence River	FJ477214		(Moszczynska et al., 2009)
Psilostomidae	Echinochasmus japonicus (out)	Homo sapiens	б	Viet Nam: Phu Tho	NC_030518		Le, T.H., et al., 2015, Unpublished
Psilostomidae	Pseudopsilostoma varium	Phalacrocorax auritus	ი	USA: Mississippi	JX468064		(O'Hear et al., 2014)
Psilostomidae	Psilostomatidae gen. sp. A***	Helisoma trivolvis	Ч.	Canada: Alberta, Wabamun Lake	MH369477 [§]		(Gordy et al., 2016)
Psilostomidae	Psilostomatidae gen. sp. A***	Helisoma trivolvis	7	Canada: Alberta, Wabamun Lake, Isle Lake	MH369473, MH369472, MH369476, MH369474, MH369475		Present study
Psilostomidae	Sphaeridiotrema globulus	Duck experimen- tally infected with metacercariae from Elimia virginica	2, 3	USA: Lake Musconetcong, New Jersey	GQ890329		(Bergmame et al., 2011)
Psilostomidae	Sphaeridiotrema pseudoglobulus	Duck experimen- tally infected with metacercariae from Bithynia tentaculata	2, 3	Canada: Riviere du Sud, Quebec	GQ890328		(Bergmame et al., 2011)

TABLE 3 (Continued)

					GanBank Accassion Numbar(s)	
			Host			
Family	species	Host	Iype	Location	COX1 Nag1	Kererence
Psilostomidae	Sphaeridiotrema pseudoglobulus	Aythya affinis	ო	Canada: Quebec, St. Lawrence River	FJ477222	(Moszczynska et al., 2009)
Strigeidae	Apatemon sp. 1	Etheostoma nigrum	7	Canada: Quebec, St. Lawrence River, Lake St. Louis	FJ477183	(Moszczynska et al., 2009)
Strigeidae	Apatemon sp. 1	Etheostoma nigrum	5	Canada: Ontario, St. Lawrence River, Lake Saint Francois	HM064633	(Locke, McLaughlin, & Marcogliese, 2010)
Strigeidae	Apatemon sp. 1x	Etheostoma nigrum	5	Canada: Ontario, St. Lawrence River, Lake Saint Francois	HM064635, HM064636	(Locke, McLaughlin, & Marcogliese, 2010)
Strigeidae	Apatemon sp. 3	Ambloplites rupestris	7	Canada: Quebec, St. Lawrence River, Lake St. Pierre, Iles aux Sables	FJ477185	(Moszczynska et al., 2009)
Strigeidae	Apatemon sp. 3	Ambloplites rupestris	2	Canada: Quebec, St. Lawrence River, Lake St. Pierre, Iles aux Sables	HM064645	(Locke, McLaughlin, & Marcogliese, 2010)
Strigeidae	Apatemon sp. 4	Ambloplites rupestris	2	Canada: Quebec, St. Lawrence River, Lake Saint Francois	FJ477186	(Moszczynska et al., 2009)
Strigeidae	Apatemon sp. 4	Ambloplites rupestris	0	Canada: Quebec, St. Lawrence River, Lake St. Pierre, Iles aux Sables	HM064647	(Locke, McLaughlin, & Marcogliese, 2010)
Strigeidae	Apatemon sp. A***	Stagnicola elodes	L I	Canada: Alberta, Isle Lake	MH369603, MH369604, MH369605, MH369606, MH369607, MH369608, MH369609, MH369610, MH369611, MH369612, MH369613, MH369614, MH369615, MH369616, MH369617	Present study
Strigeidae	Apatemon sp. B***	Stagnicola elodes	-	Canada: Alberta, Isle Lake	MH369618	Present study
Strigeidae	Apatemon sp. C***	Stagnicola elodes	1	Canada: Alberta, Isle Lake	MH369619, MH369620, MH369621, MH369622	Present study
Strigeidae	A <i>patemon</i> sp. 'jamiesoni'	Potamopyrgus antipodarum, Gobiomorphus cotidianus	1, 2	New Zealand	KT334181, KT334182	(Blasco-Costa et al., 2016)
						(Continues)

TABLE 3 (Continued)

3193

TABLE 3 (Continu	(pər						
			Host		GenBank Accession Number(s)		
Family	Species	Host	Type	Location	cox1	nad1	Reference
Strigeidae	Apharyngostrigea pipientis (out)	Lithobates pipiens	5	Canada: Quebec, Monteregie, Boucherville, Etang Saulaie	HM064884, HM064885		(Locke et al., 2011)
Strigeidae	Apharynogstrigea cornu	Ardea alba	m	Mexico: Veracruz, Panuco	777778XL		(Hernández- Mena, García-Prieto, & García-Varela, 2014)
Strigeidae	Apharynogstrigea cornu	Ardea herodias	ო	Canada: Quebec, St. Lawrence River, Lake St. Louis, Ile aux Herons	JF769451		(Locke et al., 2011)
Strigeidae	Australapatemon burti LIN1	Stagnicola elodes	H	Canada: Alberta, Isle Lake	КТ831346, КТ831351		(Gordy et al., 2016)
Strigeidae	Australapatemon burti LIN1	Stagnicola elodes, Physa gyrina, Helisoma campanulatum, Planorbis sp., Lymnaea stagnalis	R	Canada: Alberta, Isle Lake, Wabamun Lake, Lac La Nonne, Gull Lake, Buffalo Lake	KY207548, KY207549, KY207551, KY207555, KY207555, KY207556, KY207566, KY207566, KY207566, KY207566, KY207564, KY207566, KY207566, KY207564, KY207568, KY207570, KY207571, KY207575, KY207575, KY207574, KY207575, KY207576, KY207578, KY207579, KY207580, KY207598, KY207594, KY207589, KY207593, KY207594, KY207580, KY207593, KY207594, KY207560, KY207593, KY207594, KY207603, KY207593, KY207594, KY207603, KY207601, KY207606, KY207603, KY207601, KY207606, KY207603, KY207601, KY207601, KY207603, KY207601, KY207602, KY207603, KY207601, KY207602, KY207603, KY207601, KY207602, KY207601, KY207603, KY207603, KY207601, KY207603, KY207603, KY207600, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY207603, KY2076043, KY207603, KY2076043, KY207604, KY2076043, KY207604, KY2076044, KY207604, KY2076043, KY207604, KY2076043, KY207604, KY2076044, KY207604, KY207604, KY2076044, KY207604, KY207604, KY2076044, KY207604, KY207604, KY207604, KY207604, KY207604, KY207604, KY		(Gordy, Locke, Rawlings, Lapierre, & Hanington, 2017) 2017)

ABLE 3 (Contin	ned)						
			Host		GenBank Accession Number(s)		
iily	Species	Host	Type	Location	cox1	nad1	Reference
Seidae	Australapatemon burti LIN1	Stagnicola elodes, Physa gyrina, Helisoma trivolvis	, ,	Canada: Alberta, Isle Lake, Wabamun Lake, Lac La Nonne, Gull Lake, Buffalo Lake	MH369623, MH369624, MH369625, MH369625, MH369625, MH369625, MH369632, MH369633, MH369633, MH369633, MH369633, MH369633, MH369643, MH369643, MH369655, MH369665, MH369656, MH369657, MH369656, MH369657, MH369656, MH369657, MH369657, MH369657, MH369657, MH369656, MH369656, MH369657, MH369656, MH369657, MH369656, MH369657, MH369656, MH369657, MH369656, MH369657, MH369665, MH369656, MH369657, MH369656, MH369657, MH369656, MH369657, MH369656, MH369657, MH369665, MH369665, MH369665, MH369665, MH369677, MH369672, MH369672, MH369702, MH3697		Present study
							(Continues)

-WILEY

TABLE 3 (Continue	(be					
			Hoct		GenBank Accession Number(s)	
Family	Species	Host	Type	Location	cox1 nad1	Reference
Strigeidae	Australapatemon mclaughlini	Anas americana	со	Mexico: Baja California Sur, Guerrero Negro	JX977725	(Hernández- Mena et al., 2014)
Strigeidae	Australapatemon mclaughlini	Physa gyrina, Anas acuta	1, 3	Canada: Alberta, Buffalo Lake; Ontario	KY207615, KY207627, KY207628	(Gordy et al., 2017)
Strigeidae	Australapatemon mclaughlini	Physa gyrina	1	Canada: Alberta, Buffalo Lake	MH369764	Present study
Strigeidae	Australapatemon niewiadomski	Barbronia weberi, Anas platyrhynchos	2, 3	New Zealand	KT334176, KT334177, KT334178, KT334179, KT334180	(Blasco-Costa et al., 2016)
Strigeidae	Australapatemon sp. LIN2	Bucephala albeola	с	Canada: Ontario	HM385535	(Gordy et al., 2017)
Strigeidae	Australapatemon sp. LIN3	Stagnicola elodes	4	Canada: Alberta, Gull Lake	KY207577	(Gordy et al., 2017)
Strigeidae	Australapatemon sp. LIN4	Physa gyrina, Aythya collaris	1, 3	Canada: Alberta, Lac La Nonne; Ontario	KY207569, KY587397, KY587396	(Gordy et al., 2017)
Strigeidae	Australapatemon sp. LIN4	Physa gyrina	tı	Canada: Alberta, Gull Lake	MH369765	Present study
Strigeidae	Australapatemon sp. LIN5	Stagnicola elodes	4	Canada: Alberta, Buffalo Lake	KY207597	(Gordy et al., 2017)
Strigeidae	Australapatemon sp. LIN6	Anas cyanoptera	т	Mexico: Estado de Mexico	JX977726	(Hernández- Mena et al., 2014)
Strigeidae	Australapatemon sp. LIN6	Physa gyrina	1	Canada: Alberta, Pigeon Lake, Isle Lake	KY207613, KY207616	(Gordy et al., 2017)
Strigeidae	Australapatemon sp. LIN6	Physa gyrina	L	Canada: Alberta, Isle Lake, Buffalo Lake, Lac La Nonne	МН3 <i>69766</i> , МН369767, МН369768, МН369769, МН369770	Present study
Strigeidae	Australapatemon sp. LIN8	Oxyura jamaicensis	т	Mexico: Durango, Guatimape	JX977728	(Hernández- Mena et al., 2014)
Strigeidae	Australapatemon sp. LIN8	Physa gyrina, Oxyura jamaicensis	1, 3	Canada: Alberta, Isle Lake, Buffalo Lake; Ontario	KY207587, KY207622, HM385538, HM385537, HM385536	(Gordy et al., 2017)
Strigeidae	Australapatemon sp. LIN8	Physa gyrina	۲	Canada: Alberta, Isle Lake, Buffalo Lake, Gull Lake	MH369774, MH369772, MH369773, MH369774, MH369775, MH369776, MH369777	Present study
Strigeidae	Australapatemon sp. LIN9A	Stagnicola elodes, Anas acuta	1, 3	Canada: Alberta, Gull Lake, Isle Lake, Buffalo Lake; Ontario	KY207550 ^{\$} , KY207557 ^{\$} , KY207558 ^{\$} , KY207582 ^{\$} , KY207596 ^{\$} , HM385534 ^{\$}	(Gordy et al., 2017)

3196 WILEY _____ WILEY _____

GORDY AND HANINGTON

(Continued)	
ო	
щ	
8	
Γ	

											Open Acco		
	Reference	Present study	(Gordy et al., 2017)	Present study	Present study	(Hernández- Mena et al., 2014)	(Hernández- Mena et al., 2014)	(Soldánová et al., 2017)	(Gordy et al., 2016)	Present study	(Hernández-Mena et al., 2014)	Present study	(Continues
	nad1	81, 784, 7787,		792				3,		84, 487, 490, 495, 500, 503, 516, 539, 597,		25, 5571, 575, 584, 599,	
GenBank Accession Number(s)	cox1	MH369779, MH369780, MH3697 MH369782, MH369783, MH369 MH369785, MH369786, MH369 MH369788, MH369789, MH369	KY207583 [§]	МНЗ69790, МНЗ69791, МНЗ697	MH369793	JX977782, JX977783	JX977784	KY513231, KY513232, KY513233 KY513234, KY513235, KY51323	KT831347 [§]	MH369478, MH369480, MH3694 MH369485, MH369486, MH365 MH369488, MH369489, MH369 MH369491, MH369492, MH369 MH369494, MH369495, MH369 MH369497, MH369498, MH369 MH369501, MH369502, MH369 MH369504, MH369505, MH369 MH369510, MH369511, MH369 MH369532, MH369557, MH369 MH369544, MH369557, MH369 MH369501	JX977781	MH369517, MH369518, MH3695 MH369526, MH369527, MH369 MH369529, MH369560, MH365 MH369572, MH369574, MH369 MH369577, MH369583, MH369 MH369595, MH369596, MH369 MH369500	
	Location	Canada: Alberta, Lac La None, Gull Lake, Buffalo Lake, Isle Lake	Canada: Alberta, Buffalo Lake	Canada: Alberta, Buffalo Lake	Canada: Alberta, Gull Lake	Mexico: Laguna de Términos, Campeche	Mexico: Baja California Sur, Guerrero Negro	Norway: Lake Takvatn	Canada: Alberta, Gull Lake	Canada: Alberta, Gull Lake, Isle Lake, Lac La Nonne	Mexico: Sonora, La esperanza	Canada: Alberta, Buffalo Lake, Wabamun Lake, Isle Lake, Lac La Nonne	
Host	Type	£	4	-	4	ო	м	-	1	H	ი	1	
	Host	Stagnicola elodes, Lymnaea stagnalis (MGC176B)	Stagnicola elodes	Stagnicola elodes	Stagnicola elodes	Larus sp.	Larus occidentalis	Radix balthica, Gyraulus acronicus	Stagnicola elodes	Stagnicola elodes, Helisoma trivolvis (MGC205)	Aythya affinis	Physa gyrina	
	Species	Australapatemon sp. LIN9A	Australapatemon sp. LIN9B	Australapatemon sp. LIN9B	Australapatemon sp. LIN10***	Cardiocephaloides medioconiger	Cardiocephaloides sp.	Cotylurus cornutus	Cotylurus cornutus	Cotylurus cornutus	Cotylurus gallinulae	Cotylurus gallinulae	
	Family	Strigeidae	Strigeidae	Strigeidae	Strigeidae	Strigeidae	Strigeidae	Strigeidae	Strigeidae	Strigeidae	Strigeidae	Strigeidae	

3197

TABLE 3 (Contin	ued)					
			Hoet		GenBank Accession Number(s)	
Family	Species	Host	Type	Location	cox1 nad	Reference
Strigeidae	Cotylurus sp. A***	Stagnicola elodes	t.	Canada: Alberta, Isle Lake	KT831371 [§]	(Gordy et al., 2016)
Strigeidae	Cotylurus sp. A***	Stagnicola elodes, Physa gyrina (MGC1962)	€	Canada: Alberta, Isle Lake, Lac La Nonne, Wabamun	MH369513, MH369520, MH369521, MH369522, MH369523, MH369524, MH369533, MH369533, MH369541, MH369542, MH369543, MH369545, MH369546, MH369554, MH369554, MH369556, MH369556, MH369555, MH369556, MH369558, MH369555, MH369556, MH369558, MH369555, MH369561, MH369558, MH369555, MH369561, MH369562, MH369556, MH369581, MH369582, MH369586, MH369589, MH369582, MH369584, MH369589, MH369581, MH369584, MH369589, MH369581, MH369594,	Present study
Strigeidae	Cotylurus sp. B***	Physa gyrina	4	Canada: Alberta, Isle Lake	MH369586	Present study
Strigeidae	Cotylurus sp. C***	Stagnicola elodes	L	Canada: Alberta, Buffalo Lake, Gull Lake, Isle Lake, Lac La Nonne	MH369479, MH369481, MH369515, MH369530, MH369531, MH369553, MH369564	Present study
Strigeidae	Cotylurus sp. D***	Stagnicola elodes	1	Canada: Alberta, Buffalo Lake, Gull Lake, Isle Lake, Lac La Nonne	MH369482, MH369483, MH369499, MH369506, MH369507, MH369508, MH369534, MH369535, MH369536, MH369540, MH369565, MH369593	Present study
Strigeidae	Cotylurus sp. E***	Lymnaea stagnalis	4	Canada: Alberta, Buffalo Lake, Wabamun Lake	МН369512, МН369514, МН369567, МН369568, МН369569, МН369570	Present study
Strigeidae	Cotylurus sp. F***	Stagnicola elodes	7	Canada: Alberta, Isle Lake	MH369519	Present study
Strigeidae	Cotylurus sp. G***	Lymnaea stagnalis	4	Canada: Alberta, Buffalo Lake	МН369563, МН369566, МН369576	Present study
Strigeidae	Cotylurus sp. H***	Physa gyrina	1	Canada: Alberta, Buffalo Lake	MH369592	Present study
Strigeidae	Ichthyocotylurus pileatus	Perca flavescens, Etheostoma nigrum	Ν	Canada: Quebec, St. Lawrence River, Lake Saint Louis, Beauharnois	НМ064721, НМ064726	(Locke, McLaughlin, & Marcogliese, 2010)
Strigeidae	Ichthyocotylurus pileatus	Perca flavescens	Ν	Canada: Ontario, St. Lawrence River, Lake Saint Francois	FJ477204	(Locke, McLaughlin, & Marcogliese, 2010)
						(Continues)

			Host		GenBank Accession Number(s)		
Family	Species	Host	Type	Location	cox1	nad1	Reference
Strigeidae	Ichthyocotylurus sp. 2	Perca flavescens	7	Canada: Quebec, St. Lawrence River, Lake Saint Louis, Beauharnois	HM064728		(Locke, McLaughlin, & Marcogliese, 2010)
Strigeidae	Ichthyocotylurus sp. 3	Notropis hudsonius	7	Canada: Ontario, St. Lawrence River, Lake Saint Francois	HM064729		(Locke, McLaughlin, & Marcogliese, 2010)
Strigeidae	Tylodelphys scheuringi (out)	Ambloplites rupestris	5	Canada: Quebec, St. Lawrence River, Lake Saint Pierre, lles aux Sables	FJ477223		(Moszczynska et al., 2009)
*Novel by molecular	phylogeny: § Record up	odated in present stud	v: Host ⁻	Vbe: 1= First Intermediat	te. 2 = Second Intermediate. 3 = Defi	nitive *Most likelv Posthodiplostomu	im centrarchi Rows

(Continued)

ო

TABLE

highlighted in gray represent sequences from the present study

barcoding digeneans, we limited our search to *cox1* and *nad1* (ND1), finding that a few families were represented by more than 400 sequences, some having more *nad1* than *cox1* or vice versa, and this was not consistent with the estimated number of genera or species within the family. For instance, the family Fasciolidae was found to have 463 *cox1* sequences that represented 31 unnamed species (uniquely identified in GenBank) and four named species. This family was also represented by 533 *nad1* sequences representing 45 molecular species and seven named species. Considering that previous assessments have only identified eight potential species in this family (Cribb et al., 2001), this is incredible coverage. Other families, though, have nearly 900 species, like the Opecoelidae (Bray, Cribb, Littlewood, & Waeschenbach, 2016), and have a similar breadth of species and sequences as the Fasciolidae, showing them to be greatly underrepresented (Table 5).

In this study, the relevant trematode families with the best cox1/ nad1 coverage from GenBank were the Echinostomatidae, Strigeidae, and Diplostomidae. Despite many genera being represented within these families, there remain many gaps in species identifications. This was apparent through a large variety of unidentified species lineages. Unfortunately, our study has only widened this gap, by identifying even more novel, unidentified species lineages and singletons because we lack molecular evidence from adult worms. However, these efforts are not in vain, as they provide a foundation for further sampling that may create the missing life cycle links between larvae and adults in the future. For instance, the species C. marcogliesei was just described for the first time this past year (Locke et al., 2018), based on adult worms derived from a Hooded Merganser in Montreal, QC. The alignment of our sequences to that of Locke et al. have now added a new snail firstintermediate host record, S. elodes, in addition to a new geographical record of being in Alberta. Considering that Cotylurus spp. have been described as having snails as a second-intermediate host, it is possible for them to use the same species, although typically not the exact same snail individual (Graczyk & Shiff, 1993a). Meaning that further sampling of S. elodes may uncover metacercariae of C. marcogliesei. Overall, there is further opportunity for this species' second-intermediate host to be discovered to complete our understanding of the life cycle and host use within.

The trematode families found in Alberta that need greater sampling and effort from both adult worms and molecular barcoding are the Notocotylidae, Psilostomidae, Haematoloechidae, and most importantly, the Plagiorchiidae. The Plagiorchiidae are the most abundant family found in central Alberta lakes, and there is statistical evidence, through phylogenetics presented herein, for the presence of at least nine species. This family is said to be composed of at least 100 species (Blankespoor, 1977). Furthermore, *Plagiorchis* spp. have been indicated as vectors for Potomac Horse Fever (Vaughan, Tkach, & Greiman, 2012), which has been diagnosed among several horses near Edmonton, Alberta (personal communication with horse owners, and positive sequence identifications of *Neorickettsia risticii*, unpublished).

In the Notocotylidae, we identified four species, but all were provisionally named species A–D because, as with many of our samples, there was no clear evidence to connect them to any previously

TABLE 4 Snail host-trematode parasite relationships from this study

	Helisoma trivolvis	Lymnaea stagnalis	Physa gyrina	Planorbula armigera	Stagnicola elodes	Grand total
Apatemon sp. A	-	-	-	-	16	16
Apatemon sp. B	-	-	-	-	1	1
Apatemon sp. C	-	-	-	-	4	4
Australapatemon burti LIN1	2	1	2	-	199	204
Australapatemon mclaughlini	-	-	2	-	-	2
Australapatemon sp. LIN10	-	-	1	-	-	1
Australapatemon sp. LIN3	-	-	-	-	1	1
Australapatemon sp. LIN4	-	-	2	-	-	2
Australapatemon sp. LIN5	-	-	-	-	1	1
Australapatemon sp. LIN6	-	-	7	-	-	7
Australapatemon sp. LIN8	-	-	9	-	-	9
Australapatemon sp. LIN9A	-	1	-	-	16	17
Australapatemon sp. LIN9B	-	-	-	-	4	4
Avian schistosomatid sp. A	-	-	7	-	-	7
Avian schistosomatid sp. B	-	-	1	-	-	1
Avian schistosomatid sp. C	1	-	-	-	-	1
Bolbophorus sp.	10	-	-	-	-	10
Cotylurus cornutus	1	-	-	-	32	33
Cotylurus flabelliformis	-	-	-	-	1	1
Cotylurus marcogliesei	-	-	-	-	5	5
Cotylurus sp. A	-	-	1	-	38	39
Cotylurus sp. B	-	-	1	-	-	1
Cotylurus sp. C	-	3	-	-	-	3
Cotylurus sp. D	-	-	1	-	-	1
Cotylurus sp. E	-	-	-	-	11	11
Cotylurus sp. F	-	6	-	-	-	6
Cotylurus strigeoides	-	-	21	-	1	22
Diplostomidae gen. sp. O	-	-	34	-	-	34
Diplostomidae gen. sp. X	-	-	1	-	-	1
Diplostomum baeri LIN2	-	-	-	-	5	5
Diplostomum indistinctum	-	-	-	-	1	1
Diplostomum sp. 1	-	-	-	-	6	6
Diplostomum sp. 3	-	3	-	-	-	3
Diplostomum sp. 4	-	-	-	-	71	71
Diplostomum sp. A	-	-	-	-	1	1
Diplostomum sp. B	-	-	-	-	1	1
Diplostomum sp. C	1	-	-	-	11	12
Drepanocephalus spathans	4	-	-	-	-	4
Echinoparyphium sp. A	-	-	44	-	2	46
Echinoparyphium sp. A2	-	-	1	-	6	7
Echinoparyphium sp. B	_	_	-	_	9	9
Echinoparyphium sp. C	-	-	-	-	25	25
Echinoparyphium sp. D	_	-	-	_	1	1
Echinoparyphium sp. E	-	1	-	-	5	6
Echinoparyphium sp. Lineage 1A	1	-	94	-	2	97

GORDY AND HANINGTON

WILEY

TABLE 4 (Continued)	Helisoma trivolvis	Lymnaea stagnalis	Physa gyrina	Planorbula armigera	Stagnicola elodes	Grand total
Echinoparyphium sp. Lineage 1B	-	-	1	-	-	1
Echinoparyphium sp. Lineage 2	1	3	-	-	80	84
Echinoparyphium sp. Lineage 4	2	-	-	-	-	2
Echinostoma revolutum B	-	-	-	-	33	33
Echinostoma trivolvis Lineage A	5	-	-	-	-	5
Echinostomatidae gen. sp.	-	-	-	-	4	4
Haematoloechidae gen. sp. A	-	-	-	-	4	4
Hypoderaeum sp. Lineage 1	-	-	-	-	5	5
Hypoderaeum sp. Lineage 2	-	-	-	-	3	3
Neodiplostomum americanum	-	-	-	-	1	1
Neopetasiger islandicus	-	-	-	1	-	1
Neopetasiger sp. 4	10	-	-	-	-	10
Notocotylus sp. A	-	-	36	-	3	39
Notocotylus sp. B	-	-	1	-	-	1
Notocotylus sp. C	1	-	-	-	-	1
Notocotylus sp. D	-	-	5	-	45	50
Ornithodiplostomum sp. 2	-	-	1	-	-	1
Ornithodiplostomum sp. 8	-	-	4	-	-	4
Plagiorchis sp.ª	7	89	12	-	1,027	1,135
Posthodiplostomum sp. 4	-	-	2	-	-	2
Psilostomidae gen. sp. A	6	-	-	-	-	6
Schistosomatium douthitti	-	8	-	-	2	10
Trichobilharzia physellae	-	-	1	-	-	1
Trichobilharzia stagnicolae	-	-	-	-	8	8
Trichobilharzia szidati	-	2	-	-	-	2
Tylodelphys sp. A	5	-	-	-	-	5
Grand total	57	117	292	1	1,691	2,158
Includes all lineages						

identified species, and the evidence found was quite disparate. From the literature, only two named species have been identified in Canada, including Notocotylus attenuatus (Quebec and Manitoba) and N. urbanensis (previously N. filamentis) (British Columbia and Ontario), and three others have been identified in the Nearctic region, N. linearis, N. pacifier, and N. stagnicolae. Broadly, these species infect Anatids and aquatic mammals like muskrats (multiple references found in Gibson, Bray, & Harris, 2005). Prior evidence related to their snail hosts is limited to records from the United States: N. attenuatus has been identified from Physa acuta in the Eastern United States (Graczyk & Shiff, 1993b), and N. urbanensis was identified from Stagnicola emarginata in Michigan (Keas & Blankespoor, 1997). No records to our knowledge have thus far indicated P. gyrina, S. elodes, or H. trivolvis as intermediate hosts for Notocotylus species. The only records of any Notocotylus spp. in Alberta previously have been unnamed species found in the shorebirds Recurvirostra americana and Catoptrophorus semipalmatus (Gibson et al., 2005). Considering that we cannot link these unknown species in shorebirds to our samples, the four species we have identified can be considered new geographical and host records for

Notocotylids. A final note about this family is the need for further sampling among Stagnicola and Physa snail species in Alberta as an effort to further define Notocotylus sp. A and D. These two species have lower interspecific divergence between them than between the other species in the family and exhibit mixed host use, with preference for one host over the other and that happen to be opposite of each other. We speculate that this may be evidence of a current speciation event in which increased host preferences are leading to specialization and resulting in their division, at least on a molecular level.

Both Haematoloechidae and Psilostomidae species were difficult to identify for several reasons. The first reason was that either there were not very many cox1 sequences available for comparison or the sequences available for that gene were from an upstream region and did not overlap. The other reason was that there have been no previous records of species from either family in Alberta or many records in general from snail hosts, and none from snails within Canada. While lymnaeid snails have previously been indicated as intermediate hosts for Haematoloechus spp. (Gibson et al., 2005), to our knowledge, none have been specifically identified from S. elodes. Several other snail

FIGURE 10 Species accumulation. Several methods confirm that if delineation confidence for species differences is based on morphological identification, a plateau is reached for the maximum number of species within the study area. Whereas if confidence is based on molecular phylogenetic methods, we have yet to attain the true diversity of trematode species within the study area. (a) Collector method for accumulating sites as in the dataset, (b) Rarefaction for number of individuals, (c) Random method for accumulating sites given as a boxplot, with nonlinear Arrhenius model results displayed as lines behind the boxplot, (d) Rarefaction for number of individuals by snail species, (e) Random method for accumulating sites given as a boxplot for snail species

Ecology and Evolution

3203

WILE

TABLE 5 Summary of representation for digenean mitochondrial genes in GenBank

Order	Family	No. of <i>cox1</i> seq.	No. of spp.	Named spp.	No. of <i>nad</i> 1 seq.	No. of spp.	Named spp.
Strigeidida	Schistosomatidae	1,434	104	46	523	16	15
	Diplostomidae	1,079	110	20	3	3	
	Clinostimidae	390	29	11	1	1	
	Strigeidae	188	46	18	20	7	
	Bucephalidae	66	5				
	Leuchochloridae	31	6		11	4	
	Bolbophoridae	15	5				
	Aporocotylidae	10	10				
	Cyathocotylidae	9	1				
	Spirorchiidae	5	5				
	Fellodistomidae	5	3		12	11	
	Leuchochloridiomorphidae	1	1				
	Panopstidae	1	1				
Plagiorchiida	Fasciolidae	463	31	4	533	45	7
	Opecoelidae	416	24	7	203	2	2
	Troglotrematidae	333	24	7	35	6	
	Apocreadiidae	261	5	4			
	Echinostomatidae	228	23	10	344	51	28
	Microphallidae	158	6				
	Allocreadiiidae	143	13				
	Dicrocoeliidae	115	15		33	6	
	Himasthlidae	79	9				
	Monorchiidae	69	17				
	Plagiorchiidae	64	19	16			
	Gorgoderidae	61	17				
	Haematoloechidae	52	23	15			
	Paramphistomidae	49	14		34	5	
	Notocotylidae	42	8	2	2	2	
	Gymnophallidae	41	3				
	Brachycladiidae	39	3				
	Lepocreadiidae	39	1		46	40	
	Philophthalmidae	38	5		20	3	
	Collyriclidae	37	1		8	1	
	Gastrothylacidae	23	6		2	2	
	Renicolidae	21	8		6	4	
	Pleurogenidae	15	2				
	Prosthogonimidae	14	4		16	4	
	Gorgocephalidae	8	1				
	Psilostomidae	5	4	3			
	Callodistomidae	4	4				
	Paramphistomatidae	3	3				
	Telorchiidae	2	2				
	Alloglossidiidae	2	1		177	23	17
	Cephalogonimidae	2	1				

Order	Family	No. of <i>cox1</i> seq.	No. of spp.	Named spp.	No. of <i>nad1</i> seq.	No. of spp.	Named spp.
	Lissorchiidae	2	2				
	Echinochasmidae	1	1		1	1	
	Olveriidae	1	1				
Opisthorchiida	Heterophyidae	680	29	20	3	2	
	Opisthorchiidae	469	13	12	28	8	
	Cryptogonimidae	66	3		1	1	
	Acanthocolpidae	1	1		1	1	
Azygiida	Didymozoidae	82	2				
	Derogenidae	14	5				
	Accacoeliidae	5	2				
	Azygiidae	3	3				
	Hirudinellidae	2	2				
	Hemiuridae	1	1				
	Isoparorchiidae	1	1				

TABLE 5 (Continued)

families (Physidae and Planorbidae) are also hosts for different species of *Haematoloechus*, indicating they do not specialize by snail family, but could specialize for snail species, which may be regionally determined (Gibson et al., 2005). For both families, records within Canada have all come from the Eastern provinces (Quebec, Ontario, New Brunswick, and Nova Scotia) and from definitive hosts (Psilostomidae: Anatid birds and aquatic mammals; Haematoloechidae: frogs; Gibson et al., 2005). It is impossible at this point to know whether the presence of species from these families is from recent introductions or not, but they are rare in the fact that we only collected a few from each family over the course of 3 years. Considering their host species are quite prevalent across Alberta, it is possible that they have been here and remained undetected, but they could also have expanded their distributions westward into Alberta as well.

The gap between morphological and molecular species identities is growing larger, and the effort to find a solution is not growing at the same rate. Without the link between the two, we are missing important information about life cycle dynamics due to host associations and infection processes that could help inform wildlife managers and possibly influence control efforts for human and veterinary diseases caused by trematodes. One possible solution to this, aside from more molecular data from adult worm samples, is the development of methods to derive quality sequence information from historical, adult trematode specimens. As these vouchers have been our historical standard for species identifications, they are our ultimate source for generating molecular libraries by which to further our understanding of trematode diversity, speciation, and evolution with the added benefit of linking life cycles.

Furthermore, we urge the contribution of sequences that represent a broader diversity of digenean trematodes. One current issue is that novel lineages in molecular phylogenies could either represent cryptic species or they could represent described species for which we have no/limited molecular resources. Therefore, placing emphasis on capturing a broader diversity of trematodes might help bridge knowledge gaps.

ACKNOWLEDGMENTS

We would like to acknowledge Elisabeth Richardson and Joel Dacks for fruitful discussion surrounding phylogenetic analyses, and Valerie K. Philips for assistance with fieldwork. We thank Sean A. Locke, Janet Koprivnikar, and Jillian T. Detwiler for an early review of the manuscript, as well as three anonymous reviewers for their constructive comments. This work was funded by Alberta Innovates Energy and Environment Solutions grant 2078 and NSERC 418540 (PCH), with partial salary support for MAG by an NSERC CREATE Host-Parasite Interactions student scholarship.

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTIONS

MAG designed and performed the research, completed all analyses, and wrote the paper. PCH was involved with conception and design of the research, reviewing the results, and contributed to writing the paper.

DATA ACCESSIBILITY

DNA sequences: GenBank accessions MH368808–MH369793, KT831346–KT831348, KT831353, KT831356, KT831357, KT831359, KT831360, KT831363, KT831366, KT831371, KT831372, KT831377, KT831378, KT831382, KY207550, KY207557, KY207558, KY207582, KY207583, and KY207596. Sequence alignments and phylogenetic trees: TreeBASE (read only access until manuscript is approved) http:// purl.org/phylo/treebase/phylows/study/TB2:S23234?x-access-code= c870e4e7ccd090a8c9a0ad25ac312dee&format=html. Host and location data: in Table 3.

ORCID

Michelle A. Gordy D https://orcid.org/0000-0002-5034-1765 Patrick C. Hanington D https://orcid.org/0000-0002-3964-5012

REFERENCES

- Adlard, R., & O'Donoghue, P. (1998). Perspectives on the biodiversity of parasitic protozoa in Australia. *International Journal for Parasitology*, 28(6), 887–897.
- Adlard, R. D., Miller, T. L., & Smit, N. J. (2015). The butterfly effect: Parasite diversity, environment, and emerging disease in aquatic wildlife. *Trends in Parasitology*, 31, 160–166. https://doi.org/10.1016/J. PT.2014.11.001
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal of Molecular Biology*, 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Behrmann-Godel, J. (2013). Parasite identification, succession and infection pathways in perch fry (*Perca fluviatilis*): New insights through a combined morphological and genetic approach. *Parasitol*, 140(4), 509–520.
- Bergmame, L., Huffman, J., Cole, R., Dayanandan, S., Tkach, V. V., & McLaughlin, J. D. (2011). Sphaeridiotrema globulus and Sphaeridiotrema pseudoglobulus (Digenea): Species differentiation based on mtDNA (Barcode) and partial LSU-rDNA sequences. Journal of Parasitology, 97(6), 1132–1136.
- Blankespoor, H. (1977). Notes on the biology of Plagiorchis noblei Park, 1936 (Trematoda: Plagiorchiidae). Proceedings of the Helminthological Society, 44(1), 44–50.
- Blasco-Costa, I., & Locke, S. A. (2017). Life history, systematics and evolution of the diplostomoidea poirier, 1886: Progress, promises and challenges emerging from molecular studies. Advances in Parasitology, 98, 167–225. https://doi.org/10.1016/bs.apar.2017.05.001
- Blasco-Costa, I., Poulin, R., & Presswell, B. (2016). Species of Apatemon Szidat, 1928 and Australapatemon Sudarikov, 1959 (Trematoda: Strigeidae) from New Zealand: Linking and characterising life cycle stages with morphology and molecules. Parasitology Research, 115, 271–289. https://doi.org/10.1007/s00436-015-4744-0
- Bray, R. A., Cribb, T. H., Littlewood, D. T. J., & Waeschenbach, A. (2016). The molecular phylogeny of the digenean family Opecoelidae Ozaki, 1925 and the value of morphological characters, with the erection of a new subfamily. *Folia Parasitol (Praha)*, 63, 1–11. https://doi. org/10.14411/fp.2016.013
- Chibwana, F. D., Blasco-Costa, I., Georgieva, S., Hosea, K. M., Nkwengulila, G., Scholz, T., & Kostadinova, A. (2013). A first insight into the barcodes for African diplostomids (Digenea: Diplostomidae): Brain parasites in *Clarias gariepinus* (Siluriformes: Clariidae). *Infection, Genetics and Evolution*, 17, 62–70.
- Cribb, T. H., Bray, R. A., Littlewood, D. T. J., Pichelin, S. P., Herniou, E. A., & Warren, A. (2001). The Digenea. In D. T. J. Littlewood (Ed.), Interrelationships of the Platyhelminthes (pp. 168–185). London: Taylor & Francis.
- Detwiler, J. T., Bos, D. H., & Minchella, D. J. (2010). Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. *Molecular Phylogenetics and Evolution*, 55, 611–620. https://doi.org/10.1016/j.ympev.2010.01.004
- Detwiler, J. T., Zajac, A. M., Minchella, D. J., & Belden, L. K. (2012). Revealing cryptic parasite diversity in a definitive host: Echinostomes

in muskrats. Journal of Parasitology, 98, 1148-1155. https://doi.org/10.1645/GE-3117.1

- García-Varela, M., Sereno-Uribe, A. L., Pinacho-Pinacho, C. D., Hernández-Cruz, E., & Pérezponce de León, G. (2016). An integrative taxonomic study reveals a new species of *Tylodelphys* Diesing, 1950 (Digenea: Diplostomidae) in Central and Northern Mexico. *Journal of Helminthology*, 90(6), 668–679. https://doi.org/10.1017/ S0022149X15000917
- Georgieva, S., Kostadinova, A., & Skirnisson, K. (2012). The life-cycle of *Petasiger islandicus* Kostadinova & Skirnisson, 2007 (Digenea: Echinostomatidae) elucidated with the aid of molecular data. *Systematic Parasitology*, 82(3), 177-183. https://doi.org/10.1007/ s11230-012-9354-y
- Georgieva, S., Selbach, C., Faltýnková, A., Soldánová, M., Sures, B., Skírnisson, K., & Kostadinova, A. (2013a). New cryptic species of the 'revolutum' group of *Echinostoma* (Digenea: Echinostomatidae) revealed by molecular and morphological data. *Parasit Vectors*, 6, 64. https://doi.org/10.1186/1756-3305-6-64
- Georgieva, S., Soldánová, M., Pérez-del-Olmo, A., Dangel, D. R., Sitko, J., Sures, B., & Kostadinova, A. (2013b). Molecular prospecting for European Diplostomum (Digenea: Diplostomidae) reveals cryptic diversity. International Journal for Parasitology, 43, 57–72. https://doi. org/10.1016/j.ijpara.2012.10.019
- Georgieva, S, Faltýnková, A, Brown, R, Blasco-Costa, I, Soldánová, M, Sitko, J, & Kostadniova, A. *Echinostoma "revolutum"* (Digenea: Echinostomatidae) species complex revisited: Species delimitation based on novel molecular and morphological data gathered in Europe. *Parasit Vectors* 2014;7:520. https://doi.org/10.1186/ s13071-014-0520-8
- Gibson, DI, Bray, RA, & Harris, EA. Host-Parasite Database of the Natural History Museum, London 2005.
- Gordy, M. A., Cobb, T. P., & Hanington, P. C. (2018). Swimmer's itch in Canada: A look at the past and a survey of the present to plan for the future. *Environmental Health*, 17, 73. https://doi.org/10.1186/ s12940-018-0417-7
- Gordy, M. A., Kish, L., Tarrabain, M., & Hanington, P. C. (2016). A comprehensive survey of larval digenean trematodes and their snail hosts in central Alberta Canada. *Parasitology Research*, 115(10), 3867–3880. https://doi.org/10.1007/s00436-016-5152-9
- Gordy, MA, Locke, SA, Rawlings, TA, Lapierre, AR, & Hanington, PC. Molecular and morphological evidence for nine species in North American Australapatemon (Sudarikov, 1959): A phylogeny expansion with description of the zygocercous Australapatemon mclaughlini n. sp. Parasitology Research 2017;116:2181-2198. https://doi. org/10.1007/s00436-017-5523-x
- Graczyk, T. K., & Shiff, C. J. (1993a). Excystment in vitro of Cotylurus cornutus (Trematoda: Strigeidae) Metacercariae. Journal of Parasitology, 79, 448. https://doi.org/10.2307/3283586
- Graczyk, T. K., & Shiff, C. J. (1993b). Experimental infection of domestic ducks and rodents by Notocotylus attenuatus (Trematoda: Notocotylidae). Journal of Wildlife Diseases, 29, 434–439. https://doi. org/10.7589/0090-3558-29.3.434
- Guindon, S, Dufayard, JF, Lefort, V, Anisimova, M, Hordijk, W, & Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 2010;59:307–321. https://doi.org/10.1093/sysbio/syq010
- Hernández-Cruz, E, Hernández-Orts, JS, Sereno-Uribe, AL, de-Pérez-Ponce León, G, & García-Varela, M. Multilocus phylogenetic analysis and morphological data reveal a new species composition of the genus *Drepanocephalus* Dietz, 1909 (Digenea: Echinostomatidae), parasites of fish-eating birds in the Americas. *Journal of Helminthology* 2018;92:572–595. https://doi.org/10.1017/s0022149x17000815
- Hernández-Mena, D. I., García-Prieto, L., & García-Varela, M. (2014). Morphological and molecular differentiation of parastrigea (Trematoda: Strigeidae) from Mexico, with the description of a

II FY_Ecology and Evolution

new species. *Parasitology International*, 63(2), 315–323. https://doi. org/10.1016/j.parint.2013.11.012

- Hernández-Mena, DI, García-Varela, M, & dePérez-Ponce León, G. Filling the gaps in the classification of the Digenea Carus, 1863: Systematic position of the Proterodiplostomidae Dubois, 1936 within the superfamily Diplostomoidea Poirier, 1886, inferred from nuclear and mitochondrial DNA sequences. Systematic Parasitology 2017; 94:833https://doi.org/10.1007/s11230-017-9745-1
- Herrmann, K. K., Poulin, R., Keeney, D. B., & Blasco-Costa, I. (2014). Genetic structure in a progenetic trematode: Signs of cryptic species with contrasting reproductive strategies. *International Journal for Parasitology*, 44, 811–818. https://doi.org/10.1016/j.ijpara.2014.06.006
- Hoberg, EP, Galbreath, KE, Cook, JA, Kutz, SJ, & Polley, L. Northern Host-Parasite Assemblages. History and biogeography on the borderlands of episodic climate and environmental transition. vol. 79. *Elsevier*; 2012; 79:1–97. https://doi.org/10.1016/ b978-0-12-398457-9.00001-9
- Huelsenbeck, J. P., & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. *Bioinformatics*, 17, 754–755. https://doi.org/DOI: 10.1093/bioinformatics/17.8.754
- Jensen, K., & Bullard, S. A. (2010). Characterization of a diversity of tetraphyllidean and rhinebothriidean cestode larval types, with comments on host associations and life-cycles. *International Journal for Parasitology*, 40, 889–910. https://doi.org/10.1016/J. IJPARA.2009.11.015
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, 28, 1647–1649. https://doi. org/10.1093/bioinformatics/bts199
- Keas, B. E., & Blankespoor, H. D. (1997). The prevalence of Cercariae from Stagnicola emarginata (Lymnaeidae) over 50 years in Northern Michigan. Journal of Parasitology, 83, 536. https://doi. org/10.2307/3284427
- Kostadinova, A., & Herniou, E. (2003). Phylogenetic relationships of *Echinostoma* Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera re-assessed via DNA and morphological analyses. *Systematic Parasitology*, 54(3), 159–176.
- Kudlai, O., Kostadinova, A., Pulis, E. E., & Tkach, V. V. (2015). A new species of *Drepanocephalus* Dietz, 1909 (Digenea: Echinostomatidae) from the double-crested cormorant *Phalacrocorax auritus* (Lesson) (Aves: Phalacrocoracidae) in North America. *Systematic Parasitology*, 90(3), 221–230. https://doi.org/10.1007/s11230-015-9550-7
- Kuhn, J. A., Kristoffersen, R., Knudsen, R., Jakobsen, J., Marcogliese, D. J., Locke, S. A., & Amundsen, P.-A. (2015). Parasite communities of two three-spined stickleback populations in subarctic norway—effects of a small spatial-scale host introduction. *Parasitology Research*, 114(4), 1327–1339. https://doi:10.1007/s00436-015-4309-2
- Kumar, S, Stecher, G, & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Molecular Biology* and Evolution 2016;33:msw054. https://doi.org/10.1093/molbev/ msw054
- Liu, Z-X, Zhang, Y, Liu, Y-T, Chang, Q-C, Su, X, Fu, X, & Wang, C-R. Complete mitochondrial genome of *Echinostoma hortense* (Digenea: Echinostomatidae). *Korean Journal of Parasitology* 2016;54:173–179. https://doi.org/10.3347/kjp.2016.54.2.173
- Locke, SA, McLaughlin, JD, Dayanandan, S, & Marcogliese, D. J. (2010a). Diversity and specificity in *Diplostomum* spp. metacercariae in freshwater fishes revealed by cytochrome c oxidase I and internal transcribed spacer sequences. *International Journal for Parasitology* 2010a;40:333-343. https://doi.org/10.1016/j.ijpara.2009.08.012
- Locke, S. A., McLaughlin, J. D., & Marcogliese, D. J. (2010b). DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater. *Molecular Ecology*, 19, 2813–2827.

- Locke, S. A., McLaughlin, J. D., Lapierre, A. R., Johnson, P. T. J., & Marcogliese, D.J. (2011). Linking larvae and adults of Apharyngostrigea cornu, Hysteromorpha triloba, and Alaria mustelae (Diplostomoidea: Digenea) using molecular data. Journal of Parasitology, 97(5), 846– 851. https://doi.org/10.1645/GE-2775.1
- Locke, S. A., Al-Nasiri, F. S., Caffara, M., Drago, F., Kalbe, M., Lapierre, A. R., McLaughlin, J. D., ... Marcogliese, D. J. (2015). Diversity, specificity and speciation in larval diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. International Journal for Parasitology, 45(13), 841–855. https:// doi.org/10.1016/j.ijpara.2015.07.001
- Locke, S. A., Van Dam, A., Caffara, M., Pinto, H. A., López-Hernández, D., & Blanar, C. A. (2018). Validity of the diplostomoidea and diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis. *International Journal for Parasitology*, 48(13), 1043–1059. https://doi. org/10.1016/J.IJPARA.2018.07.001
- Mathison, B. A., & Pritt, B. S. (2014). Laboratory identification of arthropod ectoparasites. *Clinical Microbiology Reviews*, 27, 48–67. https:// doi.org/10.1128/CMR.00008-13
- Miura, O., Kuris, A., & Torchin, M. (2005). Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, *Batillaria cumingi* (Crosse). *International Journal for Parasitology*, 35, 793–801.
- Mollaret, I., Jamieson, B. G., Adlard, R. D., Hugall, A., Lecointre, G., Chombard, C., & Justine, J. L. (1997). Phylogenetic analysis of the Monogenea and their relationships with Digenea and Eucestoda inferred from 28S rDNA sequences. *Molecular and Biochemical Parasitology*, 90, 433–438.
- Morgan, J. A. T., & Blair, D. (1998). Mitochondrial ND1 gene sequences used to identify echinostome isolates from Australia and New Zealand. International Journal for Parasitology, 28, 493–502. https:// doi.org/10.1016/S0020-7519(97)00204-X
- Moszczynska, A, Locke, SA, McLaughlin, JD, Marcogliese, DJ, & Crease, TJ. Development of primers for the mitochondrial cytochrome *c* oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. *Molecular Ecology Resources* 2009;9 Suppl s1:75–82. https://doi. org/10.1111/j.1755-0998.2009.02634.x
- Nadler, S., & DE León, G. (2011). Integrating molecular and morphological approaches for characterizing parasite cryptic species: Implications for parasitology. *Parasitology*, 138, 1688–1709.
- Nagataki, M, Tantrawatpan, C, Agatsuma, T, Sugiura, T, Duenngai, K, Sithithaworn, P, ... Saijuntha, W. Mitochondrial DNA sequences of 37 collar-spined echinostomes (Digenea: Echinostomatidae) in Thailand and Lao PDR reveals presence of two species: Echinostoma revolutum and E. miyagawai. Infect Genet Evol, 2015; 35: 56–62.
- O'Hear, M., Pote, L., Yost, M., Doffitt, C., King, T., & Panuska, C. (2014). Morphologic and molecular identifications of digenetic trematodes in double-crested cormorants (*Phalacrocorax auritus*) from the Mississippi Delta. USA. J Wildlife Dis, 50(1), 42–49.
- Oksanen, J, Blanchet, F. G., Friendly, M, Kindt, R, Legendre, P, McGlinn, D, & Wagner, H. Vegan: Community ecology package 2018.
- Otachi, E. O., Locke, S. A., Jirsa, F, Fellner-Frank, C, & Marcogliese, DJ. Morphometric and molecular analyses of *Tylodelphys* sp. Metacercariae (Digenea: Diplostomidae) from the vitreous humour of four fish species from lake Naivasha, Kenya. *Journal of Helminthology* 2015; 89(4): 404–414. https://doi.org/10.1017/s0022149x14000170
- Pérez-Ponce de León, G, & Poulin, R. An updated look at the uneven distribution of cryptic diversity among parasitic helminths. *Journal* of *Helminthology* 2018;92:197–202. https://doi.org/10.1017/ s0022149x17000189
- Pinto, H. A., Griffin, M. J., Quiniou, S. M., Ware, C., & Melo, A. L. Biomphalaria straminea (Mollusca: Planorbidae) as an intermediate host of Drepanocephalus spp. (Trematoda: Echinostomatidae) in Brazil: A morphological and molecular study. Parasitology Research 2016; 115(1): 51–62. https://doi.org/10.1007/s00436-015-4469-0

'ILEY

- Poulin, R. (2014). Parasite biodiversity revisited: Frontiers and constraints. International Journal for Parasitology, 44, 581–589. https:// doi.org/10.1016/J.IJPARA.2014.02.003
- Poulin, R., Besson, A. A., Morin, M. B., & Randhawa, H. S. (2016). Missing links: Testing the completeness of host-parasite checklists. *Parasitology*, 143, 114–122. https://doi.org/10.1017/ S0031182015001559
- Poulin, R., & Jorge, F. (2018). The geography of parasite discovery across taxa and over time. *Parasitology*, 1–8. https://doi.org/10.1017/ S003118201800118X
- Poulin, R, & Morand, S. *Parasite Biodiversity*. Smithsonian Books; 2004. https://doi.org/10.1645/ge-702r.1
- Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, automatic barcode gap discovery for primary species delimitation. *Molecular Ecology*, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
- R Core Team. R: A language and environment for statistical computing 2017.
- Roeber, F., Jex, A. R., & Gasser, R. B. (2013). Advances in the diagnosis of key gastrointestinal nematode infections of livestock, with an emphasis on small ruminants. *Biotechnology Advances*, 31, 1135–1152. https://doi.org/10.1016/J.BIOTECHADV.2013.01.008
- Rosser, T. G., Baumgartner, W. A., Alberson, N. R., Woodyard, E. T., Reichley, S. R., Wise, D. J., ... Griffin, M. J. Austrodiplostomum sp., Bolbophorus sp.(Digenea: Ditaliplostomidae), and Clinostomum marginatum (Digenea: Clinostomidae) metacercariae in inland silverside Menidia beryllina from catfish aquaculture ponds, with notes on the infectivity of Austrodiplostomum sp. cercariae in channel catfish Ictalurus punctatus. Parasitology Research 2016; 115(11): 4365–4378.
- Schell, S. C. (1985). Handbook of the trematodes of North America north of Mexico. Moscow (Idaho): University Press Idaho.
- Schwelm, J., Soldánová, M., Vyhlídalová, T., Sures, B., & Selbach, C. (2018). Small but diverse: Larval trematode communities in the small freshwater planorbids *Gyraulus albus* and *Segmentina nitida* (Gastropoda: Pulmonata) from the Ruhr River, Germany. *Parasitology Research*, 117, 241–255. https://doi.org/10.1007/s00436-017-5699-0
- Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A., Kalbe, M., & Sures, B. (2014). Morphological and molecular data for larval stages of four species of *Petasiger* Dietz, 1909 (Digenea: Echinostomatidae) with an updated key to the known cercariae from the palaearctic. *Systematic Parasitology*, 89(2), 153–166. https://doi.org/10.1007/ s11230-014-9513-4
- Selbach, C, Soldánová, M, Georgieva, S, Kostadinova, A, & Sures, B. Integrative taxonomic approach to the cryptic diversity of

Diplostomum spp. in lymnaeid snails from Europe with a focus on the 'Diplostomum mergi'species complex." Parasit Vectors 2015; 8(1): 300.

- Snyder, S. D., & Tkach, V. V. (2001). Phylogenetic and biogeographical relationships among some holarctic frog lung flukes (Digenea: Haematoloechidae). *Journal of Parasitology*, 87, 1433. https://doi. org/10.2307/3285315
- Soldánová, M., Georgieva, S., Roháčová, J., Knudsen, R., Kuhn, J. A., Henriksen, E. H., ... Kostadinova, A. (2017). Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. *International Journal for Parasitology*, 47, 327–345. https://doi.org/10.1016/j. ijpara.2016.12.008
- Stoyanov, B., Georgieva, S., Pankov, P., Kudlai, O., Kostadinova, A., & Georgiev, B. B. (2017). Morphology and molecules reveal the alien *Posthodiplostomum centrarchi* Hoffman, 1958 as the third species of *Posthodiplostomum* Dubois, 1936 (Digenea: Diplostomidae) in Europe. *Systematic Parasitology*, *94*, 1–20. https://doi.org/10.1007/ s11230-016-9680-6
- Tkach, V. V., Kudlai, O., & Kostadinova, A. (2016). Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). *International Journal for Parasitology*, 46, 171–185. https://doi.org/10.1016/J.IJPARA.2015.11.001
- Van Steenkiste, N., Locke, S. A., Castelin, M., Marcogliese, D. J., & Abbott, C. L. (2014). New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes). *Molecular Ecology Resources*, 15, 945–952. https://doi.org/10.1111/1755-0998.12358
- Vaughan, JA, Tkach, VV, & Greiman, SE. Neorickettsial endosymbionts of the digenea: Diversity, transmission and distribution. vol. 79. *Elsevier*; 2012. https://doi.org/10.1016/b978-0-12-398457-9.00003-2
- Vilas, R., Criscione, C., & Blouin, M. (2005). A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. *Parasitology*, 131, 1–8.
- Wickham, H, Francois, R, Henry, L, & Müller, K. dplyr: A grammar of data manipulation. R package 2017

How to cite this article: Gordy MA, Hanington PC. A fine-scale phylogenetic assessment of digenean trematodes in central Alberta reveals we have yet to uncover their total diversity. *Ecol Evol.* 2019;9:3153–3238. <u>https://doi.org/10.1002/</u>ece3.4939

APPENDIX A

TABLE A1 Average cox1 divergence within and between groups in the Notocotylidae. The number of base differences per site from between sequences are shown. Standard error estimate(s) are shown above the diagonal. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The analysis involved 98 nucleotide sequences. Codon positions included were 1st + 2nd + 3rd + Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 322 positions in the final dataset. Standard error estimates are shown above the diagonal. Average within group divergence is given on the diagonal. Group intraspecific divergence ranges are given as percentages next to species names. Numbers in red are outside the delineation cut-off.

	E. hortense	<i>N</i> . sp. A	<i>N</i> . sp. B	<i>N</i> . sp. C	<i>N</i> . sp. D	O. sikae
Echinostoma hortense (out)	-	0.023	0.023	0.023	0.023	0.023
Notocotylus sp. A (0.0-4.3%)	0.274	0.013	0.012	0.014	0.008	0.020
Notocotylus sp. B	0.270	0.059	-	0.016	0.014	0.020
Notocotylus sp. C	0.261	0.083	0.102	-	0.014	0.021
Notocotylus sp. D (0.0-4.3%)	0.273	0.038	0.084	0.088	0.013	0.020
Ogmocotyle sikae	0.258	0.188	0.196	0.208	0.198	-

ae. The number of base differences per site from between sequences are shown. Standard error estimate(s)	a distribution (shape parameter = 1). The analysis involved 11 nucleotide sequences. Codon positions	vere eliminated. There were a total of 496 positions in the final dataset.
bairwise distance between individual $cox1$ sequences in the Psilostomidae. The $ m r$	e the diagonal. The rate variation among sites was modeled with a gamma distrib	st+2nd+3rd+Noncoding. All positions containing gaps and missing data were elin
TABLE A2	are shown abov	included were 1

3208

	MGC342	MGC2085	MGC2089	MGC406	КТ831366	MGC1319	E. japonicus	P. varium	S. globulus	S. pseudoglobulus	S. pseudoglobulus
Psilostomatidae gen. sp. A*** MGC342		0.004	0.004	0.004	0.004	0.004	0.018	0.015	0.019	0.019	0.019
Psilostomatidae gen. sp. A*** MGC2085	0.010		0.000	0.002	0.002	0.002	0.018	0.015	0.019	0.019	0.019
Psilostomatidae gen. sp. A*** MGC2089	0.010	0.000		0.002	0.002	0.002	0.018	0.015	0.019	0.019	0.019
Psilostomatidae gen. sp. A*** MGC406	0.008	0.002	0.002		0.000	0.000	0.018	0.015	0.019	0.019	0.019
Psilostomatidae gen. sp. A *** KT831366	0.008	0.002	0.002	0.000		0.000	0.018	0.015	0.019	0.019	0.019
Psilostomatidae gen. sp. A*** MGC1319	0.008	0.002	0.002	0.000	0.000		0.018	0.015	0.019	0.019	0.019
Echinochasmus japonicus (out)	0.234	0.234	0.234	0.236	0.236	0.236		0.018	0.018	0.018	0.018
Pseudopsilostoma varium	0.143	0.145	0.145	0.147	0.147	0.147	0.230		0.019	0.018	0.018
Sphaeridiotrema globulus	0.242	0.244	0.244	0.246	0.246	0.246	0.228	0.258		0.018	0.018
Sphaeridiotrema pseudoglobulus	0.244	0.246	0.246	0.244	0.244	0.244	0.232	0.254	0.192		0.000
Sphaeridiotrema pseudoglobulus	0.244	0.246	0.246	0.244	0.244	0.244	0.232	0.254	0.192	0.000	

estimate(s) are shown above the diagonal. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The analysis involved 7 nucleotide sequences. Codon TABLE A3 Pairwise distance between individual cox1 sequences in the Haematoloechidae. The number of base differences per site from between sequences are shown. Standard error positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 454 positions in the final dataset.

	КТ831372	MGC1782	MGC1787	MGC1792	H. sp. 9781	H.sp. 9782	Plagiorchis sp.
Haematoloechidae gen. sp. A***KT831372		0.000	0.000	0.000	0.016	0.018	0.020
Haematoloechidae gen. sp. A***MGC1782	0.000		0.000	0.000	0.016	0.018	0.020
Haematoloechidae gen. sp. A ***MGC1787	0.000	0.000		0.000	0.016	0.018	0.020
Haematoloechidae gen. sp. A***MGC1792	0.000	0.000	0.000		0.016	0.018	0.020
Haematoloechus sp. BOLD:ACK9781	0.134	0.134	0.134	0.134		0.019	0.020
Haematoloechus sp. BOLD:ACK9782	0.207	0.207	0.207	0.207	0.216		0.019
Plagiorchis sp. (out) FJ477214	0.240	0.240	0.240	0.240	0.258	0.218	

TABLE A4 Average cox1 divergence within and between groups of *Plagiorchis* sp. The number of base differences per site from averaging over all sequence pairs between groups are shown. Standard error estimate(s) are shown above the diagonal. The average within group divergence is given on the diagonal. The range of pairwise distances within each group are given as percentages in the first column after group names. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The analysis involved 55 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 435 positions in the final dataset.

	P. sp. LIN1	P. sp. LIN2	P. sp. LIN3	P. sp. LIN4	P. sp. LIN5	P. sp. LIN6	P. sp. LIN7	P. sp. LIN8	P. sp. LIN9
Plagiorchis sp. LIN1 (0.0–2.3%)	0.010	0.017	0.017	0.015	0.016	0.017	0.017	0.017	0.016
Plagiorchis sp. LIN2	0.165	-	0.017	0.017	0.016	0.017	0.016	0.018	0.017
Plagiorchis sp. LIN3 (0.2–0.7%)	0.148	0.178	0.005	0.016	0.017	0.017	0.017	0.017	0.018
Plagiorchis sp. LIN4 (0.0–0.7%)	0.123	0.145	0.140	0.003	0.015	0.016	0.016	0.016	0.016
Plagiorchis sp. LIN5 (0.2–0.5%)	0.148	0.152	0.173	0.121	0.003	0.016	0.015	0.017	0.017
Plagiorchis sp. LIN6	0.169	0.156	0.162	0.143	0.149	-	0.016	0.016	0.016
Plagiorchis sp. LIN7 (0.0–0.7%)	0.157	0.158	0.162	0.149	0.125	0.143	0.004	0.017	0.017
Plagiorchis sp. LIN8 (0.2–1.8%)	0.166	0.188	0.180	0.140	0.159	0.151	0.154	0.013	0.012
Plagiorchis sp. LIN9 (0.0–1.1%)	0.151	0.167	0.171	0.142	0.150	0.155	0.155	0.089	0.005

TABLE A5 Pairwise distance between individual *nad***1 sequences in the genus** *Drepanocephalus*. The number of base differences per site from between sequences are shown. Standard error estimate(s) are shown above the diagonal. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The analysis involved 6 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 388 positions in the final dataset.

	F. hepatica	MGC2147	MGC2353	D. auritus	D. auritus	Drep. sp.
Fasciola hepatica (out)		0.021	0.021	0.021	0.022	0.021
MGC2147: MH368951	0.227		0.000	0.000	0.010	0.018
MGC2353: MH368952	0.227	0.000		0.000	0.010	0.018
Drepanocephalus auritus KP053262	0.227	0.000	0.000		0.010	0.018
Drepanocephalus auritus KP053263	0.235	0.044	0.044	0.044		0.018
Drepanocephalus sp. KP053264	0.245	0.144	0.144	0.144	0.155	

TABLE A6 Average *nad1* divergence within and between genera of *Neopetasiger*. The number of base differences per site from averaging over all sequence pairs between groups are shown. Standard error estimate(s) are shown above the diagonal. On the diagonal are the average within group divergence estimates. The range of pairwise distances within groups is given in parentheses next to the group names. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The analysis involved 20 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 308 positions in the final dataset.

	N. islandic.	N. necome.	Neop.sp. 1	Neop.sp. 2	Neop.sp. 3	Neop.sp. 4
Neopetasiger islandicus	-	0.025	0.020	0.019	0.021	0.022
Neopetasiger necomense	0.286	-	0.026	0.026	0.025	0.024
Neopetasiger sp. 1	0.172	0.325	0.000	0.020	0.023	0.025
Neopetasiger sp. 2	0.143	0.318	0.149	0.000	0.022	0.024
Neopetasiger sp. 3 (0.3–1.3%)	0.162	0.298	0.231	0.193	0.900	0.022
Neopetasiger sp. 4 (0.0–0.7%)	0.211	0.276	0.282	0.240	0.214	0.200

VILEY_Ecology and Evolution

TABLE A7 Average *nad1* divergence within and between genera of *Echinoparyphium/Hypoderaeum*. The number of base differences per site from averaging over all sequence pairs between groups are shown. Standard error estimate(s) are shown above the diagonal. Intraspecific divergence values are given on the diagonal. The range of p distances is given for each group in parentheses as percentages after species names. Numbers highlighted in red are above the 5% cut-off, while numbers in green represent average interspecific divergence below 5%. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The analysis involved 261 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 299 positions in the final dataset.

	E. aconia.	Ec. ellisi	Ec. poulini	Ec. recurv.	Ec. sp. A	Ec. sp. A2	Ec. sp. B	Ec. sp. C	Ec. sp. D
Echinoparyphium aconiatum	0.000	0.023	0.024	0.025	0.023	0.022	0.024	0.023	0.023
Ec. ellisi	0.204	0.000	0.022	0.022	0.021	0.021	0.025	0.024	0.024
Ec. poulini	0.207	0.171	0.000	0.023	0.022	0.023	0.027	0.025	0.024
Ec. recurvatum (0.7–1.7%)	0.239	0.196	0.202	0.011	0.024	0.023	0.026	0.025	0.025
Echinoparyphium sp. A (0.0–5.0%)	0.193	0.176	0.170	0.221	0.019	0.010	0.025	0.024	0.023
Echinoparyphium sp. A2	0.181	0.167	0.181	0.204	0.044	-	0.025	0.023	0.023
Echinoparyhium sp. B (0.0–1.3%)	0.215	0.241	0.268	0.271	0.233	0.228	0.004	0.020	0.023
Echinoparyphium sp. C (3.7%)	0.194	0.221	0.227	0.242	0.220	0.204	0.161	0.037	0.021
Echinoparyphium sp. D	0.217	0.221	0.227	0.231	0.214	0.204	0.218	0.187	-
Echinoparyphium sp. E (0.0–1.3%)	0.179	0.247	0.232	0.258	0.224	0.210	0.193	0.171	0.164
Echinoparyphium sp. LIN1 (2.0–3.0%)	0.202	0.144	0.173	0.200	0.178	0.172	0.250	0.241	0.224
Echinoparyphium sp. LIN1A (0.0–1.0%)	0.233	0.156	0.188	0.216	0.169	0.183	0.251	0.255	0.230
Echinoparyphium sp. LIN1B	0.214	0.171	0.171	0.201	0.184	0.181	0.255	0.239	0.227
Echinoparyphium sp. LIN2 (0.0– <mark>5.7</mark> %)	0.184	0.145	0.143	0.174	0.164	0.171	0.262	0.222	0.210
Echinoparyphium sp. LIN3 (2.7%)	0.199	0.184	0.187	0.212	0.146	0.151	0.255	0.236	0.234
Echinoparyphium sp. LIN4 (3.7%)	0.196	0.174	0.157	0.181	0.152	0.145	0.242	0.217	0.212
Hypoderaeum conoideum	0.204	0.227	0.211	0.227	0.206	0.214	0.251	0.232	0.244
Hypoderaeum sp. LIN1 (0.0–1.7%)	0.196	0.218	0.219	0.226	0.199	0.205	0.252	0.239	0.239
Hypoderaeum sp. LIN2 (0.3–0.7%)	0.221	0.227	0.227	0.222	0.198	0.204	0.229	0.237	0.241

3210

3211

Ec. sp. E	Ec. sp. L1	Ec. sp. L1A	Ec. sp. L1B	Ec. sp. L2	Ec. sp. L3	Ec. sp. L4	H. conoid.	H. sp. LIN1	H. sp. LIN2
0.022	0.023	0.025	0.024	0.022	0.023	0.023	0.023	0.023	0.024
0.025	0.019	0.021	0.021	0.020	0.022	0.022	0.024	0.023	0.024
0.025	0.022	0.022	0.021	0.020	0.023	0.022	0.024	0.024	0.025
0.025	0.022	0.023	0.022	0.021	0.023	0.022	0.024	0.023	0.024
0.024	0.021	0.021	0.021	0.020	0.019	0.019	0.022	0.022	0.022
0.024	0.021	0.022	0.022	0.021	0.020	0.019	0.023	0.023	0.023
0.022	0.025	0.025	0.025	0.026	0.026	0.025	0.025	0.025	0.024
0.022	0.024	0.026	0.024	0.024	0.024	0.023	0.024	0.024	0.024
0.021	0.023	0.023	0.023	0.023	0.023	0.023	0.024	0.024	0.025
0.008	0.023	0.024	0.025	0.023	0.024	0.023	0.024	0.025	0.025
0.223	0.025	0.014	0.017	0.019	0.021	0.021	0.023	0.022	0.023
0.227	0.086	0.002	0.018	0.020	0.021	0.021	0.024	0.024	0.024
0.235	0.111	0.120	-	0.020	0.022	0.020	0.022	0.022	0.022
0.216	0.154	0.157	0.161	0.012	0.022	0.020	0.022	0.022	0.023
0.222	0.174	0.188	0.194	0.190	0.027	0.017	0.023	0.023	0.023
0.209	0.173	0.176	0.174	0.158	0.105	0.037	0.024	0.024	0.024
0.227	0.215	0.230	0.201	0.195	0.226	0.217	-	0.014	0.015
0.236	0.204	0.214	0.189	0.191	0.223	0.221	0.069	0.008	0.011
0.247	0.217	0.223	0.196	0.208	0.229	0.224	0.077	0.048	0.004

	e IIIIal ualas	בוי.													
	D. auritus	D. mexican.	D. spathans	E. trivolvis	E. gen. sp.	E. revol.B	Ec.gen. sp.2	Ec.sp.A2	Ec.sp.A	Ec.sp.C	Ec.sp.E	Ec.sp.L1A	Ec.sp.L2	Ec.sp.L3	H. conoid.
Drepanocephalus auritus (0.0–2.9%)	0.006	0.016	0.009	0.020	0.021	0.021	0.022	0.021	0.019	0.021	0.021	0.020	0.018	0.021	0.021
Drepanocephalus mexicanus (2.3%)	0.129	0.023	0.016	0.020	0.020	0.020	0.022	0.020	0.019	0.020	0.020	0.020	0.018	0.019	0.020
Drepanocephalus spathans (0.0%)	0.036	0.132	0.000	0.020	0.020	0.021	0.022	0.021	0.020	0.020	0.020	0.021	0.019	0.021	0.021
Echinostoma trivolvis	0.261	0.270	0.256		0.014	0.017	0.022	0.019	0.019	0.019	0.018	0.018	0.017	0.018	0.018
Echinostomatidae gen. sp.	0.293	0.273	0.279	0.097		0.016	0.022	0.019	0.018	0.018	0.017	0.018	0.017	0.018	0.018
Echinostoma revolutum Lineage B (0.0–1.8%)	0.265	0.273	0.261	0.150	0.140	0.010	0.022	0.019	0.018	0.019	0.018	0.018	0.015	0.018	0.018
Echinostomatidae gen. sp. 2 (0.0–0.5%)	0.309	0.294	0.305	0.275	0.272	0.265	0.003	0.021	0.021	0.020	0.021	0.022	0.020	0.021	0.022
Echinoparyphium sp. A2 (0.0–1.6%)	0.253	0.247	0.242	0.199	0.206	0.203	0.261	0.006	0.019	0.017	0.018	0.018	0.017	0.019	0.019
Ecchinoparyphium sp. A (0.0–3.7%)	0.240	0.245	0.249	0.188	0.191	0.187	0.260	0.206	0.018	0.019	0.019	0.016	0.014	0.016	0.019
Echinoparyphium sp. C (0.0–1.3%)	0.251	0.241	0.250	0.209	0.184	0.194	0.258	0.167	0.207	0.007	0.018	0.019	0.017	0.019	0.018
Echinoparyphium sp. E (0.8%)	0.253	0.255	0.256	0.176	0.158	0.187	0.243	0.185	0.190	0.155	0.008	0.018	0.017	0.018	0.019
Echinoparyphium sp. LIN1 A (0.0–1.6%)	0.247	0.247	0.251	0.162	0.170	0.179	0.269	0.186	0.142	0.204	0.182	0.003	0.014	0.015	0.019
Echinoparyphium sp. LIN2 (0.3– <mark>22.7</mark> %)	0.267	0.260	0.272	0.197	0.197	0.184	0.282	0.227	0.164	0.206	0.211	0.141	0.114	0.014	0.017
Echinoparyphium sp. LIN3	0.243	0.240	0.240	0.170	0.175	0.181	0.257	0.187	0.132	0.195	0.172	0.127	0.145		0.019
Hypoderaeum conoideum	0.261	0.272	0.261	0.188	0.196	0.206	0.269	0.201	0.205	0.187	0.181	0.191	0.209	0.185	

Access

snown. Standard error e percentages in the first parameter = 1). The ana There were a total of 38	estimate(s) e column aft lysis involv 6 positions	are snown ar er group nam ed 72 nucleo in the final o	oove the ali nes. Numbe stide seque dataset.	agonal. The ers in red li∉ nces. Codo⊍	average wi e outside th n positions	tnin group e e delineatic included w	alvergence m cut-off.] ere 1st+2n	is given on Fhe rate var d+3rd+Non	the diagon iation amor coding. All	al. The rang ig sites wa positions c	ge ot palrw s modeled v ontaining g	ise distance with a gamr aps and mis	es witnin ea na distribut ssing data v	cn group ar cion (shape vere elimina	e given as ted.
	E. bolsch.	E. caproni	E. desert.	E. friedi/IG	E. miyag.	E. nasinc.	E. novaze.	E. paraen.	E. paraul.	E. rev. A	E. rev. B	E. robust.	Echino. sp.	E. triv. A	E. triv. B
Echinostoma bolschwense (0.3%)	0.003	0.019	0.018	0.019	0.018	0.018	0.018	0.019	0.018	0.017	0.017	0.017	0.021	0.017	0.017
Echinostoma caproni (2.8%)	0.181	0.028	0.017	0.019	0.016	0.018	0.016	0.017	0.016	0.017	0.017	0.016	0.021	0.016	0.017
Echinostoma deserticum	0.152	0.162	1	0.020	0.017	0.018	0.017	0.019	0.017	0.017	0.017	0.017	0.021	0.017	0.018
Echinostoma friedi/IG (0.3–0.5%)	0.191	0.201	0.217	0.003	0.019	0.020	0.020	0.020	0.020	0.020	0.020	0.019	0.021	0.020	0.020
Echinostoma miyagawai (0.8– <mark>5.2</mark> %)	0.164	0.136	0.149	0.194	0.031	0.017	0.014	0.017	0.015	0.014	0.014	0.012	0.021	0.016	0.016
Echinostoma nasincovae (0.3%)	0.161	0.154	0.166	0.201	0.148	0.003	0.017	0.016	0.018	0.016	0.016	0.016	0.021	0.015	0.014
Echinostoma novazea- landense (0.0–0.3%)	0.143	0.120	0.139	0.205	0.092	0.120	0.002	0.017	0.015	0.014	0.015	0.014	0.022	0.016	0.016
Echinostoma paraensei (0.3%)	0.174	0.141	0.180	0.195	0.151	0.114	0.135	0.003	0.017	0.017	0.018	0.016	0.021	0.017	0.016
Echinostoma paraulum (0.5%)	0.159	0.141	0.145	0.196	0.106	0.150	0.111	0.141	0.005	0.015	0.016	0.014	0.020	0.016	0.017
Echinostoma revolutum Lineage A (0.0– <mark>5.7</mark> %)	0.137	0.139	0.133	0.197	0.107	0.123	0.086	0.148	0.125	0.010	0.010	0.014	0.021	0.015	0.016
Echinostoma revolutum Lineage B (0.0–1.6%)	0.147	0.144	0.144	0.196	0.102	0.126	0.098	0.154	0.125	0.052	0.007	0.014	0.022	0.015	0.015
Echinostoma robustum (<mark>5.4</mark> %)	0.154	0.145	0.155	0.200	0.079	0.131	0.098	0.139	0.096	0.106	0.109	0.054	0.021	0.015	0.015
Echinostoma sp.	0.237	0.245	0.246	0.262	0.251	0.255	0.261	0.250	0.233	0.250	0.256	0.255		0.021	0.021
Echinostoma trivolvis Lineage A (0.0–1.3%)	0.148	0.140	0.152	0.190	0.134	0.097	0.123	0.120	0.136	0.115	0.120	0.126	0.237	0.006	0.012
Echinostoma trivolvis Lineage B (0.3–2.8%)	0.140	0.164	0.180	0.207	0.143	0.098	0.125	0.129	0.148	0.127	0.127	0.125	0.250	0.080	0.018

TABLE A9 Average nad1 divergence within and between groups of Echinostoma spp. The number of base differences per site from averaging over all sequence pairs between groups are

3213

WILEY

3214

TABLE A10 Average cox1 divergence within and between genera of Diplostomidae-I. The number of base differences per site from averaging over all sequence pairs between groups are shown below the diagonal. Standard error estimate(s) are shown above the diagonal. On the diagonal are the average within group divergence values. Numbers within parentheses after species names represent the range of percent divergence within groups. Species with three asterisks represent novel species by molecular phylogeny. The analysis involved 196 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 334 positions in the final dataset.

	A. ostrow.	Alar. sp. 1	Alar. sp. 2	D. ardeae	D. b. LIN1	D. b LIN2	D. huron.	D. indist.	D. mergi	D. parvi.	D. pseudo.	Dipl. sp. 1	Dipl. sp. 2	Dipl. sp. 4	Dipl. sp. 6	Dipl. sp. 7	Dipl. sp. 8	Dipl. sp. 9
Austrodiplostomum ostrowskiae (0.3–0.9%)	0.006	0.017	0.016	0.018	0.020	0.020	0.019	0.020	0.020	0.019	0.018	0.020	0.020	0.020	0.019	0.019	0.020	0.021
Alaria sp. 1	0.100		0.017	0.018	0.020	0.019	0.019	0.020	0.021	0.020	0.019	0.020	0.020	0.020	0.020	0.021	0.020	0.019
Alaria sp. 2 (0.0%)	0.098	0.099	0.000	0.021	0.021	0.021	0.020	0.021	0.020	0.020	0.020	0.020	0.019	0.021	0.021	0.021	0.021	0.021
Diplostomum ardeae	0.137	0.144	0.162	-	0.019	0.019	0.018	0.017	0.016	0.017	0.017	0.018	0.018	0.017	0.017	0.017	0.016	0.018
Diplostomum baeri LIN1 (0.9%)	0.146	0.169	0.184	0.136	0.009	0.018	0.018	0.019	0.019	0.018	0.017	0.019	0.017	0.018	0.016	0.015	0.019	0.019
Diplostomum baeri LIN2 (0.0-0.9%)	0.152	0.150	0.170	0.137	0.125	0.004	0.017	0.019	0.018	0.018	0.017	0.018	0.019	0.016	0.017	0.017	0.018	0.019
Diplostomum huronense (0.3–0.6%)	0.147	0.145	0.157	0.128	0.117	0.102	0.004	0.016	0.016	0.014	0.017	0.017	0.017	0.017	0.015	0.017	0.019	0.018
Diplostomum indistinctum (0.3–0.9%)	0.171	0.167	0.176	0.132	0.147	0.148	0.096	0.005	0.017	0.016	0.016	0.016	0.017	0.017	0.018	0.019	0.019	0.018
Diplostomum mergi (0.0–2.4%)	0.158	0.170	0.157	0.113	0.149	0.134	0.101	0.121	0.016	0.013	0.016	0.016	0.017	0.016	0.018	0.018	0.018	0.018
Diplostomum parviventosum (0.6%)	0.151	0.165	0.164	0.107	0.134	0.133	0.086	0.114	0.069	0.006	0.017	0.017	0.015	0.016	0.017	0.018	0.018	0.018
Diplostomum pseudospathaceum (0.0–3.3%)	0.138	0.157	0.163	0.128	0.126	0.119	0.109	0.114	0.117	0.124	0.018	0.015	0.017	0.015	0.018	0.017	0.017	0.017
Diplostomum sp. 1 (0.0-1.5%)	0.160	0.150	0.151	0.139	0.146	0.138	0.102	0.096	0.112	0.116	0.095	0.007	0.017	0.018	0.018	0.018	0.018	0.019
Diplostomum sp. 2	0.146	0.156	0.150	0.123	0.114	0.133	0.109	0.125	0.114	0.092	0.119	0.110	-	0.018	0.016	0.016	0.018	0.018
Diplostomum sp. 4 (0.0-1.5%)	0.156	0.153	0.166	0.120	0.126	0.098	0.097	0.119	0.106	0.107	0.093	0.120	0.122	0.004	0.018	0.018	0.017	0.016
Diplostomum sp. 6	0.137	0.156	0.177	0.111	0.102	0.104	0.094	0.131	0.138	0.119	0.131	0.133	0.102	0.131	-	0.015	0.017	0.020
Diplostomum sp. 7	0.135	0.162	0.174	0.117	0.084	0.110	0.115	0.158	0.137	0.140	0.120	0.139	0.099	0.129	0.078	-	0.018	0.019
Diplostomum sp. 8	0.161	0.156	0.171	0.099	0.141	0.119	0.124	0.137	0.123	0.125	0.112	0.121	0.108	0.114	0.111	0.126	-	0.017
Diplostomum sp. 9	0.170	0.147	0.174	0.135	0.138	0.149	0.128	0.138	0.130	0.124	0.124	0.136	0.123	0.109	0.150	0.138	0.114	-
Diplostomum sp. A***	0.149	0.144	0.165	0.123	0.141	0.137	0.126	0.132	0.118	0.114	0.127	0.109	0.117	0.123	0.141	0.138	0.132	0.132
Diplostomum sp. B***	0.153	0.168	0.159	0.138	0.120	0.135	0.112	0.143	0.125	0.111	0.122	0.125	0.090	0.135	0.129	0.111	0.120	0.135
Diplostomum sp. C ***(0.0-2.1%)	0.157	0.149	0.179	0.114	0.141	0.103	0.111	0.125	0.120	0.113	0.107	0.112	0.117	0.111	0.125	0.132	0.092	0.101
Diplostomum sp. clade Q	0.163	0.180	0.189	0.123	0.130	0.128	0.097	0.129	0.111	0.107	0.123	0.130	0.114	0.117	0.138	0.144	0.129	0.129
Diplostomum sp. LIN6 (0.3-1.8%)	0.171	0.171	0.180	0.150	0.124	0.136	0.106	0.139	0.123	0.109	0.129	0.121	0.111	0.120	0.120	0.128	0.085	0.108
Diplostomum spathaceum (0.3–2.1%)	0.155	0.171	0.189	0.115	0.128	0.139	0.089	0.092	0.112	0.105	0.088	0.095	0.115	0.091	0.122	0.127	0.117	0.111
Tylodelphys aztecae (0.6–1.5%)	0.159	0.138	0.163	0.129	0.157	0.137	0.145	0.159	0.160	0.156	0.131	0.141	0.147	0.132	0.152	0.140	0.132	0.152
Tylodelphys clavata (0.6–1.2%)	0.156	0.146	0.157	0.131	0.161	0.167	0.145	0.173	0.145	0.163	0.158	0.155	0.149	0.160	0.160	0.144	0.145	0.178
Tylodelphys excavata	0.123	0.138	0.135	0.120	0.156	0.132	0.109	0.155	0.136	0.137	0.123	0.114	0.144	0.135	0.141	0.144	0.129	0.159
Tylodelphys immer (0.3–0.6%)	0.132	0.121	0.151	0.127	0.168	0.143	0.113	0.133	0.138	0.133	0.153	0.143	0.144	0.126	0.151	0.157	0.147	0.151
Tylodelphys jenynsiae (0.0–0.9%)	0.112	0.137	0.135	0.135	0.168	0.158	0.142	0.159	0.140	0.138	0.149	0.165	0.158	0.143	0.158	0.167	0.146	0.160
Tylodelphys mashonensis (0.0–0.3%)	0.146	0.143	0.138	0.121	0.149	0.152	0.141	0.157	0.149	0.144	0.156	0.148	0.152	0.136	0.149	0.149	0.135	0.146
Tylodelphys scheuringi (0.0–1.2%)	0.129	0.135	0.134	0.120	0.158	0.159	0.145	0.158	0.132	0.141	0.136	0.148	0.146	0.138	0.156	0.165	0.131	0.144
Tylodelphys sp. 2 LIN1	0.144	0.147	0.156	0.147	0.183	0.165	0.133	0.168	0.161	0.144	0.152	0.170	0.174	0.143	0.165	0.183	0.153	0.183
Tylodelphys sp. 2 LIN2 (0.9%)	0.132	0.126	0.145	0.112	0.156	0.129	0.128	0.153	0.124	0.133	0.127	0.140	0.153	0.124	0.133	0.147	0.135	0.175
Tylodelphys sp. 3 (0.3-0.9%)	0.132	0.123	0.134	0.108	0.150	0.147	0.123	0.139	0.134	0.124	0.132	0.135	0.125	0.115	0.132	0.154	0.119	0.131
Tylodelphys sp. 4 (0.0–0.3%)	0.136	0.146	0.143	0.119	0.153	0.144	0.121	0.148	0.139	0.124	0.140	0.160	0.142	0.127	0.134	0.143	0.128	0.159

-WILEY

N N N N N N N N N N N N N N N N N N N N N N N N N N N N N <																						
No. No. No. No. No.	Dipl. sp. A	Dipl. sp. B	Dipl. sp. C	Dipl. cladeQ	D. sp.LIN6	D. spath.	T. aztecae	T. clavata	T. excav.	T. immer	T. jenyns.	T. masho.	T. scheur.	T. sp. 2LIN1	T. sp. 2LIN2	T. sp. 3	T. sp. 4	T. sp. 5	T. sp. 6	T. sp. A	T. sp. IBC	T. sp. IND
cond	0.020	0.020	0.020	0.020	0.020	0.019	0.020	0.020	0.018	0.018	0.017	0.020	0.018	0.020	0.018	0.019	0.019	0.019	0.017	0.018	0.016	0.017
NAME NAME NAME NAME N	0.019	0.021	0.019	0.021	0.020	0.021	0.018	0.020	0.019	0.017	0.019	0.020	0.019	0.020	0.018	0.018	0.019	0.020	0.019	0.017	0.018	0.018
and and <td>0.021</td> <td>0.020</td> <td>0.022</td> <td>0.021</td> <td>0.021</td> <td>0.021</td> <td>0.020</td> <td>0.020</td> <td>0.019</td> <td>0.019</td> <td>0.018</td> <td>0.019</td> <td>0.019</td> <td>0.020</td> <td>0.019</td> <td>0.019</td> <td>0.019</td> <td>0.020</td> <td>0.018</td> <td>0.019</td> <td>0.017</td> <td>0.019</td>	0.021	0.020	0.022	0.021	0.021	0.021	0.020	0.020	0.019	0.019	0.018	0.019	0.019	0.020	0.019	0.019	0.019	0.020	0.018	0.019	0.017	0.019
0 0	0.017	0.018	0.017	0.018	0.019	0.016	0.018	0.018	0.017	0.017	0.019	0.018	0.018	0.020	0.017	0.016	0.018	0.018	0.018	0.016	0.015	0.017
a.a. a.a. <th< td=""><td>0.019</td><td>0.018</td><td>0.019</td><td>0.018</td><td>0.017</td><td>0.018</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.019</td><td>0.022</td><td>0.020</td><td>0.019</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.019</td><td>0.020</td></th<>	0.019	0.018	0.019	0.018	0.017	0.018	0.020	0.020	0.020	0.020	0.020	0.020	0.019	0.022	0.020	0.019	0.020	0.020	0.020	0.020	0.019	0.020
0819 0819 0819 0819 0829 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
bar bar <td>0.018</td> <td>0.019</td> <td>0.016</td> <td>0.018</td> <td>0.019</td> <td>0.018</td> <td>0.019</td> <td>0.020</td> <td>0.018</td> <td>0.020</td> <td>0.020</td> <td>0.019</td> <td>0.020</td> <td>0.020</td> <td>0.018</td> <td>0.020</td> <td>0.019</td> <td>0.019</td> <td>0.019</td> <td>0.019</td> <td>0.020</td> <td>0.020</td>	0.018	0.019	0.016	0.018	0.019	0.018	0.019	0.020	0.018	0.020	0.020	0.019	0.020	0.020	0.018	0.020	0.019	0.019	0.019	0.019	0.020	0.020
0.07 0.07 0.09 0.07 0.09 <th< td=""><td>0.018</td><td>0.017</td><td>0.016</td><td>0.016</td><td>0.016</td><td>0.015</td><td>0.019</td><td>0.019</td><td>0.017</td><td>0.017</td><td>0.019</td><td>0.019</td><td>0.019</td><td>0.018</td><td>0.018</td><td>0.017</td><td>0.017</td><td>0.017</td><td>0.019</td><td>0.018</td><td>0.018</td><td>0.018</td></th<>	0.018	0.017	0.016	0.016	0.016	0.015	0.019	0.019	0.017	0.017	0.019	0.019	0.019	0.018	0.018	0.017	0.017	0.017	0.019	0.018	0.018	0.018
1 1	0.018	0.019	0.017	0.018	0.019	0.014	0.019	0.020	0.019	0.018	0.019	0.020	0.019	0.021	0.019	0.019	0.019	0.019	0.020	0.018	0.019	0.019
0156 0.027 0.026 0.027 0.026 0.027 0.026 0.027 0.028 0.029 0.029 0.029 0.029 0.029 0.029																						
bbb bbb< bb	0.016	0.018	0.017	0.016	0.017	0.016	0.019	0.018	0.018	0.018	0.017	0.019	0.017	0.020	0.017	0.018	0.018	0.018	0.017	0.018	0.017	0.018
0017 018 018 018 019 <td>0.016</td> <td>0.017</td> <td>0.017</td> <td>0.016</td> <td>0.016</td> <td>0.015</td> <td>0.019</td> <td>0.019</td> <td>0.018</td> <td>0.017</td> <td>0.017</td> <td>0.019</td> <td>0.018</td> <td>0.018</td> <td>0.018</td> <td>0.017</td> <td>0.017</td> <td>0.017</td> <td>0.018</td> <td>0.017</td> <td>0.017</td> <td>0.018</td>	0.016	0.017	0.017	0.016	0.016	0.015	0.019	0.019	0.018	0.017	0.017	0.019	0.018	0.018	0.018	0.017	0.017	0.017	0.018	0.017	0.017	0.018
0.11 0.12 0.11 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
0217 0418 0417 0418 0417 0419 0417 0419 <th< td=""><td>0.017</td><td>0.018</td><td>0.016</td><td>0.018</td><td>0.018</td><td>0.013</td><td>0.018</td><td>0.020</td><td>0.017</td><td>0.019</td><td>0.019</td><td>0.019</td><td>0.018</td><td>0.020</td><td>0.018</td><td>0.018</td><td>0.018</td><td>0.019</td><td>0.016</td><td>0.017</td><td>0.018</td><td>0.020</td></th<>	0.017	0.018	0.016	0.018	0.018	0.013	0.018	0.020	0.017	0.019	0.019	0.019	0.018	0.020	0.018	0.018	0.018	0.019	0.016	0.017	0.018	0.020
0.017 0.018 0.018 0.018 0.018 0.019 0.010 0.010 0.010 0.011 0.019 0.019 0.010 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
011 014 017 017 017 019 019 019 019 019 019 019 019 0111 0111 0111 0111	0.017	0.018	0.017	0.018	0.018	0.015	0.018	0.019	0.017	0.019	0.020	0.019	0.019	0.021	0.018	0.019	0.019	0.018	0.019	0.019	0.018	0.020
0.013 0.013 <th< td=""><td>0.017</td><td>0.01/</td><td>0.019</td><td>0.017</td><td>0.017</td><td>0.017</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.010</td><td>0.021</td><td>0.010</td><td>0.010</td><td>0.020</td><td>0.010</td><td>0.010</td><td>0.019</td><td>0.019</td><td>0.020</td></th<>	0.017	0.01/	0.019	0.017	0.017	0.017	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.021	0.010	0.010	0.020	0.010	0.010	0.019	0.019	0.020
Late Late <thlat< th=""> Late Late L</thlat<>	0.017	0.018	0.018	0.017	0.017	0.017	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.021	0.017	0.018	0.020	0.019	0.018	0.018	0.018	0.020
0118 0118 019 0.017 0.017 0.020 0.019 0.020 0.020 0.020 0.018 0.018 0.018 0.019 0.020 0.0	0.017	0.010	0.017	0.010	0.017	0.015	0.010	0.017	0.010	0.010	0.017	0.010	0.010	0.017	0.017	0.017	0.010	0.010	0.017	0.017	0.017	0.020
0.057 0.058 0.059 0.017 0.019 <th< td=""><td>0.019</td><td>0.018</td><td>0.018</td><td>0.019</td><td>0.017</td><td>0.017</td><td>0.020</td><td>0.020</td><td>0.019</td><td>0.019</td><td>0.019</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.018</td><td>0.018</td><td>0.019</td><td>0.020</td><td>0.019</td><td>0.019</td><td>0.018</td><td>0.019</td></th<>	0.019	0.018	0.018	0.019	0.017	0.017	0.020	0.020	0.019	0.019	0.019	0.020	0.020	0.020	0.018	0.018	0.019	0.020	0.019	0.019	0.018	0.019
0.018 0.018 0.018 0.018 0.017 0.019 <th< td=""><td>0.019</td><td>0.017</td><td>0.018</td><td>0.019</td><td>0.017</td><td>0.017</td><td>0.019</td><td>0.019</td><td>0.019</td><td>0.020</td><td>0.021</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.019</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.019</td><td>0.019</td><td>0.019</td><td>0.020</td></th<>	0.019	0.017	0.018	0.019	0.017	0.017	0.019	0.019	0.019	0.020	0.021	0.020	0.020	0.020	0.019	0.020	0.020	0.020	0.019	0.019	0.019	0.020
0.019 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.020 0.019 0.019 0.020 0.019 0.019 0.020 0.019 0.019 0.020 0.019 0.020 0.019 <th< td=""><td>0.018</td><td>0.018</td><td>0.016</td><td>0.018</td><td>0.015</td><td>0.017</td><td>0.018</td><td>0.019</td><td>0.018</td><td>0.019</td><td>0.019</td><td>0.019</td><td>0.018</td><td>0.020</td><td>0.018</td><td>0.018</td><td>0.018</td><td>0.020</td><td>0.018</td><td>0.019</td><td>0.018</td><td>0.020</td></th<>	0.018	0.018	0.016	0.018	0.015	0.017	0.018	0.019	0.018	0.019	0.019	0.019	0.018	0.020	0.018	0.018	0.018	0.020	0.018	0.019	0.018	0.020
\cdot 0.017 0.017 0.017 0.027 0.027 0.017	0.019	0.019	0.016	0.018	0.016	0.017	0.019	0.021	0.020	0.019	0.019	0.020	0.019	0.021	0.020	0.019	0.020	0.020	0.019	0.019	0.019	0.020
0.132 0.017 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 <th< td=""><td>-</td><td>0.018</td><td>0.017</td><td>0.017</td><td>0.019</td><td>0.017</td><td>0.020</td><td>0.019</td><td>0.019</td><td>0.019</td><td>0.020</td><td>0.019</td><td>0.019</td><td>0.021</td><td>0.018</td><td>0.019</td><td>0.020</td><td>0.019</td><td>0.020</td><td>0.017</td><td>0.019</td><td>0.019</td></th<>	-	0.018	0.017	0.017	0.019	0.017	0.020	0.019	0.019	0.019	0.020	0.019	0.019	0.021	0.018	0.019	0.020	0.019	0.020	0.017	0.019	0.019
0.112 0.005 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.019 0.018 0.017 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 <th< td=""><td>0.132</td><td>-</td><td>0.017</td><td>0.018</td><td>0.017</td><td>0.017</td><td>0.020</td><td>0.018</td><td>0.019</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.021</td><td>0.020</td><td>0.020</td><td>0.020</td><td>0.019</td><td>0.019</td><td>0.019</td><td>0.019</td><td>0.020</td></th<>	0.132	-	0.017	0.018	0.017	0.017	0.020	0.018	0.019	0.020	0.020	0.020	0.020	0.021	0.020	0.020	0.020	0.019	0.019	0.019	0.019	0.020
0.132 0.112 - 0.017 0.017 0.019 0.018 0.019 0.019 0.019 0.018 0.018 0.019 0.019 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.019 0.0	0.108	0.112	0.005	0.017	0.017	0.017	0.019	0.019	0.018	0.019	0.019	0.019	0.020	0.021	0.019	0.019	0.020	0.019	0.019	0.019	0.019	0.019
0.148 0.118 0.012 0.013 0.018 0.020 0.019 0.020 0.019 0.020 0.019 <th< td=""><td>0.123</td><td>0.132</td><td>0.112</td><td>-</td><td>0.017</td><td>0.017</td><td>0.019</td><td>0.019</td><td>0.018</td><td>0.018</td><td>0.019</td><td>0.020</td><td>0.019</td><td>0.019</td><td>0.019</td><td>0.018</td><td>0.018</td><td>0.018</td><td>0.019</td><td>0.017</td><td>0.018</td><td>0.019</td></th<>	0.123	0.132	0.112	-	0.017	0.017	0.019	0.019	0.018	0.018	0.019	0.020	0.019	0.019	0.019	0.018	0.018	0.018	0.019	0.017	0.018	0.019
0.110 0.128 0.120 0.128 0.011 0.018 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 <th< td=""><td>0.148</td><td>0.116</td><td>0.107</td><td>0.118</td><td>0.012</td><td>0.018</td><td>0.018</td><td>0.020</td><td>0.019</td><td>0.018</td><td>0.019</td><td>0.020</td><td>0.019</td><td>0.020</td><td>0.020</td><td>0.018</td><td>0.017</td><td>0.019</td><td>0.018</td><td>0.019</td><td>0.019</td><td>0.020</td></th<>	0.148	0.116	0.107	0.118	0.012	0.018	0.018	0.020	0.019	0.018	0.019	0.020	0.019	0.020	0.020	0.018	0.017	0.019	0.018	0.019	0.019	0.020
0.164 0.142 0.158 0.141 0.143 0.010 0.020 0.018 0.017 0.020 0.017 0.020 0.017 0.020 0.017 0.020 0.019 0.017 0.020 0.019 0.017 0.018 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.019 0.018 0.019 0.018 0.019 0.018 0.019 0.019 0.018 0.019 0.019 0.018 0.019 0.019 0.018 0.019 0.019 0.018 0.019 0.019 0.018 0.019 0.016 0.018 0.018 0.018 <th< td=""><td>0.110</td><td>0.128</td><td>0.120</td><td>0.120</td><td>0.128</td><td>0.011</td><td>0.018</td><td>0.019</td><td>0.018</td><td>0.018</td><td>0.019</td><td>0.019</td><td>0.018</td><td>0.021</td><td>0.019</td><td>0.018</td><td>0.018</td><td>0.017</td><td>0.019</td><td>0.018</td><td>0.017</td><td>0.018</td></th<>	0.110	0.128	0.120	0.120	0.128	0.011	0.018	0.019	0.018	0.018	0.019	0.019	0.018	0.021	0.019	0.018	0.018	0.017	0.019	0.018	0.017	0.018
0.149 0.146 0.156 0.156 0.170 0.157 0.154 0.008 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.019 0.019 0.016 0.019 </td <td>0.166</td> <td>0.164</td> <td>0.142</td> <td>0.158</td> <td>0.141</td> <td>0.143</td> <td>0.010</td> <td>0.020</td> <td>0.018</td> <td>0.017</td> <td>0.020</td> <td>0.019</td> <td>0.017</td> <td>0.020</td> <td>0.019</td> <td>0.017</td> <td>0.018</td> <td>0.018</td> <td>0.018</td> <td>0.018</td> <td>0.017</td> <td>0.020</td>	0.166	0.164	0.142	0.158	0.141	0.143	0.010	0.020	0.018	0.017	0.020	0.019	0.017	0.020	0.019	0.017	0.018	0.018	0.018	0.018	0.017	0.020
0.149 0.146 0.155 0.156 0.170 0.157 0.154 0.008 0.017 0.020 0.019 0.018 0.018 0.018 0.019 0.019 0.016 0.019 0.019 0.016 0.019 0.019 0.018 0.019 0.019 0.016 0.019 0.019 0.018 0.019 0.019 0.016 0.019 0.016 0.019 0.018 0.019 0.016 0.019 0.016 0.019 0.016 0.019 0.016 0.019 0.016 0.019 0.016 0.019 0.016 0.019 0.016 0.019 0.016 0.019 0.016 0.019 0.016 0.018 0.016 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																						
0.150 0.141 0.135 0.138 0.139 0.132 0.132 0.132 0.132 0.111 - 0.018 0.017 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.014 0.017 0.018 0.014 0.018 0.018 0.014 0.018 0.018 0.014 0.018 0.018 0.014 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.018 0.018 0.017 0.018 0.017 0.018 0.0	0.149	0.146	0.165	0.156	0.170	0.157	0.154	0.008	0.017	0.020	0.019	0.018	0.018	0.018	0.018	0.019	0.019	0.016	0.019	0.019	0.018	0.018
0.139 0.162 0.143 0.128 0.132 0.136 0.125 0.147 0.126 0.004 0.016 0.016 0.018 0.018 0.014 0.017 0.016 0.018 0.014 0.017 0.016 0.018 0.017 0.018 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.017 0.018 <th< td=""><td>0.150</td><td>0.141</td><td>0.135</td><td>0.138</td><td>0.139</td><td>0.132</td><td>0.132</td><td>0.111</td><td>-</td><td>0.018</td><td>0.018</td><td>0.017</td><td>0.018</td><td>0.018</td><td>0.017</td><td>0.016</td><td>0.018</td><td>0.015</td><td>0.017</td><td>0.018</td><td>0.015</td><td>0.019</td></th<>	0.150	0.141	0.135	0.138	0.139	0.132	0.132	0.111	-	0.018	0.018	0.017	0.018	0.018	0.017	0.016	0.018	0.015	0.017	0.018	0.015	0.019
0.166 0.149 0.141 0.148 0.144 0.146 0.152 0.132 0.106 0.018 0.017 0.018 0.017 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.015 0.018 0.017 <th< td=""><td>0.139</td><td>0.162</td><td>0.143</td><td>0.128</td><td>0.132</td><td>0.136</td><td>0.125</td><td>0.147</td><td>0.126</td><td>0.004</td><td>0.016</td><td>0.017</td><td>0.016</td><td>0.018</td><td>0.018</td><td>0.014</td><td>0.017</td><td>0.016</td><td>0.018</td><td>0.015</td><td>0.014</td><td>0.016</td></th<>	0.139	0.162	0.143	0.128	0.132	0.136	0.125	0.147	0.126	0.004	0.016	0.017	0.016	0.018	0.018	0.014	0.017	0.016	0.018	0.015	0.014	0.016
0.144 0.144 0.152 0.158 0.147 0.126 0.116 0.120 0.132 0.001 0.017 0.018 0.018 0.017 0.018 0.018 0.017 0.018 0.018 0.017 0.018 0.018 <th< td=""><td>0.156</td><td>0.166</td><td>0.149</td><td>0.141</td><td>0.148</td><td>0.144</td><td>0.146</td><td>0.152</td><td>0.132</td><td>0.104</td><td>0.006</td><td>0.018</td><td>0.017</td><td>0.018</td><td>0.018</td><td>0.017</td><td>0.015</td><td>0.018</td><td>0.015</td><td>0.018</td><td>0.016</td><td>0.018</td></th<>	0.156	0.166	0.149	0.141	0.148	0.144	0.146	0.152	0.132	0.104	0.006	0.018	0.017	0.018	0.018	0.017	0.015	0.018	0.015	0.018	0.016	0.018
0.167 0.152 0.146 0.155 0.145 0.146 0.120 0.118 0.116 0.120 0.016 0.018 0.017 0.017 0.017 0.018 0.014 0.015 0.018 0.014 0.017 0.017 0.018 0.014 0.015 0.018 0.014 0.017 0.018 0.018 0.017 0.017 0.018 0.018 0.014 0.019 0.018 0.018 0.019 0.019 0.018 0.018 0.019 0.019 0.018 0.019 0.019 0.018 0.019 0.019 0.018 0.019 0.019 0.018 0.019 0.019 0.018 0.019 0.019 0.018 0.019 <th< td=""><td>0.146</td><td>0.164</td><td>0.144</td><td>0.152</td><td>0.159</td><td>0.158</td><td>0.147</td><td>0.126</td><td>0.116</td><td>0.120</td><td>0.132</td><td>0.001</td><td>0.017</td><td>0.018</td><td>0.015</td><td>0.017</td><td>0.018</td><td>0.018</td><td>0.017</td><td>0.017</td><td>0.017</td><td>0.018</td></th<>	0.146	0.164	0.144	0.152	0.159	0.158	0.147	0.126	0.116	0.120	0.132	0.001	0.017	0.018	0.015	0.017	0.018	0.018	0.017	0.017	0.017	0.018
0.171 0.186 0.163 0.162 0.171 0.162 0.161 0.134 0.114 0.127 0.120 0.124 0.126 - 0.017 0.018 0.018 0.017 0.019 0.018 0.018 0.019 0.018 0.018 0.019 0.018 0.018 0.019 0.018 0.018 0.019 0.018 0.018 0.019 0.018 0.018 0.017 0.019 0.018 0.018 0.017 0.019 0.018 0.018 0.017 0.019 0.018 0.018 0.017 0.019 0.018 0.018 0.017 0.019 0.018 0.018 0.017 0.019 0.018 0.018 0.017 0.019 0.018 0.017 0.019 0.018 0.017 0.019 0.018 0.017 0.019 0.013 0.017 0.019 0.013 0.017 0.019 0.018 0.017 0.019 0.013 0.017 0.019 0.013 0.017 0.019 0.013 0.017 0.019 0.013 0.017 0.019 0.013 0.017 0.013 0.013 0.0	0.146	0.167	0.152	0.146	0.155	0.145	0.118	0.140	0.129	0.118	0.116	0.126	0.005	0.018	0.018	0.014	0.017	0.017	0.018	0.014	0.015	0.018
0.171 0.186 0.163 0.162 0.171 0.162 0.141 0.134 0.114 0.127 0.120 0.124 0.126 - 0.017 0.018 0.018 0.017 0.019 0.018 0.018 0.017 0.019 0.018 0.018 0.017 0.019 0.018 0.018 0.017 0.019 0.018 0.017 0.019 0.018 0.017 0.019 0.018 0.017 0.019 0.018 0.017 0.019 0.018 0.017 0.019 0.0																						
0.136 0.156 0.150 0.144 0.162 0.144 0.127 0.123 0.108 0.124 0.125 0.097 0.130 0.097 0.009 0.016 0.018 0.017 0.015 0.017 0.019 0.141 0.154 0.134 0.137 0.129 0.122 0.139 0.107 0.019 0.111 0.081 0.124 0.112 0.006 0.015 0.016 0.017 0.013 0.017 0.019 0.141 0.154 0.134 0.137 0.129 0.122 0.139 0.111 0.019 0.112 0.006 0.015 0.016 0.017 0.013 0.017 0.019 0.145 0.150 0.157 0.139 0.131 0.132 0.131 0.130 0.121 0.141 0.127 0.099 0.004 0.014 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016	0.171	0.186	0.163	0.162	0.171	0.162	0.161	0.134	0.114	0.127	0.120	0.124	0.126	-	0.017	0.018	0.018	0.017	0.019	0.018	0.018	0.018
0.141 0.154 0.134 0.137 0.129 0.122 0.139 0.107 0.079 0.118 0.111 0.081 0.124 0.112 0.006 0.015 0.016 0.017 0.014 0.013 0.017 0.145 0.150 0.157 0.139 0.131 0.133 0.131 0.108 0.101 0.122 0.141 0.127 0.099 0.004 0.018 0.014 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.014 0.017 0.014 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017	0.136	0.156	0.150	0.144	0.162	0.144	0.147	0.123	0.108	0.124	0.125	0.097	0.130	0.097	0.009	0.016	0.018	0.017	0.017	0.015	0.017	0.019
0.145 0.150 0.157 0.139 0.131 0.138 0.128 0.133 0.131 0.108 0.101 0.130 0.122 0.141 0.127 0.099 0.004 0.018 0.014 0.017 0.016 0.017	0.141	0.154	0.134	0.137	0.129	0.129	0.122	0.139	0.107	0.079	0.118	0.111	0.081	0.124	0.112	0.006	0.015	0.016	0.017	0.014	0.013	0.017
	0.145	0.150	0.157	0.139	0.131	0.138	0.128	0.133	0.131	0.108	0.101	0.130	0.122	0.141	0.127	0.099	0.004	0.018	0.014	0.017	0.016	0.017

TABLE A10 (Continued)

	A. ostrow.	Alar. sp. 1	Alar. sp. 2	D. ardeae	D. b. LIN1	D. b LIN2	D. huron.	D. indist.	D. mergi	D. parvi.	D. pseudo.	Dipl. sp. 1	Dipl. sp. 2	Dipl. sp. 4	Dipl. sp. 6	Dipl. sp. 7	Dipl. sp. 8	Dipl. sp. 9
Tylodelphys sp. 5 (0.3%)	0.127	0.133	0.139	0.127	0.147	0.134	0.107	0.147	0.134	0.130	0.143	0.127	0.139	0.122	0.145	0.142	0.145	0.166
Tylodelphys sp. 6 (0.6%)	0.104	0.130	0.127	0.118	0.149	0.142	0.145	0.161	0.135	0.137	0.112	0.149	0.127	0.140	0.135	0.136	0.129	0.171
Tylodelphys sp. A*** (0.0-0.9%)	0.122	0.105	0.138	0.108	0.146	0.138	0.125	0.131	0.134	0.124	0.128	0.139	0.117	0.118	0.139	0.139	0.133	0.135
Tylodelphy sp. IBC-2016 (0.0-0.6%)	0.106	0.121	0.118	0.094	0.143	0.154	0.125	0.141	0.124	0.114	0.125	0.133	0.118	0.133	0.130	0.141	0.125	0.143
Tylodelphys sp. IND (0.3%)	0.112	0.126	0.138	0.114	0.159	0.164	0.125	0.152	0.126	0.135	0.151	0.157	0.150	0.143	0.147	0.153	0.141	0.156

TABLE A11 Average cox1 divergence within and between genera of Diplostomidae-II. The number of base differences per site from averaging over all sequence pairs between groups are shown. Standard error estimate(s) are shown above the diagonal. On the diagonal are the average within group divergence values. Numbers within parentheses after species names represent the range of percent divergence within groups. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The analysis involved 102 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 307 positions in the final dataset.

										0.	
	Alaria sp.1	Alaria sp.2	B. damni.	Bolb. sp.	B. sp.BOLD	D.gen. sp.O	D.gen. sp.X	H. triloba	N. americ.	scardi- nii	Orni. sp. 1
Alaria sp. 1	-	0.017	0.022	0.022	0.022	0.023	0.022	0.019	0.021	0.022	0.023
Alaria sp. 2 (0.3–1.0%)	0.109	0.007	0.022	0.022	0.023	0.023	0.023	0.019	0.021	0.024	0.023
Bolbophorus damnificus	0.189	0.189	-	0.020	0.019	0.023	0.022	0.021	0.021	0.022	0.023
Bolbophorus sp. (0.0-3.9%)	0.202	0.210	0.156	0.012	0.020	0.022	0.022	0.022	0.022	0.022	0.023
Bolbophorus sp. BOLD	0.176	0.212	0.121	0.153	-	0.023	0.021	0.022	0.022	0.021	0.022
Diplostomidae gen. sp. O*** (0.0–1.0%)	0.213	0.221	0.203	0.193	0.199	0.003	0.018	0.022	0.021	0.018	0.019
Diplostomidae gen. sp. X***	0.202	0.213	0.189	0.202	0.179	0.115	-	0.022	0.022	0.018	0.018
Hysteromorpha triloba (4.2%)	0.151	0.159	0.184	0.211	0.195	0.208	0.213	0.042	0.020	0.020	0.021
Neodiplostomum americanum (0.3–1.3%)	0.162	0.163	0.179	0.194	0.182	0.199	0.196	0.176	0.008	0.021	0.022
Ornithodiplostomum scardinii	0.202	0.227	0.195	0.199	0.189	0.128	0.121	0.199	0.186	-	0.019
Ornithodiplostomum sp. 1 (0.3%)	0.228	0.232	0.202	0.212	0.189	0.138	0.132	0.195	0.222	0.148	0.003
Ornithodiplostomum sp. 2 (0.0–3.9%)	0.207	0.229	0.174	0.191	0.161	0.105	0.082	0.203	0.200	0.113	0.128
Ornithodiplostomum sp. 3 (2.0–4.2%)	0.219	0.218	0.174	0.203	0.190	0.107	0.090	0.205	0.197	0.118	0.135
Ornithodiplostomum sp. 4 (0.3–2.9%)	0.224	0.224	0.185	0.184	0.173	0.117	0.116	0.215	0.198	0.143	0.158
Ornithodiplostomum sp. 8 (0.0–3.9%)	0.212	0.227	0.196	0.196	0.186	0.127	0.129	0.201	0.172	0.128	0.148
Posthodiplostomum brevicaudatum (0.3–2.0%)	0.227	0.237	0.204	0.213	0.203	0.155	0.153	0.224	0.239	0.172	0.158
Posthodiplostomum cetrarchi (0,0%)	0.212	0.227	0.189	0.210	0.182	0.185	0.176	0.217	0.216	0.173	0.145

Dipl. sp. A	Dipl. sp. B	Dipl. sp. C	Dipl. cladeQ	D. sp.LIN6	D. spath.	T. aztecae	T. clavata	T. excav.	T. immer	T. jenyns.	T. masho.	T. scheur.	T. sp. 2LIN1	T. sp. 2LIN2	T. sp. 3	T. sp. 4	T. sp. 5	T. sp. 6	T. sp. A	T. sp. IBC	T. sp. IND
0.133	0.133	0.133	0.136	0.146	0.126	0.121	0.103	0.091	0.101	0.126	0.126	0.124	0.115	0.115	0.103	0.120	0.003	0.018	0.016	0.017	0.017
0.144	0.141	0.147	0.145	0.145	0.151	0.132	0.143	0.124	0.128	0.086	0.122	0.122	0.136	0.114	0.111	0.082	0.117	0.006	0.017	0.016	0.018
0.109	0.149	0.147	0.126	0.146	0.129	0.124	0.143	0.129	0.084	0.111	0.110	0.074	0.125	0.101	0.071	0.108	0.100	0.097	0.003	0.016	0.018
0.135	0.136	0.143	0.126	0.152	0.129	0.116	0.122	0.093	0.075	0.104	0.109	0.086	0.123	0.119	0.072	0.102	0.106	0.100	0.092	0.004	0.017
0.142	0.151	0.141	0.139	0.160	0.138	0.152	0.116	0.126	0.118	0.121	0.129	0.127	0.124	0.127	0.114	0.114	0.112	0.124	0.128	0.114	0.003

Orni. sp. 2	Orni. sp. 3	Orni. sp. 4	Orni. sp. 8	P. brevic.	P. cetrar- chi	P. cuticola	Post. sp. 1	Post. sp. 2	Post. sp. 4	Post. sp. 5	Post. sp. 7	Post. sp. 8
0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.023	0.022	0.021	0.023	0.021	0.023
0.023	0.023	0.023	0.023	0.023	0.023	0.022	0.023	0.022	0.022	0.024	0.023	0.022
0.021	0.020	0.021	0.022	0.022	0.022	0.022	0.024	0.023	0.021	0.024	0.021	0.022
0.021	0.021	0.021	0.022	0.022	0.022	0.022	0.023	0.022	0.020	0.023	0.021	0.023
0.020	0.021	0.021	0.021	0.022	0.022	0.021	0.022	0.021	0.019	0.022	0.022	0.024
0.016	0.016	0.018	0.018	0.021	0.022	0.021	0.021	0.021	0.019	0.020	0.021	0.021
0.014	0.015	0.017	0.018	0.020	0.021	0.021	0.021	0.020	0.018	0.020	0.021	0.022
0.021	0.021	0.022	0.021	0.021	0.021	0.021	0.022	0.022	0.021	0.023	0.021	0.023
0.022	0.021	0.021	0.020	0.023	0.022	0.022	0.023	0.022	0.021	0.023	0.022	0.022
0.017	0.017	0.019	0.019	0.021	0.021	0.021	0.022	0.021	0.020	0.021	0.020	0.023
0.018	0.018	0.020	0.019	0.020	0.020	0.022	0.021	0.021	0.019	0.020	0.021	0.022
0.023	0.012	0.017	0.016	0.018	0.020	0.020	0.021	0.020	0.017	0.019	0.019	0.021
0.064	0.033	0.016	0.017	0.019	0.019	0.020	0.021	0.021	0.018	0.020	0.020	0.020
0.114	0.104	0.020	0.017	0.019	0.021	0.021	0.021	0.020	0.018	0.022	0.019	0.022
0.113	0.117	0.125	0.013	0.021	0.020	0.020	0.020	0.019	0.017	0.020	0.020	0.021
0.137	0.146	0.149	0.176	0.013	0.020	0.023	0.022	0.022	0.020	0.021	0.021	0.021
0.160	0.159	0.174	0.170	0.155	0.000	0.022	0.021	0.020	0.019	0.020	0.020	0.020

-WILEY

TABLE A11 (Continued)

	Alaria sp.1	Alaria sp.2	B. damni.	Bolb. sp.	B. sp.BOLD	D.gen. sp.O	D.gen. sp.X	H. triloba	N. americ.	O. scardi- nii	Orni. sp. 1
Posthodiplostomum cuticola	0.205	0.205	0.195	0.196	0.182	0.185	0.182	0.182	0.213	0.186	0.191
Posthodiplostomum sp. 1	0.215	0.214	0.221	0.202	0.186	0.173	0.166	0.208	0.208	0.195	0.184
Posthodiplostomum sp. 2	0.189	0.185	0.208	0.196	0.176	0.165	0.160	0.192	0.191	0.189	0.174
Posthodiplostomum sp. 4 (1.0–4.6%)	0.202	0.215	0.181	0.174	0.159	0.145	0.140	0.189	0.198	0.171	0.145
Posthodiplostomum sp. 5	0.238	0.255	0.231	0.226	0.199	0.173	0.169	0.226	0.234	0.186	0.145
Posthodiplostomum sp. 7 (0.3–1.0%)	0.204	0.228	0.181	0.197	0.195	0.182	0.164	0.194	0.203	0.175	0.189
Posthodiplostomum sp. 8 (0.3–0.7%)	0.231	0.213	0.192	0.199	0.228	0.189	0.191	0.226	0.208	0.208	0.194

TABLE A12 Average cox1 divergence within and between groups of Strigeidae-I. The number of base differences per site from averaging over all sequence pairs between groups are shown. Standard error estimate(s) are shown above the diagonal. Average intraspecific divergence values are in bold and lie on the diagonal. The range of intraspecific values are given as percentages next to species names. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The analysis involved 152 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 345 positions in the final dataset.

	C. cornut.	C. flabell.	C. marcog.	C. sp. A	C. sp. B	C. sp. C	C. sp. D	C. sp. E
Cotylurus cornutus (0.0–2.9%)	0.011	0.010	0.013	0.018	0.017	0.012	0.014	0.013
C. flabelliformis (0.3%)	0.042	0.003	0.014	0.019	0.017	0.013	0.015	0.013
C. marcogliesei (0.0–1.2%)	0.070	0.073	0.005	0.018	0.016	0.013	0.015	0.013
Cotylurus sp. A (0.0–1.4%)	0.132	0.133	0.134	0.003	0.019	0.019	0.018	0.019
Cotylurus sp. B	0.127	0.123	0.112	0.136	-	0.017	0.018	0.017
Cotylurus sp. C (0.0%)	0.064	0.064	0.071	0.147	0.116	0.000	0.014	0.014
Cotylurus sp. D	0.084	0.084	0.085	0.130	0.136	0.081	-	0.014
Cotylurus sp. E (0.0-0.6%)	0.074	0.069	0.068	0.142	0.118	0.077	0.077	0.002
Cotylurus sp. F (0.0-0.9%)	0.044	0.043	0.057	0.140	0.117	0.074	0.090	0.062
Cotylurus sp. 'lutzi'	0.111	0.100	0.114	0.173	0.151	0.107	0.101	0.104
C. strigeoides (0.0–1.7%)	0.096	0.100	0.085	0.145	0.139	0.097	0.069	0.078
Cardiocephaloides medioconiger (0.0%)	0.167	0.159	0.186	0.174	0.168	0.168	0.154	0.181
Cardiocephaloides sp.	0.173	0.174	0.168	0.171	0.159	0.174	0.174	0.180
Ichthyocotylurus pileatus	0.151	0.154	0.166	0.161	0.164	0.170	0.158	0.142
Ichthyocotylurus sp. 2	0.147	0.148	0.143	0.145	0.136	0.142	0.148	0.117
Ichthyocotylurus sp. 3	0.134	0.142	0.132	0.142	0.145	0.142	0.142	0.140
Tylodelphys sheuringi (out)	0.200	0.194	0.190	0.177	0.194	0.200	0.206	0.195

Orni. sp. 2	Orni. sp. 3	Orni. sp. 4	Orni. sp. 8	P. brevic.	P. cetrar- chi	P. cuticola	Post. sp. 1	Post. sp. 2	Post. sp. 4	Post. sp. 5	Post. sp. 7	Post. sp. 8
0.173	0.178	0.185	0.171	0.227	0.179	-	0.021	0.020	0.019	0.023	0.022	0.022
0.163	0.178	0.174	0.154	0.197	0.169	0.169	-	0.010	0.021	0.021	0.021	0.020
0.156	0.167	0.166	0.144	0.192	0.160	0.153	0.036	-	0.020	0.023	0.022	0.022
0.129	0.143	0.149	0.142	0.176	0.148	0.161	0.173	0.167	0.031	0.020	0.020	0.020
0.164	0.180	0.197	0.176	0.187	0.160	0.221	0.169	0.192	0.156	-	0.021	0.022
0.162	0.173	0.151	0.167	0.188	0.182	0.201	0.177	0.190	0.179	0.189	0.007	0.021
0.182	0.169	0.182	0.170	0.192	0.168	0.199	0.164	0.177	0.159	0.194	0.183	0.004

C. sp. F	C. sp. 'lutzi'	C. strigeo.	Ca. medio.	Ca. sp.	lc. pileatus	lc. sp. 2	lc. sp. 3	T. sheurin.
0.010	0.016	0.015	0.020	0.020	0.019	0.019	0.018	0.021
0.011	0.016	0.016	0.020	0.020	0.019	0.019	0.019	0.021
0.012	0.016	0.015	0.021	0.020	0.020	0.019	0.018	0.021
0.019	0.021	0.019	0.020	0.020	0.020	0.019	0.018	0.020
0.017	0.019	0.018	0.020	0.020	0.020	0.019	0.019	0.021
0.014	0.016	0.015	0.020	0.020	0.020	0.019	0.019	0.021
0.015	0.016	0.013	0.019	0.020	0.020	0.019	0.019	0.022
0.013	0.015	0.014	0.021	0.021	0.018	0.017	0.019	0.021
0.004	0.017	0.016	0.020	0.021	0.019	0.020	0.019	0.021
0.122	-	0.016	0.020	0.020	0.019	0.019	0.018	0.021
0.098	0.114	0.007	0.021	0.021	0.019	0.019	0.019	0.021
0.175	0.165	0.185	0.000	0.015	0.019	0.019	0.018	0.020
0.181	0.174	0.182	0.090	-	0.020	0.018	0.018	0.021
0.156	0.156	0.154	0.156	0.179	0.002	0.015	0.015	0.020
0.160	0.157	0.142	0.151	0.145	0.092	-	0.014	0.020
0.140	0.142	0.146	0.142	0.148	0.095	0.078	-	0.018
0.204	0.191	0.209	0.191	0.186	0.175	0.171	0.139	-

ULEY_Ecology and Evolution

3220

TABLE A13 Average *cox1* divergence within and between groups of Strigeidae-II. The number of base differences per site from averaging over all sequence pairs between groups are shown. Standard error estimate(s) are shown above the diagonal. Average intraspecific divergence values lie on the diagonal. The range of intraspecific values are given as percentages next to species names. Values in red are above the delineation cut-off. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The analysis involved 309 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 377 positions in the final dataset.

	A. jamies.	A. sp. 1	A. sp. 1x	A. sp. 3	A. sp. 4	A. sp. A	A. sp. B	A. sp. C	Au. b. LIN1
Apatemon sp. 'jamiesoni' (0.3%)	0.003	0.015	0.014	0.015	0.016	0.016	0.015	0.014	0.018
Apatemon sp. 1 (0.8%)	0.103	0.008	0.009	0.014	0.015	0.014	0.013	0.015	0.018
Apatemon sp. 1x (0.5%)	0.101	0.038	0.005	0.014	0.015	0.014	0.014	0.014	0.017
Apatemon sp. 3 (0.0%)	0.097	0.092	0.085	0.000	0.015	0.016	0.015	0.015	0.017
Apatemon sp. 4 (0.3%)	0.118	0.095	0.090	0.094	0.003	0.018	0.016	0.016	0.018
Apatemon sp. A ***(0.0–1.0%)	0.124	0.094	0.087	0.114	0.131	0.004	0.012	0.015	0.019
Apatemon sp. B***	0.113	0.084	0.085	0.093	0.107	0.058	-	0.015	0.018
Apatemon sp. C ***(0.0–0.3%)	0.097	0.091	0.092	0.093	0.099	0.101	0.092	0.001	0.017
Australapatemon burti LIN1 (0.0–6.4%)	0.147	0.138	0.136	0.131	0.142	0.158	0.149	0.126	0.011
Australapatemon mclaughlini (0.0–0.5%)	0.150	0.140	0.133	0.142	0.156	0.165	0.162	0.148	0.097
Australapatemon niewiadomski (0.0–2.1%)	0.146	0.154	0.138	0.145	0.145	0.156	0.157	0.146	0.128
Australapatemon sp. LIN10***	0.139	0.134	0.117	0.127	0.139	0.142	0.143	0.129	0.084
Australapatemon sp. LIN2	0.158	0.155	0.149	0.159	0.153	0.170	0.159	0.148	0.075
Australapatemon sp. LIN3	0.158	0.160	0.154	0.133	0.150	0.156	0.141	0.135	0.087
Australapatemon sp. LIN4 (0.3–4.8%)	0.161	0.158	0.149	0.139	0.148	0.154	0.163	0.151	0.093
Australapatemon sp. LIN5	0.174	0.145	0.146	0.143	0.167	0.172	0.167	0.145	0.113
Australapatemon sp. LIN6 (0.0–4.2%)	0.144	0.146	0.129	0.135	0.134	0.154	0.151	0.138	0.086
Australapatemon sp. LIN8 (0.0–1.0%)	0.143	0.140	0.136	0.120	0.136	0.147	0.139	0.140	0.100
Australapatemon sp. LIN9A (0.0–3.2%)	0.141	0.136	0.130	0.116	0.146	0.142	0.132	0.125	0.104
Australapatemon sp. LIN9B (0.3–1.1%)	0.145	0.145	0.133	0.123	0.149	0.141	0.141	0.111	0.102

3221

Au. mclaugh.	Au. niew.	Au. LIN10	Au. LIN2	Au. LIN3	Au. LIN4	Au. LIN5	Au. LIN6	Au. LIN8	Au. LIN9A	Au. LIN9B
0.018	0.017	0.018	0.019	0.018	0.018	0.019	0.018	0.018	0.017	0.018
0.017	0.018	0.017	0.019	0.019	0.018	0.017	0.018	0.017	0.017	0.018
0.017	0.017	0.016	0.019	0.018	0.017	0.018	0.017	0.017	0.017	0.017
0.018	0.017	0.017	0.019	0.017	0.017	0.018	0.017	0.016	0.016	0.017
0.018	0.017	0.017	0.019	0.019	0.017	0.019	0.017	0.017	0.018	0.019
0.019	0.019	0.018	0.019	0.018	0.018	0.019	0.018	0.018	0.018	0.018
0.019	0.018	0.018	0.019	0.017	0.018	0.019	0.018	0.017	0.017	0.018
0.018	0.017	0.017	0.018	0.017	0.017	0.018	0.017	0.017	0.016	0.016
0.014	0.016	0.013	0.012	0.014	0.013	0.015	0.013	0.015	0.015	0.015
0.002	0.017	0.011	0.014	0.015	0.014	0.015	0.012	0.017	0.015	0.015
0.142	0.013	0.017	0.017	0.017	0.017	0.018	0.017	0.017	0.017	0.017
0.050	0.130	-	0.015	0.015	0.013	0.014	0.010	0.016	0.015	0.015
0.085	0.140	0.093	-	0.014	0.014	0.017	0.014	0.015	0.015	0.015
0.109	0.132	0.098	0.088	-	0.015	0.016	0.014	0.016	0.016	0.015
0.101	0.134	0.086	0.098	0.104	0.026	0.015	0.012	0.014	0.015	0.015
0.099	0.144	0.077	0.138	0.119	0.117	-	0.015	0.017	0.016	0.016
0.067	0.137	0.045	0.094	0.105	0.081	0.097	0.017	0.015	0.015	0.014
0.124	0.136	0.107	0.112	0.117	0.105	0.147	0.109	0.002	0.014	0.015
0.112	0.136	0.099	0.097	0.117	0.115	0.127	0.107	0.088	0.009	0.011
0.111	0.140	0.097	0.100	0.100	0.117	0.117	0.105	0.101	0.061	0.007

or the known trem.	atodes of Alberta,	Canada. Host a	nd location record	ds are provided	herein.		
Family	Trematode Species	Life Cycle Stage	Locations	Snail Host Species	Definitive /Other Host	GenBank Accession Number(s)	Reference
Allocreadiidae	Crepidostomum farionis	Adult	Cold Lake (54.30'N, 110W)	Unidentified	Cisco, Whitefish, Coho Salmon		Leong. T.S. and Holmes, J.C., 1981, J. Fish Biol. 18:693-713
		Adult	Caribou Lake, Eva Lake, Fleming Lake, Margaret Lake, Margaret Lake, Semo Lake, Wentzel Lake	Unidentified	Various fish species		Baldwin, R.E. and Goater, C.P., 2003, JP, 89(2):215-225
	Crepidostomum isotomum	Adult	Garner Lake, Alberta	Unidentified	Yellow Perch		Zelmer, D.A. and Arai, H.P., 1998, JP, 84(1):24.28
Bolbophoridae	Bolbophorus sp.	Cercaria	Canada: Alberta, Buffalo Lake	Helisoma trivolvis	Unidentified	KT831373	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
		Cercaria	Canada: Alberta, Buffalo Lake, Isle Lake, Wabamun Lake	Helisoma trivolvis	Unidentified	MH368843, MH368847, MH368850, MH368862, MH368871, MH36892, MH368918, MH368919	Present study
Bunoderidae	Bunodera Iuciopercae	Adult	Cold Lake (54.30'N, 110W)	Unidentified	Unidentified		Leong, T.S. and Holmes, J.C., 1981, J. Fish Biol. 18:693-713
Diplostomidae	Diplostomidae gen. sp. O	Cercaria	Canada: Alberta, Buffalo Lake	Physa gyrina	Unidentified	KT831363 [§]	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
		Cercaria	Canada: Alberta, Buffalo Lake, Wabamun Lake, Gull Lake, Isle Lake	Physa gyrina	Unidentified	MH368825, MH368851, MH368854, MH368855, MH368879, MH368880, MH368881, MH368882, MH368883, MH368884, MH368885, MH368886, MH368887, MH368888, MH368899, MH368900, MH368903, MH368903, MH368914, MH368905, MH368904, MH368903, MH3689146, MH368937, MH368934, MH368935, MH3689146, MH368937, MH368934, MH368935, MH368940, MH368941, MH368938, MH368939, MH368940, MH368941, MH368942	Present study
	Diplostomidae gen. sp. X	Cercaria	Canada: Alberta, Isle Lake	Physa gyrina	Unidentified	MH368907	Present study
	Diplostomum adamsi	Metacercaria	Garner Lake, Alberta	Unidentified	Yellow Perch		Zelmer, D.A. and Arai, H.P., 1998, JP, 84(1):24.28
	Diplostomum baeri bucculentum	Metacercaria	NW Territories	Unidentified	Least Cisco		Shostak, et al, 1987, Can. J. Zool., 65

3222

Reference	Present study	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.	Present study	Baldwin, R.E. and Goater, C.P., 2003, JP, 89(2):215-225	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.	Present study	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.	Present study	Present study	Present study	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.	(Continues)
GenBank Accession Number(s)	MH368863, MH368874, MH368875, MH368928	КТ831379	MH368857, MH368896, MH368932, MH368943, MH368945		KT831358	MH368837, MH368858	КТ831354	MH368808, MH368809, MH368813, MH368814, MH368815, MH368816, MH368818, MH368819, MH368829, MH368821, MH368822, MH368823, MH368829, MH368824, MH368825, MH368836, MH368833, MH368830, MH368836, MH368841, MH368838, MH368839, MH368846, MH368844, MH368844, MH368845, MH368846, MH368848 MH368849, MH368845, MH368846, MH368849, MH368849, MH368845, MH368845, MH368849, MH368849, MH368845, MH368845, MH368849, MH368849, MH368845, MH368845, MH368845, MH368849, MH368845, MH368849, MH3688493, MH368840, MH368845, MH368845, MH3688493, MH368844, MH368924, MH368925, MH368943, MH368924, MH368924, MH368925, MH368948, MH368924, MH368924, MH368945, MH368948, MH368944, MH368924, MH368945, MH368948, MH368944, MH368924, MH368944, MH368948, MH368944, MH3689445, MH368944, MH368948,	MH368817	MH368933	KT831360 ^{\$} , KT831378 ^{\$} , KT831382 ^{\$}	
Definitive /Other Host	Unidentified	Unidentified	Unidentified	Trout Perch	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	
Snail Host Species	Stagnicola elodes	Stagnicola elodes	Stagnicola elodes	Unidentified	Lymnaea stagnalis	Lymnaea stagnalis	Stagnicola elodes	Stagnicola elodes	Stagnicola elodes	Stagnicola elodes	Stagnicola elodes	
Locations	Canada: Alberta, Wabamun Lake, Isle Lake	Canada: Alberta, Gull Lake	Canada: Alberta, Wabamun Lake, Isle Lake	Margaret Lake, AB	Canada: Alberta, Wabamun Lake	Canada: Alberta, Wabamun Lake	Canada: Alberta, Isle Lake	Canada: Alberta, Wabamun Lake, Isle Lake, Gull Lake, Buffalo Lake, Lac La Nonne Nonne	Canada: Alberta, Buffalo Lake	Canada: Alberta, Isle Lake	Canada: Alberta, Gull Lake, Wabamun Lake, Isle Lake	
Life Cycle Stage	Cercaria	Cercaria	Cercaria	unknown	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	
Trematode Species	Diplostomum baeri LIN2	Diplostomum indistinctum	Diplostomum sp. 1	Diplostomum sp. 2	Diplostomum sp. 3		Diplostomum sp. 4		Diplostomum sp. A	Diplostomum sp. B	Diplostomum sp. C	
Family												

TABLE A14 (Continued)

WILEY

TABLE A14 (Co	intinued)						
Family	Trematode Species	Life Cycle Stage	Locations	Snail Host Species	Definitive /Other Host	GenBank Accession Number(s)	Reference
		Cercaria	Canada: Alberta, Gull Lake, Wabamun Lake, Isle Lake	Stagnicola elodes, Helisoma trivolvis (MGC208)	Unidentified	MH368810, MH368811, MH368812, MH368852, MH368895, MH368902, MH368921, MH368922, MH368923	Present study
	Diplostomum spathaceum	Adult	Cooking Lake	Unidentified	Bonaparte's Gulls		Hair, J.D. and Holmes, J.C., 1970, Can. J. Zool. 48:1129-1131
		Larval	Cold Lake (54.30'N, 110W)	Unidentified	Whitefish, Lake Trout, 9-Spine stickleback		Leong, T.S. and Holmes, J.C., 1981, J. Fish Biol. 18:693-713
		Larval	Big Fish Lake, Caribou Lake, Margaret Lake, Wentzel Lake	Unidentified	Various fish species		Baldwin, R.E. and Goater, C.P., 2003, JP, 89(2):215-225
		Adult	Beaverhill Lake (53.30'N, 112.30'W) and Miquelon Lake (53.15'N, 112.55'W)	Unidentified	California Gull, Ring-billed Gulls		Vermeer, K. 1969, Can. J. Zool. 47:267-270
	Neodiplostomum americanum	Cercaria	Canada: Alberta, Buffalo Lake	Stagnicola elodes	Unidentified	KT831357 ^s	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
	Ornithodiplostomum ptychocheilus	Cercaria	Lake Wabamun (114.35'W, 53.32'N)	Physa gyrina	Unidentified		Sankurathri, C.S. and Holmes, J.C., 1976, Can. J. Zool. 54:1742-1753
		Cercaria/ Metacercaria	Central Alberta unnamed lake (54.22'N, 113.27'W)	Physa gyrina	Fathead minnows, chickens(experimental)		Schleppe, J.L. and Goater, C.P., 2004, JP, 90(6):1387-1390
	Ornithodiplostomum sp. 2	Cercaria	Canada: Alberta, Wabamun Lake	Physa gyrina	Unidentified	KT831368	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
		Cercaria	Canada: Alberta, Wabamun Lake	Physa gyrina	Unidentified	KT831368	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
	Ornithodiplostomum sp. 8	Cercaria	Canada: Alberta, Pigeon Lake	Physa gyrina	Unidentified	KT831383	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
		Cercaria	Canada: Alberta, Isle Lake	Physa gyrina	Unidentified	MH368908, MH368910, MH368920	Present study
	Posthodiplostomum minimum	Cercaria/ Metacercaria	Central Alberta unnamed lake (54.22'N, 113.27'W)	Physa gyrina	Fathead minnows, chickens(experimental)		Schleppe, J.L. and Goater, C.P., 2004, JP, 90(6):1387-1390

3224 WILEY Ecology and Evolution
Family	Trematode Species	Life Cycle Stage	Locations	Snail Host Species	Definitive /Other Host	GenBank Accession Number(s)	Reference
	Posthodiplostomum sp. 4	Cercaria	Canada: Alberta, Isle Lake	Physa gyrina	Unidentified	МН368909, МН368912	Present study
	Tylodelphys podicipina	Adult	9 lakes in Alberta	Unidentified	Aechmophorus occidentalis, Podiceps grisegena, Podiceps nigricollis		Stock, T.M. and Holmes, J.C., 1988, JP, 74(2): 214-227
	Tylodelphys scheuringi	Metacercaria	Garner Lake, Alberta	Unidentified	Yellow perch		Zelmer, D.A. and Arai, H.P., 1998, JP, 84(1):24.28
	Tylodelphys sp. A	Cercaria	Canada: Alberta, Wabamun Lake	Helisoma trivolvis	Unidentified	KT831356 ^{\$}	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
		Cercaria	Canada: Alberta, Wabamun Lake	Helisoma trivolvis	Unidentified	MH368842, MH368878, MH368894, MH36897	Present study
Echinostomatidae	Drepanocephalus spathans	Cercaria	Canada: Alberta, Isle Lake, Buffalo Lake	Helisoma trivolvis	Unidentified	мН368951, МН368952, МН369294	Present study
		Cercaria	Canada: Alberta, Buffalo Lake	Helisoma trivolvis	Unidentified	KT831381	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
	Echinoparyphium recurvatum	Cercaria/ Metacercaria	Lake Wabamun (114.35'W, 53.32'N)	Physa gyrina	Unidentified		Sankurathri, C.S. and Holmes, J.C., 1976, Can. J. Zool. 54:1742-1753
		Redia	lsolated pond near Clyde, AB (54.09'N, 113.39'W)	Helisoma trivolvis	Unidentified		Morris and Boag, 1982, Can. J. Zool.
		Adult	13 Lakes in Alberta	Unidentified	Lesser Scaup		Bush, A.O. and Holmes, J.C., 1986, Can. J. Zool. 64:132-141
		Adult	Alberta	Unidentified	Great horned owls		Ramalingam, S. and Samuel, W.M., 1978, Can. J. Zool. 56:2454-2456
	Echinoparyphium recurvatum, flexum	Adult	Beaverhill Lake (53.30'N, 112.30'W) and Miquelon Lake (53.15'N, 112.55'W)	Unidentified	California Gull, Ring-billed Gulls		Vermeer, K. 1969, Can. J. Zool. 47:267-270 (Continues)

WILEY

		016, Parasitol. 80.				016, Parasitol. 80.	
Reference	Present study	Gordy, M.A., et al., 2 Res. 115(10): 3867-	Present study	Present study	Present study	Gordy, M.A., et al., 2 Res. 115(10): 3867-	Present study
GenBank Accession Number(s)	MH368998, MH368999, MH369001, MH369002, MH369003, MH369004, MH369005, MH369006, MH369012, MH369018, MH369014, MH369015, MH369012, MH369013, MH369018, MH369019, MH369026, MH369023, MH369018, MH369025, MH369026, MH369024, MH369024, MH369032, MH369026, MH369024, MH369024, MH369025, MH369024, MH369024, MH369026, MH369025, MH369024, MH369025, MH369026, MH369059, MH369026, MH369025, MH369026, MH369059, MH369026, MH369025, MH369025, MH369025, MH369026, MH369026, MH369025, MH369025, MH369026, MH369025, MH369025, MH369025, MH369026, MH369025, MH369025, MH369025, MH369026, MH369025, MH369025, MH369025, MH369026, MH369025, MH369025, MH369025, MH369026, MH369022, MH369025, MH369025, MH369026, MH369023, MH369025, MH369025, MH369026, MH369023, MH369025, MH369025, MH369026, MH369022, MH369026, MH369025, MH369026, MH369025, MH369026, MH369026, MH369026, MH369026, MH369026, MH369026, MH369026, MH369026, MH369026, MH369026, MH369026, MH3690166, MH3690166, MH3690166, MH3690166, MH3690187, MH3690188, MH3690184, MH3690184, MH3690184, MH3690184, MH3690186, MH3690186, MH3690184, MH3690186,	KT831361 [§]	MH369181	MH369011, MH369035, MH369031, MH369051, MH369058, MH369061, MH369064, MH369069, MH369081, MH369082, MH369083, MH369084, MH369085, MH369113, MH369120, MH369128, MH369161, MH369169, MH369170, MH369171, MH369172, MH369173, MH369174, MH369175, MH369172, MH369177, MH369179, MH369180, MH369182, MH369183, MH369184, MH369185, MH369187, MH369183, MH369184, MH369185, MH369187	МН369190, МН369127	KT831367 [§]	МН368969, МН368970, МН368971, МН368987, МН368988, МН369041, МН369074, МН369086, МН369092
Definitive /Other Host	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified
Snail Host Species	Physa gyrina, Stagnicola elodes (MGC1954, MGC2104), Helisoma trivolvis (MGC2090)	Physa gyrina	Physa gyrina	Physa gyrina, Stagnicola elodes (MGC1 932)	Physa gyrina	Stagnicola elodes	Stagnicola elodes
Locations	Canada: Alberta, Lac La Nonne, Wabamun Lake, Isle Lake	Canada: Alberta, Lac La Nonne	Canada: Alberta, Isle Lake	Canada: Alberta, Buffalo Lake, Wabamun Lake, Isle Lake, Lac La Nonne, Gull Lake, Pigeon Lake	Canada: Alberta, Gull Lake	Canada: Alberta, Lac La Nonne	Canada: Alberta, Lac La Nonne
Life Cycle Stage	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria
Trematode Species	1A 1A		Echinoparyphium sp. 1B	Echinoparyphium sp. A	Echinoparyphium sp. A2		Echinoparyphium sp. B
Family							

(Continues)

(Continued)	
011	
L	
Z ⊿ Z	נ

DY AND	HANINGTO	NC		Ecology and Evo	lution	pen Access	NILEY-
Reference	Present study	Present study	Present study	Present study	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.	Present study	(Continues)
GenBank Accession Number(s)	МН369088, МН369152	MH369189	МН369109, МН369129, МН369134, МН369135, МН369159	MH368953, MH368954, MH368956, MH368956, MH368957, MH368963, MH368964, MH368965, MH368966, MH368963, MH368964, MH368975, MH368975, MH368976, MH368976, MH368976, MH368977, MH368974, MH368979, MH368980, MH368977, MH368982, MH368983, MH368994, MH368971, MH368992, MH368993, MH368994, MH368995, MH368995, MH368997, MH369906, MH368995, MH369029, MH369906, MH369906, MH369021, MH369029, MH369006, MH3690067, MH369021, MH369029, MH3690073, MH369114, MH369114, MH369112, MH369114, MH369114, MH369114, MH369114, MH369114, MH369114, MH369114, MH369114, MH369114, MH369114, MH369114, MH369114, MH369114, MH369114, MH369114, MH369126, MH369124, MH369114, MH369114, MH369126, MH369124, MH369142, MH369149, MH369126, MH369124, MH369142, MH369149, MH369126, MH369126, MH369142, MH369149, MH369126, MH369124, MH369153, MH369149, MH369126, MH369126, MH369144, MH369154, MH369149, MH369126, MH369126, MH369154, MH369154, MH369124, MH369126, MH369126, MH369126, MH369146, MH369154, MH369146, MH369154, MH369146, MH36	KT831350 [§]	МН369130, МН369158	
Definitive /Other Host	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	
Snail Host Species	Stagnicola elodes	Stagnicola elodes	Stagnicola elodes, Lymnaea stagnalis (MGC1878)	Stagnicola elodea, Lymnaea stagnalis (MGC16A/B, MGC2369), Helisoma trivolvis (MGC219)	Stagnicola elodes	Helisoma trivolvis	
Locations	Canada: Alberta, Gull Lake, Lac La Nonne	Canada: Alberta, Buffalo Lake	Canada: Alberta, Gull Lake	Canada: Alberta, Gull Lake, Buffalo Lake, Wabamun Lake, Lac La Nonne Nonne	Canada: Alberta, Lac La Nonne	Canada: Alberta, Wabamun Lake, Buffalo Lake	
Life Cycle Stage	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	
Trematode Species	Echinoparyphium sp. C	Echinoparyphium sp. D	Echinoparyphium sp. E	Echinoparyphium sp. Lineage 2		Echinoparyphium sp. Lineage 4	
Family							

Deference	Vermeer, K. 1969, Can. J. Zool. 47:267-270	Ramalingam, S. and Samuel, W.M., 1978, Can. J. Zool. 56:2454-2456	9231. Present study 369268, 369286,	99195, Present study 869207, 369207, 369211, 169220,	Present study	Present study	69110, Present study	Present study	Gordy, M.A., et al., 2016, Parasitol.
			МН369227, МН369229, МН369230, МН36 МН369235, МН369242, МН369248, МН МН369279, МН369281, МН369284, МН МН369287, МН369292	MH369192, MH369193, MH369194, MH3 MH369196, MH369197, MH369200, MH5 MH369202, MH369204, MH369206, MH MH369208, MH369209, MH369210, MH5 MH369213, MH369214, MH369215, MH3 MH369211, MH369218, MH369219, MH3	MH369271	МНЗ69269, МНЗ69295, МНЗ69297	MH368958, MH369040, MH369108, MH3 MH369145, MH369157	MH369020, MH369030, MH369080	KT831342
Definitive /Other	california Gull, Ring-billed Gulls	Great horned owls	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified
Snail Host	Unidentified	Unidentified	Stagnicola elodes	Stagnicola elodes	Helisoma trivolvis	Stagnicola elodes	Stagnicola elodes	Stagnicola elodes	Planorbula
	(53.30°N, (53.30°N, 112.30°W) and Miguelon Lake (53.15°N, 112.55°W)	Alberta	Canada: Alberta, Buffalo Lake, Gull Lake, Wabamun Lake, Isle Lake, Lac La Nonne	Canada: Alberta, Buffalo Lake, Gull Lake, Wabamun Lake, Isle Lake, Lac La Nonne	Canada: Alberta, Isle Lake, Wabamun Lake, Lac La Nonne	Canada: Alberta, Buffalo Lake	Canada: Alberta, Gull Lake, Lac La Nonne, Wabamun Lake, Isle Lake	Canada: Alberta, Isle Lake, Lac La Nonne	Canada: Alberta,
Life Cycle	Adult	Adult	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria
Trematode	Echinostoma revolutum		Echinostoma revolutum Lineage B		Echinostoma trivolvis Lineage A	Echinostomatidae gen. sp.	Hypoderaeum sp. Lineage 1	Hypoderaeum sp. Lineage 2	Neopetasiger
	6								

(Continues)

RDY AND	HANINGTON							Ecology an	d Evolutio	n Open Acc	V	VILEY	(3	229
Reference	Shostak, A.W., 1992, Can. J. Zool. 71:431-434	Stock, T.M. and Holmes, J.C., 1988, JP, 74(2): 214-227	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.	Present study	Giebelhaus, I.T. 1998, Can. Vet. J. 39:433	Kralova-Hromadova, et al., 2010, IJP, 41:373-383	Samuel, W.M., 1976, Can J Zool, 54(3)	Bursey, C.R. and Goldberg, S.R. 1998, JP, 84(3):617-618	Leong, T.S. and Holmes, J.C., 1981, J. Fish Biol. 18:693-713	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.	Present study	Leong, T.S. and Holmes, J.C., 1981, J. Fish Biol. 18:693-713	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.	(Continues)
GenBank Accession Number(s)			КТ831343, КТ831345	MH369311, MH369312, MH369313, MH369314, MH369315, MH369316, MH369317, MH369318						KT831372 [§]	МН369319, МН369320, МН369321		КТ831348 ^{\$} , КТ831364	
Definitive /Other Host	Unidentified	Aechmophorus occidentalis, Podiceps grisegena, Podiceps nigricollis, Podiceps auritus	Unidentified	Unidentified	Cattle (Holstein steers)	Cervus elaphus canadensis	Moose	Bufo hemiophrys (Canadian Toad)	Whitefish	Unidentified	Unidentified	9-spine stickleback	Unidentified	
Snail Host Species	Heliosoma trivolvis	Unidentified	Helisoma trivolvis	Helisoma trivolvis	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Stagnicola elodes	Stagnicola elodes	Unidentified	Stagnicola elodes	
Locations	Amisk Lake (54.35'N, 112.37'W) Baptiste Lake (54.45'N, 113.33'W)	9 lakes in Alberta	Canada: Alberta, Wabamun Lake	Canada: Alberta, Wabamun Lake, Isle Lake, Buffalo Lake	Rimbey, Alberta	Banff National Park (51.12'N, 115.35'W)	Cypress Hills, Elk Island and other parts of Alberta	Eastern Alberta (50.35'-56.44'N, 110.40'- 114.05'W)	Cold Lake (54.30'N, 110W)	Canada: Alberta, Buffalo Lake	Canada: Alberta, Buffalo Lake	Cold Lake (54.30'N, 110W)	Canada: Alberta, Gull Lake	
Life Cycle Stage	Cercaria	Adult	Cercaria	Cercaria	Adult	Adult	Adult	Adult	Adult	Cercaria	Cercaria	Adult	Cercaria	
Trematode Species	Petasiger nitidius		Neopetasiger sp. 4		Fasciola hepatica	Fascioloides magna		Gorgoderina simplex	Phyllodistomum coregoni	Haematoloechidae gen. sp. A		Lissorchis attenuatum	Notocotylus sp. A	
Family					Fasciolidae			Gorgoderidae		Haematoloechidae		Lissorchiidae	Notocotylidae	

	ence	it study	rt study	t study	, M.A., et al., 2016, Parasitol.	tt study	is, A.G., Mena, A.C. and Bristol, 1981, J. Wildlife Dis. 17(1)	ingam, S. and Samuel, W.M., , Can. J. Zool. 56:2454-2456	rathri, C.S. and Holmes, J.C., , Can. J. Zool. 54:1742-1753
	Refer	Preser	Preser	Preser	Gordy, Res.	Preser	J.R.,	Ramali 1978	Sankui 1976
	GenBank Accession Number(s)	MH369326, MH369333, MH369334, MH369335, MH369345, MH369346, MH3693349, MH369350, MH369352, MH369346, MH369353, MH369354, MH369355, MH369362, MH369363, MH369364, MH369355, MH369366, MH369381, MH369382, MH369373, MH369378, MH369381, MH369382, MH369390, MH369415, MH369384, MH369383, MH369390, MH369391, MH369384, MH369393, MH369395, MH369391, MH369402, MH369397, MH369398, MH369400, MH369401, MH369402	MH369416	MH369356	KT831348 ⁵	MH369386, MH369389, MH369392, MH369399, MH369323, MH369405, MH369324, MH369406, MH369325, MH369409, MH369407, MH369300, MH369331, MH369327, MH369329, MH369337, MH369331, MH369332, MH369340, MH369341, MH369333, MH369343, MH369344, MH369341, MH369342, MH369343, MH369344, MH369357, MH369347, MH369348, MH369369, MH369357, MH369358, MH369359, MH369369, MH369357, MH369358, MH369359, MH369359, MH369356, MH369358, MH369359, MH369369, MH369356, MH369358, MH369359, MH369369, MH369356, MH369354, MH369359, MH369369, MH369356, MH369354, MH369359, MH369369, MH369356, MH369354, MH369359, MH369369, MH369369, MH369354, MH369359, MH369369, MH369369, MH369374, MH369359, MH369369, MH369369, MH3693413, MH369358, MH369359, MH3693403, MH3693404			
	Definitive /Other Host	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Green-winged Teal	Great horned owls	Unidentified
	Snail Host Species	Physa gyrina, Stagnicola elodes	Physa gyrina	Helisoma trivolvis	Stagnicola elodes	Stagnicola elodes, Physa gyrina	Unidentified	Unidentified	Physa gyrina
	Locations	Canada: Alberta, Wabamun Lake, Isle Lake, Gull Lake, Buffalo Lake, Lac La Nonne	Canada: Alberta, Wabamun Lake	Canada: Alberta, Lac La Nonne	Canada: Alberta, Gull Lake	Canada: Alberta, Isle Lake, Gull Lake, Buffalo Lake, Lac La Nonne Nonne	Breeding resident in Alberta, but found in SW Texas	Alberta	Lake Wabamun (114.35'W, 53.32'N)
	Life Cycle Stage	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Adult	Adult	Cercaria/ Metacercaria
(Continued)	Trematode Species		Notocotylus sp. B	Notocotylus sp. C	Notocotylus sp. D		Notocotylus attenuatus		Notocotylus urbanensis
TABLE A14	Family								

Case

Trematode Species	Life Cycle Stage	Locations	Snail Host Species	Definitive /Other Host	GenBank Accession Number(s)	Reference
	Cercaria/ Metacercaria	Lyle Lake (55.12'N, 112.29W) Beaver impoundment near Fort McMurray (56.31'N, 111.19'W)	Heliosoma trivolvis	CD1 Mice (experimental)		Shostak, A.W., Dharampaul, S., and Belosevic, M., 1993, J. Parasitol. 79(6):922-929
-	s Adult	Beaverhill Lake (53.30'N, 112.30'W) and Miquelon Lake (53.15'N, 112.55'W)	Unidentified	California Gull, Ring-billed Gulls		Vermeer, K. 1969, Can. J. Zool. 47:267-270
	Adult	Alberta	Unidentified	Great horned owls		Ramalingam, S. and Samuel, W.M., 1978, Can. J. Zool. 56:2454-2456
	Cercaria	Canada: Alberta, Gull Lake, Lac La Nonne, Buffalo Lake	Stagnicola elodes	Unidentified	MH369420, MH369421, MH369422, MH369433, MH369434, MH369435, MH369441, MH369460, MH369461, MH369463, MH369464	Present study
	Cercaria	Canada: Alberta, Buffalo Lake	Stagnicola elodes	Unidentified	MH3694 <i>67</i>	Present study
	Cercaria	Canada: Alberta, Buffalo Lake	Stagnicola elodes	Unidentified	МН369442, МН369454, МН369466	Present study
	Cercaria	Canada: Alberta, Gull Lake, Lac La Nonne, Buffalo Lake, Wabamun Lake, Isle Lake	Stagnicola elodes	Unidentified	MH369418, MH369423, MH369425, MH369428, MH369429, MH369431, MH369432, MH369436, MH369437, MH369440, MH369447, MH369452, MH369453, MH369456, MH369462, MH369471	Present study
	Cercaria	Canada: Alberta, Gull Lake, Lac La Nonne	Stagnicola elodes	Unidentified	МН369419, МН369426, МН369427	Present study
	Cercaria	Canada: Alberta, Buffalo Lake	Helisoma trivolvis	Unidentified	MH369470	Present study
	Cercaria	Canada: Alberta, Buffalo Lake, Gull Lake	Lymnaea stagnalis	Unidentified	MH369438, MH369448, MH369455, MH369458, MH369468, MH369469	Present study
	Cercaria	Canada: Alberta, Buffalo Lake, Gull Lake	Stagnicola elodes	Unidentified	MH369449, MH369450, MH369451, MH369459, MH369465	Present study (Continues)

TABLE A14 (Col	ntinued)						
Family	Trematode Species	Life Cycle Stage	Locations	Snail Host Species	Definitive /Other Host	GenBank Accession Number(s)	Reference
	Plagiorchis sp. Lineage 9	Cercaria	Canada: Alberta, Lac La Nonne, Buffalo Lake	Stagnicola elodes	Unidentified	MH369424, MH369430, MH369439, MH369443, MH369444, MH369445, MH369446	Present study
<u>Psilostomidae</u>	Psilostomidae gen. sp. A	Cercaria	Canada: Alberta, Wabamun Lake	Helisoma trivolvis	Unidentified	MH369477 ⁵	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
		Cercaria	Canada: Alberta, Wabamun Lake, Isle Lake	Helisoma trivolvis	Unidentified	MH369473, MH369472, MH369476, MH369474, MH369475	Present study
Renicolidae	Renicola sp.	Adult	Beaverhill Lake (53.30'N, 112.30'W) and Miquelon Lake (53.15'N, 112.55'W)	Unidentified	California Gull, Ring-billed Gulls		Vermeer, K. 1969, Can. J. Zool. 47:267-270
Schistosomatidae	Austrobilharzia sp.	Adult	Beaverhill Lake (53.30'N, 112.30'W) and Miquelon Lake (53.15'N, 112.55'W)	Unidentified	Ring-billed Gulls		Vermeer, K. 1969, Can. J. Zool. 47:267-270
	Avian Schistosomatid sp. A	Cercaria	Canada: Alberta, Buffalo Lake, Isle Lake	Physella gyrina	Unidentified	MH168789, MH168790, MH168795, MH168796	Gordy, M.A., et al., 2018, Env. Health. 17(1):73
	Avian Schistosomatid sp. B	Cercaria	Canada: Alberta, Lac La Nonne	Physella gyrina	Unidentified	MH168785	Gordy, M.A., et al., 2018, Env. Health. 17(1):73
	Avian Schistosomatid sp. C	Cercaria	Canada: Alberta, Wabamun Lake	Helisoma trivolvis	Unidentified	MH168793	Gordy, M.A., et al., 2018, Env. Health. 17(1):73
	Schistosomatium douthitti	Cercaria	Canada: Alberta, Gull Lake	Stagnicola elodes	Unidentified	KT831376	Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
		Cercaria	Canada: Alberta, Buffalo Lake, Gull Lake, Wabamun Lake	Stagnicola elodes, Lymnaea stagnalis	Unidentified	MH168791, MH168794	Present study
	Trichobilharzia cameroni	Cercaria	Lake Wabamun (114.35'W, 53.32'N)	Physa gyrina	Unidentified		Sankurathri, C.S. and Holmes, J.C., 1976, Can. J. Zool. 54:1742-1753
	Trichobilharzia physellae		Canada: Alberta, Lac La Nonne	Physella gyrina	Unidentified	MH168784	Gordy, M.A., et al., 2018, Env. Health. 17(1):73

circlehotCenBankAccession Number(f)ReferenceagrindUnidentifiedYr, Gan, Jool, 54,742,773agrindUnidentifiedWH16873, WH16973, MH16978, MH16973,		Snail Host Definitive /Other	
agritio Solutentified Solutentified<	Lite Upde Locations	Species Host GenBank Accession NumL	s) Reference
incide lodesUnidentifiedMH168782, MH169786, MH169787,Gordy, M.A., et al., 2016, Erw Health.incide lodesUnidentifiedKT831332Gordy, M.A., et al., 2016, Erw Health.incideUnidentifiedKT831337Gordy, M.A., et al., 2016, Erw Health.incideUnidentifiedKT831337Gordy, M.A., et al., 2016, Erw Health.incideUnidentifiedKT831375Gordy, M.A., et al., 2016, Erw Health.incideUnidentifiedSentercherbackGordy, M.A., et al., 2016, Erw Health.incideUnidentifiedSentercherbackGordy, M.J., et al., 2016, Erw Health.incideSentercherbackSentercherbackGordy, M.J., et al., 2016, Erw Health.incideSentercherbackSentercherbackGordy, M.J., et al., 2016, Erw Health.incide<	Cercaria Lake Wabamun Ph (114.35'W, 53.32'N)	ysa gyrina Unidentified	Sankurathri, C.S. and Holm 1976, Can. J. Zool. 54:174
include lockUnidentifiedKT831352Gordy, M.A., et al 2016, Parasitol.indexUnidentifiedMH168733Sec. 315(100) 3867-80.indexUnidentifiedMH168733Sec. 315(100) 3867-80.indexUnidentifiedRES. 115(100) 3867-80.Sec. 315(100) 3867-80.indexUnidentifiedRES. 115(100) 3867-80.Sec. 315(100) 3867-80.indexUnidentifiedRES. 115(100) 3867-80.Sec. 315(100) 3867-80.interUnidentifiedRES. 115(10) 3867-80.Sec. 315(10) 3867-80.interSec. 315(10) 3867-80.Sec. 315(10) 3867-80.intifiedLeser ScaupRes. 115(10) 3867-30.intifiedLeser ScaupSec. 315(10) 3867-30.intifiedSec. 315(10) 3867-80.Sec. 315(10) 3867-30.intifiedSec. 315(10) 3867-30.Sec. 316(10) 3867-30.intifiedSec. 316(10) 3867-30.	Cercaria Canada: Alberta, St Isle Lake	agnicola elodes Unidentified MH168781, MH168782, MH MH168783, MH	i786, MH168787, Gordy, M.A., et al., 2018, E 17(1):73
needUnidentifiedMH46733Gordy, M.A., et al., 2018, Env. Health.goulsUnidentifiedKT831375Gordy, M.A., et al., 2018, Env. Health.grainUnidentifiedKT831375Gordy, M.A., et al., 2016, Envelth.grainUnidentifiedKT831375Gordy, M.A., et al., 2016, Envelth.grainLenstrifiedEnser ScaupBush, A.O. and Holmes, J.C., 1986, JPlentifiedP-spine sticklebackEnvirophonesCan. J.Zool, 64:132-141lentifiedP-spine sticklebackEnvirophones, JC., 1986, JPlentifiedP-spine sticklebackBush, A.O. and Holmes, J.C., 1988, JPlentifiedP-spine sticklebackBush, A.O. and Holmes, J.C., 1988, JPlentifiedRethmophonesStock, TM and Holmes, J.C., 1988, JPlentifiedRethmophonesStock, TM and Holmes, J.C., 1988, JPlentifiedRethmophonesMH369605, MH369605, MH	Cercaria Canada: Alberta, Si Isle Lake	agnicola elodes Unidentified KT831352	Gordy, M.A., et al., 2016, P Res. 115(10): 3867-80.
undentified KT831375 Gordy, M.A., et al., 2016, Parasitol. gaulis Unidentified Res. 115(10): 3867-80. Res. 115(10): 3867-80. a gyrina Unidentified Sankurathri, C.S. and Holmes, J.C., 1986. Res. 115(10): 387-80. lentified Leser Scaup Sankurathri, C.S. and Holmes, J.C., 1986. Res. 115(10): 387-80. lentified Leser Scaup Leser Scaup Sankurathri, C.S. and Holmes, J.C., 1986. lentified Verspine stickleback Res. Alt 322-141. Lenger Scale Res. J. 2006. lentified Pspine stickleback Res. Alt 303-141. Lenger Scale Res. J. 2006. lentified Actimophorus Stock T.M. and Holmes, J.C., 1988. LR lentified Actimophorus Res. Alt 303-141. Lenger Scale Res. J. 2006. Lenger Scale Res. J. 2006. Lenger J.C., 1988. LR lentified Actimophorus Stock T.M. and Holmes, J.C., 1988. LR Lenger J.C., 1988. LR lentified Actimophorus Stock T.M. and Holmes, J.C., 1988. LR	Cercaria Canada: Alberta, Ly Gull Lake	<i>mmaea</i> Unidentified MH168783 stag <i>nalis</i>	Gordy, M.A., et al., 2018, E 17(1):73
a gyrina Unidentified Bank Act antholmes. JC. ientified lesser Scaup Bush. AC. and Holmes. JC 1986. JC. ientified lesser Scaup Bush. AC. and Holmes. JC 1986. JC. ientified lesser Scaup Bush. AC. and Holmes. JC 1986. JC. ientified 9-spine stickleback Leong. T.S. and Holmes. J.C 1988. JR ientified 8-spine stickleback Leong. T.S. and Holmes. J.C 1988. JR ientified setimophorus Leong. T.S. and Holmes. J.C 1988. JR ientified setimophorus Leong. T.S. and Holmes. J.C 1988. JR ientified setimophorus Leong. T.S. and Holmes. J.C 1988. JR ientified Actimophorus Leong. T.S. and Holmes. J.C 1988. JR ientified Actimophorus Leong. T.S. and Holmes. J.C 1988. JR ientified Actimophorus Leong. T.S. and Holmes. J.C 1988. JR ientified Actimophorus Leong. J.S. 41373. JR. 4104. JR ientified Actimophorus Pareitana ientified Date Moldespine Pareitana ientified Mareca americana Mareca americana <td< td=""><td>Cercaria Canada: Alberta, L Buffalo Lake</td><td>ymnaea Unidentified KT831375 stagnalis</td><td>Gordy, M.A., et al., 2016, P Res. 115(10): 3867-80.</td></td<>	Cercaria Canada: Alberta, L Buffalo Lake	ymnaea Unidentified KT831375 stagnalis	Gordy, M.A., et al., 2016, P Res. 115(10): 3867-80.
Itentified Leser Scaup Bush, A.O. and Holmes, J.C. 1986, Can. J. Zool. 64:132-141 Ientified 9-spine stickleback Leong, T.S. and Holmes, J.C. 1981, J. Ientified 8-spine stickleback Leong, T.S. and Holmes, J.C. 1981, J. Ientified Rehmophorus Stock, T.M. and Holmes, J.C. 1988, JP Ientified Rehmophorus Stock, T.M. and Holmes, J.C. 1988, JP Ientified Rehmophorus Stock, T.M. and Holmes, J.C. 1988, JP Ientified Rehmophorus Stock, T.M. and Holmes, J.C. 1988, JP Ientified Rehmophorus Stock, T.M. and Holmes, J.C. 1988, JP Ientified Rehmophorus Stock, T.M. and Holmes, J.C. 1988, JP Ientified Rehmotorus Stock, T.M. and Holmes, J.C. 1988, JP Ientified Rehmotorus Stock, T.M. and Holmes, J.C. 1988, JP Ientified Remotorus Renet, J.C. 1988, JP Ientified Marca americana Marca americana Inicola elodes Unidentified MH369605, MH	Cercaria Lake Wabamun P (114.35'W, 53.32'N)	hysa gyrina Unidentified	Sankurathri, C.S. and Holm 1976, Can. J. Zool. 54:174
Ientified 9-spine stickleback Ieong. T.S. and Holmes, J.C. 1981. J. Ientified Achmophorus Stock, T.M. and Holmes, J.C. 1988. JP Ientified Achmophorus Stock, T.M. and Holmes, J.C. 1988. JP Ientified Achmophorus Stock, T.M. and Holmes, J.C. 1988. JP Ientified Achmophorus Stock, T.M. and Holmes, J.C. 1988. JP Ientified Achmophorus Palmier, J.C. 1988. JP Ientified Achmophorus Palmier, J.C. 1988. JP Ientified Ientified Palmier, J.C. 1988. JP Ientified Achmophorus Palmier, J.C. 1988. JP Ientified Inderca and Marca americana Palmier, J.R. 1973. JP, 59(6):1063 Inichal elodes Unidentified Palmier, J.R. 1973. JP, 59(6):1063 Inichal elodes Unidentified Present study	Adult 13 Lakes in L Alberta	Inidentified Lesser Scaup	Bush, A.O. and Holmes, J.C Can. J. Zool. 64:132-141
Intentified Actimophorus Stock, T.M. and Holmes, J.C. 1988, J.F. occidentalis, Podiceps orcidentalis, Podiceps arritus T4(2): 214-227 ingricollis, Podiceps T4(2): 214-227 arritus Palmieri, J.R., 1973, JP, 59(6):1063 Introla elodes Unidentified Present study Introla elodes Unidentified Present study Intola elodes Unidentified MH369605, MH369605, MH369605, MH369613, MH369	Larval Cold Lake Ur (54.30'N, 110W)	nidentified 9-spine stickleback	Leong, T.S. and Holmes, J.C Fish Biol. 18:693-713
Itentified Chen hyperborea and Mareca americana Palmieri, J.R., 1973, JP, 59(6):1063 nicola elodes Unidentified MH369603, MH369605, MH369605, MH369605, MH369610, MH369607, MH369603, MH369605, MH369605, MH369610, MH369607, MH369603, MH369605, MH369610, MH369607, MH3696013, MH369613, MH369610, MH369607, MH3696013, MH369613, MH369610, MH369607, MH3696013, MH369613, MH369610, MH369614, MH369613, MH369613, MH369613, MH369613, MH369614, MH369613, MH369613, MH369613, MH369613, MH369613, MH369614, MH369613, MH369613, MH369613, MH369613, MH369613, MH369614, MH369613, MH36	Adult 9 lakes in Alberta Ur	identified Aechmophorus occidentalis, Podiceps grisegena, Podiceps nigricollis, Podiceps auritus	Stock, T.M. and Holmes, J.I 74(2): 214-227
nicola elodes Unidentified MH369603, MH369605, MH369606, MH369606, Present study nicola elodes Unidentified MH369607, MH369603, MH369609, MH369610, MH369610, MH3696110, MH3696110, MH369612, MH369613, MH369613, MH369613, MH369613, MH369613, MH369615, MH369615, MH369615, MH369615, MH369613, MH369614, MH369620, MH369614, MH369614,	Adult Alberta U	nidentified <i>Chen hyperborea</i> and <i>Mareca americana</i>	Palmieri, J.R., 1973, JP, 59(
nicola elodes Unidentified MH369618 Present study nicola elodes Unidentified MH369619, MH369620, MH369621, MH369622 Present study	Cercaria Canada: Alberta, S Isle Lake	tagnicola elodes Unidentified MH369603, MH369604, MH MH369607, MH369608, MI MH369611, MH369612, MH MH369615, MH369616, MH	665, MH369606, Present study 9609, MH369610, 9613, MH369614, 9617
nicola elodes Unidentified MH369619, MH369620, MH369621, MH369622 Present study	Cercaria Canada: Alberta, St Isle Lake	agnicola elodes Unidentified MH369618	Present study
	Cercaria Canada: Alberta, <i>St</i> Isle Lake		621, MH369622 Present study

3233

WILEY

Species pharyngostrigea	Stage Adult	Locations Eastern Alberta	Species Unidentified	Host Western Chorus Frog	GenBank Accession Number(s)	Reference Goldberg, S.R., Bursey, C.R., and
is patemon IN1	Cercaria	Canada: Alberta, Isle Lake	Stagnicola elodes	Unidentified	KT831346, KT831351	Wong, C., 2002, Northwest Science, 76(1) Gordy, M.A., et al., 2016, Parasitol. Res. 115(10): 3867-80.
	Cercaria	Canada: Alberta, Isle Lake, Wabamun Lake, Lac La Nonne, Gull Lake, Buffalo Lake	Stagnicola elodes, Physa gyrina, Helisoma trivolvis, Helisoma campanulatum, Planorbis sp., Lymnaea stagnalis	Unidentified	KY207548, KY207554, KY207551, KY207552, KY207555, KY207564, KY207555, KY207566, KY207563, KY207564, KY207561, KY207566, KY207565, KY207564, KY207566, KY207575, KY207575, KY207578, KY207577, KY207581, KY207578, KY207590, KY207591, KY207588, KY207589, KY207590, KY207591, KY207588, KY207599, KY207590, KY207591, KY207598, KY207599, KY207590, KY207595, KY207592, KY207593, KY207600, KY207595, KY207593, KY207593, KY207601, KY207601, KY207593, KY207593, KY207601, KY207605, KY207593, KY207593, KY207601, KY207605, KY207601, KY207603, KY207601, KY207605, KY207601, KY207603, KY207601, KY207609, KY207601, KY207603, KY207601, KY207609, KY207600, KY207603, KY207600, KY207609, KY207609, KY207600, KY207601, KY207601, KY207609, KY207609, KY207600, KY207600, KY207603, KY207600, KY207609, KY207609, KY207609, KY207600, KY207601, KY207601, KY207609, KY207609, KY207600, KY207600, KY207600, KY207600, KY207600, KY207600, KY207600, KY207600, KY207600, HM385485, KY587400, HM385486	Gordy, M.A., et al. 2017, Parasitol. Res. 116(8): 2181-98.

(Continues)

RDY and I	HANINGTON	Ecology and Evolution	-W	ΠF	γ⊥	32
		(Open/	Access • •	ILL		s)
Reference	Present study		Gordy, M.A., et al., 2017, Parasitol. Res. 116(8): 2181-98.	Present study	Gordy, M.A., et al., 2017, Parasitol. Res. 116(8): 2181-98.	(Continue
GenBank Accession Number(s)	 MHJ69623, MH369624, MH369625, MH369626, MH369626, MH369623, MH369623, MH369623, MH369623, MH369623, MH369633, MH369633, MH369633, MH369633, MH369644, MH369643, MH369644, MH369644, MH369644, MH369644, MH369644, MH369645, MH369654, MH369654, MH369655, MH369657, MH369657, MH369659, MH369657, MH369659, MH369657, MH369659, MH369657, MH369659, MH36969703, MH3696993, MH369705, MH369702, MH369702, MH369702, MH369701, MH369702, MH369722, MH369722, MH369722, MH369720, MH369	MH3 <i>6</i> 9732, MH3 <i>6</i> 9733, MH3 <i>6</i> 9735, MH3 <i>6</i> 9735, MH3 <i>6</i> 9736, MH3 <i>6</i> 9736, MH3 <i>6</i> 9736, MH3 <i>6</i> 9743, MH3 <i>6</i> 9742, MH3 <i>6</i> 9743, MH3 <i>6</i> 9744, MH3 <i>6</i> 9745, MH3 <i>6</i> 9745, MH3 <i>6</i> 9756, MH3 <i>6</i> 9755, MH3 <i>6</i> 9756, MH3 <i>6</i>	KY207615, KY207627, KY207628	MH369764	HM385535	
Definitive /Other Host	Unidentified		Anas acuta		Bucephala albeola	
Snail Host Species	Stagnicola elodes, Physa gyrina, Helisoma trivolvis		Physa gyrina	Physa gyrina	Unidentified	
Locations	Canada: Alberta, Isle Lake, Wabamun Lake, Lac La Nonne, Gull Lake, Buffalo Lake		Canada: Alberta, Buffalo Lake; Ontario	Canada: Alberta, Buffalo Lake	Canada: Ontario	
Life Cycle Stage	Cercaria		Cercaria, Adult	Cercaria	Adult	
Trematode Species			Australapatemon mclaughlini		Australapatemon sp. LIN2	
Family						

TABLE A14 (Co	intinued)						
Family	Trematode Species	Life Cycle Stage	Locations	Snail Host Species	Definitive /Other Host	GenBank Accession Number(s)	Reference
	Australapatemon sp. LIN3	Cercaria	Canada: Alberta, Gull Lake	Stagnicola elodes	Unidentified	KY207577	Gordy, M.A., et al., 2017, Parasitol. Res. 116(8): 2181-98.
	Australapatemon sp. LIN4	Cercaria, Adult	Canada: Alberta, Lac La Nonne; Ontario	Physella gyrina	Aythya collaris	KY207569, KY587397, KY587396	Gordy, M.A., et al., 2017, Parasitol. Res. 116(8): 2181-98.
		Cercaria	Canada: Alberta, Gull Lake	Physa gyrina	Unidentified	MH369765	Present study
	Australapatemon sp. LIN5	Cercaria	Canada: Alberta, Buffalo Lake	Stagnicola elodes	Unidentified	KY207597	Gordy, M.A., et al., 2017, Parasitol. Res. 116(8): 2181-98.
	Australapatemon sp. LIN6	Cercaria	Canada: Alberta, Pigeon Lake, Isle Lake	Physa gyrina	Unidentified	KY207613, KY207616	Gordy, M.A., et al., 2017, Parasitol. Res. 116(8): 2181-98.
		Cercaria	Canada: Alberta, Isle Lake, Buffalo Lake, Lac La Nonne	Physa gyrina	Unidentified	MH369766, MH369767, MH369768, MH369769, MH369770	Present study
	Australapatemon sp. LIN8	Cercaria, Adult	Canada: Alberta, Isle Lake, Buffalo Lake; Ontario	Physa gyrina	Oxyura jamaicensis	KY207587, KY207622, HM385538, HM385537, HM385536	Gordy, M.A., et al., 2017, Parasitol. Res. 116(8): 2181-98.
		Cercaria	Canada: Alberta, Isle Lake, Buffalo Lake, Gull Lake	Physa gyrina	Unidentified	МНЗ69771, МНЗ69772, МНЗ69773, МНЗ69774, МНЗ69775, МНЗ69776, МНЗ69777	Present study
	Australapatemon sp. LIN9A	Cercaria, Adult	Canada: Alberta, Gull Lake, Isle Lake, Buffalo Lake; Ontario	Stagnicola elodes	Anas acuta	KY207550 ^{\$} , KY207557 ^{\$} , KY207558 ^{\$} , KY207582 ^{\$} , KY207596 ^{\$} , HM385534 ^{\$}	Gordy, M.A., et al., 2017, Parasitol. Res. 116(8): 2181-98.
		Cercaria	Canada: Alberta, Lac La None, Gull Lake, Buffalo Lake, Isle Lake	Stagnicola elodes, Lymnaea stagnalis (MGC176B)	Unidentified	MH369779, MH369780, MH369781, MH369782, MH369783, MH369784, MH369785, MH369786, MH369787, MH369788, MH3697789, MH369778	Present study
	Australapatemon sp. LIN9B	Cercaria	Canada: Alberta, Buffalo Lake	Stagnicola elodes	Unidentified	KY207583 [§]	Gordy, M.A., et al., 2017, Parasitol. Res. 116(8): 2181-98.
		Cercaria	Canada: Alberta, Buffalo Lake	Stagnicola elodes	Unidentified	MH369790, MH369791, MH369792	Present study
	Australapatemon sp. LIN10	Cercaria	Canada: Alberta, Gull Lake	Stagnicola elodes	Unidentified	MH369793	Present study
							(Continues)

	es, J.C., 2-1753	arasitol.		., 1981, J.	.P, 2003,	.lo		., 1986,	(Continues)
Reference	Sankurathri, C.S. and Holm 1976, Can. J. Zool. 54:174:	Gordy, M.A., et al., 2016, Pa Res. 115(10): 3867-80.	Present study	Leong, T.S. and Holmes, J.C Fish Biol. 18:693-713	Baldwin, R.E. and Goater, C JP, 89(2):215-225	Vermeer, K. 1969, Can. J. Z(47:267-270	Present study	Bush, A.O. and Holmes, J.C Can. J. Zool. 64:132-141	Present study
GenBank Accession Number(s)		KT831347 ⁵	MH369478, MH369480, MH369484, MH369485, MH369486, MH369487, MH369488, MH369489, MH369490, MH369491, MH369492, MH369497, MH369494, MH369495, MH369496, MH369502, MH369498, MH369500, MH369501, MH369502, MH369503, MH369504, MH369505, MH369502, MH369510, MH369511, MH369516, MH369532, MH369538, MH369539, MH369544, MH369557, MH369538, MH369539, MH369544, MH369557, MH3695537, MH369601				MH369519		МН369479, МН369481, МН369515, МН369530, МН369531, МН369553, МН369564
Definitive /Other Host	Unidentified	Unidentified	Unidentified	White sucker, Whitefish, Cisco	Various fish species	Ring-billed Gulls	Unidentified	Lesser Scaup	Unidentified
Snail Host Species	Physa gyrina	Stagnicola elodes	Stagnicola elodes, Helisoma trivolvis (MGC205)	Unidentified	Unidentified	Unidentified	Stagnicola elodes	Unidentified	Stagnicola elodes
Locations	Lake Wabamun (114.35'W, 53.32'N)	Canada: Alberta, Gull Lake	Canada: Alberta, Gull Lake, Isle Lake, Lac La Nonne Nonne	Cold Lake (54.30'N, 110W)	Big Fish Lake, Caribou Lake, Eva Lake, Fleming Lake, Margaret Lake, Pitchimi Lake, Semo Lake, Sucker Lake, Wentzel Lake	Beaverhill Lake (53.30'N, 112.30'W) and Miquelon Lake (53.15'N, 112.55'W)	Canada: Alberta, Isle Lake	13 Lakes in Alberta	Canada: Alberta, Buffalo Lake, Gull Lake, Isle Lake, Lac La Nonne
Life Cycle Stage	Cercaria/ Metacercaria	Cercaria	Cercaria	Larval	Larval	Adult	Cercaria	Adult	Cercaria
Trematode Species	Cercariae douglasi	Cotylurus cornutus		Cotylurus erraticus			Cotylurus flabelliformis	Cotylurus hebraicus	Cotylurus marcogliesei
Family									

rence	int study	y, M.A., et al., 2016, Parasitol. 115(10): 3867-80.	int study	int study	.nt study	int study	int study	int study	erg, S.R., Bursey, C.R., and ng, C., 2002, Northwest Science,)
Refe	Prese	Gord	Prese	Prese	Prese	Prese	Prese	Prese	Goldt Woi 76(1
GenBank Accession Number(s)	MH369517, MH369518, MH369525, MH369526, MH369527, MH369528, MH369529, MH369560, MH369571, MH369572, MH369574, MH369575, MH369577, MH369583, MH369584, MH369587 MH369588, MH369590, MH369595, MH369596, MH369599, MH369600	KT831371 [§]	MH369513, MH369520, MH369521, MH369522, MH369523, MH369524, MH369533, MH369537, MH369541, MH369542, MH369543, MH3695445, MH369546, MH369554, MH369552, MH369554, MH369550, MH369556, MH369552, MH369559, MH369555, MH369556, MH369558, MH369559, MH369556, MH369556, MH369558, MH369559, MH369556, MH369556, MH369558, MH369559, MH369556, MH369560, MH369551, MH3695582, MH369559, MH369580, MH369591, MH3695544, MH369598, MH369589, MH369591, MH3695544, MH369598, MH369589, MH369591, MH3695544,	MH369586	МН369563, МН369566, МН369576	MH369592	MH369482, MH369483, MH369499, MH369506, MH369507, MH369508, MH369534, MH369535, MH369536, MH369540, MH369565, MH369593	MH369512, MH369514, MH369567, MH369568, MH369569, MH369570	
Definitive /Other Host	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Unidentified	Western Chorus Frog
Snail Host Species	Physa gyrina	Stagnicola elodes	Stagnicola elodes, Physa gyrina (MGC1962)	Physa gyrina	Lymnaea stagnalis	Physa gyrina	Stagnicola elodes	Lymnaea stagnalis	Unidentified
Locations	Canada: Alberta, Buffalo Lake, Wábamun Lake, Isle Lake, Lac La Nonne	Canada: Alberta, Isle Lake	Canada: Alberta, Isle Lake, Lac La Nonne, Wabamun	Canada: Alberta, Isle Lake	Canada: Alberta, Buffalo Lake	Canada: Alberta, Buffalo Lake	Canada: Alberta, Buffalo Lake, Gull Lake, Isle Lake, Lac La Nonne	Canada: Alberta, Buffalo Lake, Wabamun Lake	Eastern Alberta
Life Cycle Stage	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Cercaria	Adult
Trematode Species	Cotylurus strigeoides	Cotylurus sp. A		Cotylurus sp. B	Cotylurus sp. C	Cotylurus sp. D	CotMurus sp. E	Cotylurus sp. F	Choledocystus pennsylvaniensis
Family									Unknown

⁵Sequence updated in present study

TABLE A14 (Continued)