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Abstract10

Cytotoxic T lymphocytes (CTLs) are important in controlling some viral infections, and therapies11

involving transfer of large numbers of cancer-specific CTLs have been successfully used to treat12

several types of cancers in humans. While molecular mechanisms of how CTLs kill their targets are13

relatively well understood we still lack solid quantitative understanding of the kinetics and efficiency14

at which CTLs kill their targets in different conditions. Collagen-fibrin gel-based assays provide a15

tissue-like environment for the migration of CTLs, making them an attractive system to study the16

cytotoxicity in vitro. Budhu et al. [1] systematically varied the number of peptide (SIINFEKL)-17

pulsed B16 melanoma cells and SIINFEKL-specific CTLs (OT-1) and measured remaining targets at18

different times after target and CTL co-inoculation into collagen-fibrin gels. The authors proposed19

that their data were consistent with a simple model in which tumors grow exponentially and are20

killed by CTLs at a per capita rate proportional to the CTL density in the gel. By fitting several21

alternative mathematical models to these data we found that this simple “exponential-growth-mass-22

action-killing” model does not precisely fit the data. However, determining the best fit model proved23

difficult because the best performing model was dependent on the specific dataset chosen for the24

analysis. When considering all data that include biologically realistic CTL concentrations (E ≤25

107 cell/ml) the model in which tumors grow exponentially and CTLs suppress tumor’s growth non-26

lytically and kill tumors according to the mass-action law (SiGMA model) fitted the data with27

best quality. Results of power analysis suggested that longer experiments (∼ 3 − 4 days) with 428

measurements of B16 tumor cell concentrations for a range of CTL concentrations would best allow29

to discriminate between alternative models. Taken together, our results suggest that interactions30

between tumors and CTLs in collagen-fibrin gels are more complex than a simple exponential-growth-31

mass-action killing model and provide support for the hypothesis that CTLs impact on tumors may32

go beyond direct cytotoxicity.33

Abbreviations: CTLs – cytotoxic T lymphocytes, MA - mass action, Sat - saturation, SiGMA34

- suppression in growth with mass action in killing.35
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Introduction36

Cytotoxic T lymphocytes (CTLs) are important in controlling some viral infections and tumors [2, 3].37

CTLs exhibit such control via several complimentary mechanisms among which direct cytotoxicity,38

the ability of CTLs to kill virus-infected or tumor (target) cells, is important. Killing of a target39

cell by a CTL in vivo is a multi-step process: 1) CTL must migrate to the site where the target is40

located, 2) CTL must recognize the target (typically by the T cell receptor (TCR) on the surface41

of T cells binding to the specific antigen presented on the surface of the target cell), 3) CTL must42

form a cytotoxic synapse with the target, and 4) CTL must induce apoptosis of the target cell by43

secreting effector molecules (e.g., perforin and granzymes) or through Fas/Fas-ligand interactions44

[4–8]. The relative contribution of these steps to the efficiency at which a population of CTLs kill45

their targets in vivo remains poorly understood especially in complex tissues. Improving efficacy of46

cancer based immunotherapies such as adoptive transfer of cancer-specific T cells will likely come47

from better understanding of a relative contribution of these processes to tumor control [9].48

Many previous studies have provided quantitative insights into how CTLs eliminate their targets in49

vitro. First insights came from generating conjugates between target cells and CTLs and quantifying50

how quickly a target cell dies when either being bound by different number of CTLs, or when one CTL51

is bound to different targets [10–17]. Further in vitro studies highlighted that killing by CTLs may52

kill multiple targets rapidly [18–20] but also highlighted heterogeneity in efficacy at which individual53

CTLs kill their targets [21, 22]. Interestingly, killing of tumor cells in vitro may take long time54

(hours) with speed and turning being important in determining the likelihood that a CTL will find55

and kill the target [23, 24]. One study suggested that killing of targets in vitro may follow the law56

of mass-action [25]. Killing efficiency of CTLs has been also evaluated in so-called chromium release57

assays that have been a standard method in immunology to measure T cell cytotoxicity in vitro58

[26–33].59

Evaluating killing efficacy of CTLs in vivo is challenging. One approach to evaluate how a60

population of CTLs eliminates targets in vivo has been to perform in vivo cytotoxicity assay [34].61

In the assay two populations of cells, one pulsed with a specific peptide and another one being a62

control, are transferred into mice carrying peptide-specific CTLs, and the relative percent of peptide-63

pulsed targets is determined in a given tissue (typically spleen) after different times after target cell64

transfer [34–36]. Different mathematical models have been developed to determine specific terms65

describing how CTLs kill their targets and to estimate CTL killing efficacy; such estimates varied66

orders of magnitude between different studies often using similar or even same data [37–44]. One67

study suggested that mass-action killing term is fully consistent with data from different in vivo68

cytotoxicity experiments [42] while other studies based on theoretical arguments suggested that69

killing should saturate at high CTL or target cell densities [38, 45, 46].70

Intravital imaging has provided additional insights into how CTLs kill their targets [47, 48]. One71

pioneering study followed interactions between peptide-pulsed B cells and peptide-specific CTLs in72

lymph nodes of mice and found that CTLs and their targets form stable conjugates and move together73

until the target stops and dies, presumably due to the lethal hit delivered by the CTL [49]. This74

and other studies revealed that to kill a target in vivo, CTLs either need to interact with the target75

for a long time or multiple CTLs must contact a target to ensure its death [3, 50–55]. Interestingly,76

killing of tumor cells or cells, infected with Plasmodium parasites, required hours that is longer than77

the killing time estimated from in vivo cytotoxicity assays [40, 51, 52, 55, 56]. This may be due to78

different levels of presented antigens (pulsed with a high concentration of a cognate peptide targets vs.79
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targets expressing exogenous antigens) but may be also due to differences in intrinsic killing abilities80

of different T cells. Mathematical modeling provided quantification of how CTLs kill their targets81

and of various artifacts arising in intravital imaging experiments (e.g., zombie contracts) [57, 58]; we82

have recently suggested that killing efficacy of individual Plasmodium-specific CTLs is too low to83

rapidly eliminate a Plasmodium liver stage highlighting the importance of clusters of CTLs around84

the parasite for its efficient elimination [56].85

Even though studying how CTLs kill their targets in vivo is ideal, such experiments are expensive,86

time-consuming, and low throughput. On the other hand, traditional in vitro experiments (e.g., on87

plates or in wells) suffer from the limitation that CTLs and targets do not efficiently migrate on flat88

surfaces as they do in vivo in many tissues. Collagen-fibrin gels have been proposed as a useful in89

vitro system to study CTL and target cell interactions that allows to better represent complex 3D90

environment of the tissues with low cost and higher throughput [1, 59, 60]. CTLs readily migrate in91

these gels with speeds similar to that of T cells in some tissues in vivo [61]. One recent study measured92

how CTLs, derived from transgenic mice whose TCRs are all specific for the peptide SIINFEKL (from93

chicken ovalbumin), can eliminate SIINFEKL peptide pulsed B16 tumor cells in collagen-fibrin gels94

[1]. Interestingly, the rate at which tumor cells were lost from the gel was linearly dependent on the95

concentration of CTLs in the gel (varied from 0 to 107 cells/ml) and was independent of the number96

of B16 tumor cells deposited in the gel [1]. This result suggested that the killing of B16 tumor cells97

in collagen-fibrin gels follows the law of mass-action, and given that the population of B16 tumor98

cells grew exponentially with time, the authors proposed that 3.5× 105 cell/ml of CTLs are required99

to prevent B16 tumor cell accumulation in gels.100

In this paper we more rigorously re-analyzed data published by Budhu et al. [1] along with two101

additional previously unpublished datasets on CTL killing of B16 tumor cells in collagen-fibrin gels.102

We found that the simple exponential growth and mass-action killing model never provided the best fit103

of the data, and which model (out of 4 tested) fitted the data best was dependent on the specific subset104

of the data used for the analysis. The model in which CTLs reduce the growth rate of B16 tumor cells105

and kill the tumors via a mass-action law (proportional to concentrations of the CTLs and tumors)106

fitted one largest dataset (431 gels) with best quality. Importantly, the type of the killing term was107

critical in predicting CTL concentration that would be needed to eliminate most of the tumor cells108

within a defined time period (100 days) suggesting the need for future experiments. Following our109

recent framework for experimental power analyses [62] we simulated various experimental designs110

and found that some designs would better allow to discriminate between alternative mathematical111

models of CTL-mediated control of B16 tumor cells, and thus, will allow to better predict how many112

CTLs are needed for tumor control.113

Materials and methods114

Experimental details and data115

All main details of experimental design are provided in the previous publication [1]. In short, 103−106
116

SIINFEKL-pulsed B16 melanoma tumor cells (=104 − 107 cell/ml) were inoculated alone or with117

103 − 106 (equivalent to 104 − 107 cell/ml) of activated OT1 T cells (CTLs) into individual wells118

containing collagen-fibrin gels. At different times after co-inoculation of cells, gels were digested,119
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and the resulting solution was diluted 101 − 103 fold (depending on the initial targeted B16 cell120

concentration) in growth medium, and the number of surviving B16 cells in each gel was counted [1].121

The data are thus given as the concentration of B16 tumor cells (in cell/ml) surviving in the gels by122

a given time. Budhu et al. [1] provided us with the data from their published experiments (Datasets123

1, 2, and 3) as well as two additional unpublished datasets (Datasets 4 and 5).124

1. Dataset 1 (growth): SIINFEKL-pulsed B16 melanoma cells were inoculated in a 3D collagen-125

I-fibrin gels with target initial concentrations of 103, 104, or 105 cells/ml and no OT1 cells. The126

surviving B16 cells were measured at 0, 24, 48, and 72 hours after inoculation into gels. The127

total number of data points n = 70 (Supplemental Figure S1A).128

2. Dataset 2 (short-term growth and killing): SIINFEKL-pulsed B16 melanoma cells were in-129

oculated with target initial concentrations 104, 105, or 106 cells/ml each with activated CD8+
130

OT1 cells with concentrations 0, 104, 105, 106, or 107 cells/ml. The surviving B16 cell numbers131

were measured at 0 and 24 hours. The total number of data points n = 175 (Supplemental132

Figure S1B).133

3. Dataset 3 (long-term growth and killing): SIINFEKL-pulsed B16 melanoma cells were in-134

oculated with target initial concentrations 106 or 108 cells/ml each with OT1 T cells with135

concentrations 0, 106, or 107 cells/ml. Gels with B16 cell concentration of 108 cells/ml were136

unstable, and thus was not included in the analysis. Measurements of surviving B16 cells were137

done at at 0, 24, 48, 72, and 96 hours post inoculation into gels. The total number of data138

points n = 96 (Supplemental Figure S1C).139

4. Dataset 4 (growth and killing in the first 24 hours): In this previously unpublished dataset,140

SIINFEKL-pulsed B16 melanoma cells were co-inoculated into gels with the target initial con-141

centration of 105 cell/ml and with OT1 T cells at the concentrations 0, 106, or 107 cell/ml.142

Surviving B16 cells were measured at 0, 4, 8, 12, and 24 hours post-inoculation into gels. The143

total number of data points n = 90 (Supplemental Figure S1D).144

5. Dataset 5 (killing at a high CTL concentration): In this previously unpublished dataset,145

SIINFEKL-pulsed B16 melanoma cells were co-inoculated into gels at the target initial con-146

centration 105 cells/ml and with OT1 cells at concentrations 0 or 108 cells/ml. Surviving B16147

cells were measured at 0 and 24 hours. The total number of data points n = 7 (Supplemental148

Figure S1E).149

Experiments generating data for Datasets 1-4 were repeated three times (Experiments 1, 2, and 3),150

and each measurement was performed in duplicate [1]. These experimental duplicates were prepared151

for each experimental condition and at the specific time point each of the two gels was lysed, diluted,152

and the cells from each gel were plated into two 65 × 15 mm2 plates. Experiment generating Dataset153

5 was performed once.154

Mathematical models155

Mathematical models to explain tumor dynamics. Given previous observations of Budhu156

et al. [1] we assume that B16 melanoma (tumor) cells grow exponentially and are killed by OT1157
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Figure 1: A schematic representation of the four main alternative models fitted to data on the
dynamics of B16 tumor cells. These models are as follows: (A): an exponential growth of tumors and a
mass-action killing by CTLs (MA) model (eqn. (3)); (B): an exponential growth of tumors and saturation in
killing by CTLs (Saturation or Sat) model (eqn. (4)); (C) an exponential growth of tumors and killing by
CTLs in accord with a powerlaw (Power) model (eqn. (5)); and (D) an exponential growth of tumors with
CTL-dependent suppression of the growth and mass-action killing of tumors by CTLs (SiGMA) model
(eqn. (6)). The tumor growth rate r is shown on the top of the cyan spheres which represent the B16
tumor cells T . For the suppression in growth model with a mass-action term in killing (D,“SiGMA”), the
E dependent suppression rate is presented over the green arrow. The killing rate k for each model is shown
in the blue arrow pointing downwards. For example, the Power model is shown by a constant growth rate
r with the death rate of the tumors by E CTLs is kEn.

CD8+ T cells (CTLs) at a rate proportional to the density of tumors. The change in the B16 cell158

concentration (T ) over time is then described by a differential equation of the general form159

dT

dt
= fg(E)T − fk(E)T, (1)

where fg(E) is the per capita growth rate and fk(E) is the death rate of tumors, and E is the CTL160

concentration. When E is constant, the general solution of this equation can be written as161

lnT (t) = ln

(
Ta
α

)
+ (fg(E)− fk(E))t, (2)

where we let T (0) = Ta/α be the initial count which depends on the target B16 tumor cell concen-162

tration Ta subject to a scaling factor α. It was typical to recover somewhat lower B16 cell numbers163

from the gel than it was targeted. For example, when targeting 104 B16 tumor cells per ml in a gel164

it was typical to recover ∼ 4× 103 cells/ml at time 0 (e.g., Supplemental Figure S1A).165

The simplest exponential growth and mass-action killing (MA) model assumes that tumors grow166

exponentially and are killed by CTLs at the rate proportional to CTL density (fg(E) = r and167

4
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fk(E) = kE, Figure 1A). Using eqn. (2) change in the density of targets over time is given by168

lnT (t) = ln

(
Ta
α

)
+ (r − kE)t, (3)

This model has three parameters (r, k, and α) to be estimated from the data.169

The second “saturation” (Sat) model assumes that tumors grow exponentially and are killed by170

CTLs at a rate that saturates at high CTL densities (fg(E) = r and fk(E) = kE
h+E

, Figure 1B).171

Using eqn. (2) its solution is172

lnT (t) = ln

(
Ta
α

)
+

(
r − kE

h+ E

)
t, (4)

This model has 4 parameters (r, k, h, and α) to be estimated from the data.173

The third “Power” model assumes that grow exponentially and are killed by CTLs at a rate that174

scales as a power law with CTL density (fg(E) = r and fk(E) = kEn, Figure 1C). Using eqn. (2)175

its solution is176

lnT (t) = ln

(
Ta
α

)
+ (r − kEn) t, (5)

This model has 4 parameters (r, k, n, and α) to be estimated from the data.177

In the fourth suppression-in-growth with mass-action-killing (SiGMA) model we assume that178

CTLs suppress growth rate of the tumor and kill the tumors according to mass-action law (fg(E) =179

g0 + g1

1+E/g2
and fk(E) = kE, Figure 1D). Using eqn. (2) its solution is180

lnT (t) = ln

(
Ta
α

)
+

(
g0 +

g1

1 + E/g2

− kE
)
t, (6)

where g0 is the B16 tumor growth rate that is independent of the CTLs, and g1 the tumor growth181

rate that can be reduced by CTLs via non-lytic means, and g2 is the density of CTLs at which the182

growth rate g2 is reduced to half of its maximal value due to CTL activity. Note that in this model183

the rate of tumor cell replication in the absence of CTLs is r = g0 + g1. This model has 5 parameters184

(g0, g1, g2, k, and α) to be estimated from the data.185

Estimating initial density of tumor cells in gels. In the general solution (eqn. (2)) we186

assumed that initial tumor density is proportional to the density targeted in experiments scaled by187

a factor α. We found that recovered concentrations of B16 tumor cells from gels at time t = 0188

were consistently lower than the targeted value, and such reduction was approximately similar for189

different initial B16 concentrations (results not shown). Experimentally, this may arise because the190

clonogenic assay used to count the number of B16 tumor cells in the gels are not 100% efficient191

(results not shown). To check if assuming identical scaling factor α for the initial B16 concentration192

in different experiments we tested an alternative model where we assumed different α for different193
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B16 cell concentrations. In this varying α model the first term in eqn. (2) can be written as ln
(
Tai
αi

)
194

where i denotes the targeted B16 cell concentration. For example, a dataset containing targeted195

B16 concentrations of 105, 106 and 107 cell/ml would have three α: α1, α2 and α3, respectively.196

For fitting the model with dataset-dependent α we used the function MultiNonlinearModelFit in197

Mathematica. We found that allowing α to vary between different targeted B16 concentrations when198

fitting the SiGMA model to Datasets 1-4 marginally improved the model fit (χ2
4 = 9.5, p = 0.02) but199

did not influence estimates of other parameters (Table S2); in our following analyses we therefore200

opted for the simpler model with a single scaling parameter α.201

Time to kill 90% of targets. To evaluate efficacy of CTL-mediated control of tumors we202

calculated the time it takes to kill 90% of tumors initially present. For every model (eqns. (3)–(6))203

we solve an equation fg(E)t90− fk(E)t90 = ln(0.1) to find time t90 in terms of CTL concentration E:204

t90(E) =
ln(10)

fk(E)− fg(E)
. (7)

Models to explain tumor growth in the first 24 hours after inoculation into gels. In205

new experiments (Dataset 4) we found that growth of the tumors in the first 24 hours after inoculation206

into the gels may not follow a simple exponential curve. Experimentally, this delay may be due to207

the tumor cells adjusting to the gel environment. In order to explain this dynamics we propose two208

additional models. As a first alternative (Alt 1) model, we allow for a natural death of B16 tumor209

cells and then after a delay growth starts. The motivation for this new growth function comes from an210

algebraic sigmoid function which changes sign from a constant negative value to a constant positive211

value. The change in the concentration of B16 tumor cells in the absence of CTLs is given by212

lnT (t) = ln

(
Ta
α

)
+ r
√

1 + (t− t′)2, (8)

where the constant t′ quantifies the time at which this change in sign happens. This model has 3213

parameters (α, r, and t′) to be estimated from the data.214

As the second alternative (Alt 2) model, we consider a mechanistic explanation of the non-linear215

dynamics of the tumor cells. We assume that a fraction fd of B16 tumor cells die at rate d and the216

rest (1− fd) grow at rate r. The model can be described by the following equations217

T (t) = fd

(
Ta
α

)
e−dt + (1− fd)

(
Ta
α

)
ert, (9)

where d is the death rate of the fd subset of tumor cells. This model has 4 parameters (α, fd, d, and218

r) to be estimated from the data.219

Statistics220

Natural log-transformed solutions of the models were fitted to the natural log of measured concentra-221

tions of B16 tumor cells using least squares. In the data there were 13 gels (out of 451) that had 0 B16222
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tumor cells recovered; these data were excluded from most of the analyses. The regression analyses223

were performed using function NonlinearModelFit in Mathematica (ver 11.3.0.0). For every model224

we calculated AIC and ∆AIC as225

∆AICi = AICi −min{AICi}, (10)

where subscript i denotes the model and ’min’ denotes the minimum for all the models [63]. The226

Akaike weight for the model i was calculated as227

wi =
e−∆AICi/2∑
i e
−∆AICi/2

. (11)

To evaluate the appropriateness of assumptions of least squares-based regressions we analyzed228

residuals of best fits by visual inspection and using Shapiro-Wilk normality test using the function229

ShapiroWilkTest in Mathematica.230

Results231

Experiments to measure how CTLs kill targets in collagen-fibrin gels. To estimate the den-232

sity of tumor-specific CTLs needed to control growth of B16 tumor cells, Budhu et al. [1] performed233

a series of experiments in which variable numbers of SIINFEKL peptide-pulsed B16 tumor cells and234

SIINFEKL-specific CTLs (activated OT1 CD8 T cells) were co-inoculated in collagen-fibrin gels and235

the number of surviving tumor cells was calculated at different time points (see Supplemental Fig-236

ure S1 and Materials and methods for more detail). In the absence of CTLs (Dataset 1), B16 tumor237

cells grew exponentially with the growth rate being approximately independent of the initial tumor238

density (Supplemental Figure S1A). Short-term (24 hours) experiments (Dataset 2) showed that239

when the density of CTLs exceeds 106 cell/ml, the density of B16 cells declines in 24 hours, suggest-240

ing that the killing rate of the tumors exceeds their replication rate (Supplemental Figure S1B).241

Longer (96 hours) experiments (Dataset 3) showed that at high CTL densities (> 106 cell/ml)242

the number of B16 targets recovered from gels declines approximately exponentially with time; in-243

terestingly, however, at an intermediate density of CTLs and B16 tumor cells of 106 cells/ml, B16244

cells initially decline but then rebound and accumulate (Supplemental Figure S1C). Previously245

unpublished experiments (Datasets 4-5) showed a similar impact of increasing CTL density on the246

B16 tumor dynamics during short-term (24h) experiments (Supplemental Figure S1D-E). Budhu247

et al. [1] concluded that the data from short- and long-term experiments (Supplemental Figure248

S1A-C) are consistent with the model in which the number of B16 tumor cells grows exponentially249

due to cell division and are killed by CTLs at a mass-action rate (proportional to the density of250

targets and CTLs). Budhu et al. [1] also concluded that density of 3.5× 105 cells/ml was critical for251

overall clearance of B16 tumor cells in collagen-fibrin gels.252

A simple exponential-growth-and-mass-action-killing model is not consistent with253

the data. The conclusion that a simple model with exponentially growing tumors and killing of254

the tumors by CTL via mass-action law (MA model, Figure 1A) was based on simple regression255

analyses of individual datasets (e.g., Dataset 1 or 3). To more rigorously investigate we proposed three256
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additional models that made different assumptions of how CTLs impact B16 tumor cells including257

i) saturation in killing rate (Sat model, eqn. (4) and Figure 1B), ii) nonlinear change in the death258

rate of tumors with increasing CTL concentrations (Power model, eqn. (5) and Figure 1C), and iii)259

reduction in the tumor growth rate with increasing CTL concentrations and mass-action killing term260

(SiGMA model, eqn. (6) and Figure 1D). We then fitted these models including the MA model to261

all the data that in total includes 438 measurements (and excluded 13 gels with zero B16 tumor cells,262

see Materials and Methods for more detail). These data included two new unpublished datasets263

(Dataset 4 and 5) including the B16 tumor dynamics at physiologically high CTL concentrations264

(E = 108 cell/ml, Supplemental Figure S1E). Interestingly, we found that the MA model fit these265

data with least accuracy while the Sat model (with a saturated killing rate) fitted the data best266

(Supplemental Table S1). Saturation in the killing rate by CTLs is perhaps not surprising in the267

full dataset given that in the Dataset 5 two gels inoculated with 105 B16 tumor cells and 108 cell/ml268

CTLs still contained B16 tumor cells at 24 hours (Supplemental Figure S1E). Because 108 cells/ml269

is physiologically unrealistic density of CTLs in vivo, for most of our following analyses we excluded270

the Dataset 5.271

Importantly, the MA model was still the least accurate at describing the data from Datasets272

1-4 which is visually clear from the model fits of the data as well as from statistical comparison of273

alternative models using AIC (Figure 2 and Table 1). In contrast, the SiGMA model provided the274

best fit (Table 1). The SiGMA model is unique because it suggests that in these experiments CTLs275

impact tumor accumulation not only by killing the tumors but also by slowing down tumor rate of276

growth from the maximal value of r = g0 + g1 = 0.76/day to the minimal g0 = 0.12/day already277

at moderate CTL concentrations (E ≈ 104 cell/ml, Table 1). It is well recognized that CTLs are278

able to produce large amounts of interferon-gamma (IFNg) that may directly inhibit tumor growth,279

especially of IFNg-receptor expressing cells [64–66]. Interestingly, while statistically the Sat and280

Power models fit the data worse than the SiGMA model, visually the fits of these three models are281

very similar (Figure 2). Furthermore, at high CTL concentrations (E = 107 cell/ml) all four models282

provide fits of a similar quality (Figure 2E).283

It is important to note that even the best fit SiGMA model did not accurately describe all the284

data. For example, the model over-predicts the B16 counts at 24 hours for OT1 concentrations 104
285

and 105 cells/ml (Figure 2B&C) and under-predicts the B16 counts at 96 hours in growth (Figure286

2A) and at 72 hours for OT1 concentrations 107 cells/ml (Figure 2E).287

To intuitively understand why the MA model did not fit the data well we performed several regres-288

sion analyses. Specifically, for every CTL and B16 tumor cell concentrations we calculated the net289

growth rate of the tumors rnet (Figure S1); in cases of several different targeted B16 concentrations290

we calculated the average net growth rate. In the absence of CTLs, the net growth rate of tumor cells291

was r0 = 0.62/day (Figure S2). Then for every CTL concentration we calculated the death rate of292

B16 tumor cells due to CTL killing as K = r0 − rnet. For the MA model, the death rate K should293

scale linearly with the CTL concentration [42], however, we found that this was not the case for294

B16 tumor cells in gels where the death rate scaled sublinearly with the CTL concentration (Figure295

S2). Importantly, this analysis also illustrates that at low CTL concentrations (104 − 105 cell/ml)296

we observe a much higher death rate of targets than expected at the power n = 0.57 (Figure S2).297

This indirectly supports the SiGMA model that predicts a higher (apparent) death rate of targets at298

low CTL concentrations due to reduced tumor’s growth rate.299

One feature of these experimental data is that the recovery of the B16 tumor cells from the gels was300
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Figure 2: The model assuming exponential growth of B16 tumor cells and mass-action killing
by CTLs is not consistent with the B16 tumor dynamics. We fitted mass-action killing (MA, eqn.
(3) and Figure 1A), saturated killing (Sat, eqn. (4) and Figure 1B), powerlaw killing (Power, eqn. (5)
and Figure 1C), and saturation in growth and mass-action killing (SiGMA, eqn. (6) and Figure 1D)
models to data (Datasets 1-4) that includes all our available data with CTL densities ≤ 107 cells/ml (see
Materials and Methods for more detail). The data are shown by markers and lines are predictions of the
models. We show model fits for data for (A): OT1 = 0, (B): OT1 = 104 cell/ml, (C): OT1 = 105 cell/ml,
(D): OT1 = 106 cell/ml, and (E): OT1 = 107 cell/ml. Parameters of the best fit models and measures of
relative model fit quality are given in Table 1; Akaike weights w for the model fits are shown in panel A.
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Datasets 1-4 (E ≤ 107 cell/ml): n=431

Model α r, 1/day k h n g0 g1 g2 SSR AIC ∆AIC w

MA 2.77 0.576 3.79× 10−7 164 814 160 0

Sat 2.81 0.744 6 5.34× 106 118.5 677 23 0

Power 2.79 0.744 2.23× 10−4 0.606 116 668 14 0

SiGMA 2.71 3.29× 10−7 0.12 0.64 6715 112 654 0 1

Table 1: Parameters of the 4 alternative models fitted to Datasets 1-4 (excluding data with
CTL = 108 cell/ml) and metrics of quality of the model fits. Estimated parameters: α is a di-
mensionless scaling factor, r is given in the units of per day, h is in cells/ml, g1 is in per day and g2 is
in cells/ml. The parameter k have different units in different models: per OT1 cells/ml per day, per day,
per OT1 (cells/ml)n per day and per OT1 cells/ml per day for MA (eqn. (3)), Sat (eqn. (4)), Power (eqn.
(5)) and SiGMA (eqn. (6)), respectively, and n is a dimensionless parameter. Parameter estimates and 95%
confidence intervals for the best fit SiGMA model are: α = 2.71 (2.5 − 2.9), g0 = 0.12 (0.036 − 0.2)/day,
g1 = 0.64 (0.55−0.73)/day, g2 = 6.72 (4.14−17.57)×103 cell/ml, and k = 3.3 (3.15−3.4)×10−7 ml/cell/day;
model fits are shown in Figure 2. The best fit model (with the highest w) is highlighted in blue.

typically lower than the targeted concentration that somewhat varied between different experiment301

and targeted B16 cell numbers (e.g., Supplemental Figure S1). Instead of fitting individual302

parameters to estimate the initial density of B16 tumor cells for every target B16 concentration we303

opted for an alternative approach. To predict initial concentration of B16 tumor cells we fitted a304

parameter α that scaled the targeted B16 number to the initial measured B16 concentration in the305

gel (see Materials and Methods for more detail). In separate analyses we investigated if assuming306

different α for different target B16 tumor concentrations by fitting our best fit models (for Datasets307

1-4 or Datasets 1-5) with one or 5 α (see Materials and methods for more detail and Supplemental308

Table S2). Interestingly, the SiGMA model with varying α fitted the data (Datasets 1-4) marginally309

better than model with one α (F-test for nested models, p = 0.02, Supplemental Table S2).310

Other parameters such as the B16 tumor growth rate and CTL kill/suppression rates, however, were311

similar in both fits (Supplemental Table S2). In contrast, the fits of the Sat model to all data312

(Datasets 1-5) were similar whether we assumed different or the same α for different target B16 tumor313

concentrations (p = 0.37, Table S2). Because in all cases other statistical features of the model fit314

(e.g., residuals) were similar, in most of the following analyses we considered a single parameter α in315

fitting models to the data.316

In our datasets we had in total 13 gels which did not contain any B16 tumor cells after co-317

incubation with CTLs (Supplemental Figure S1B&C); these data were excluded from the analyses318

so far. Data exclusion may generated biases, and we therefore investigated if instead of 0 B16 targets319

we assume these measurements are at the limit of detection (LOD). The true limit of detection320

was not defined in these experiments so we ran analyses assuming that LOD = 2 − 10 cell/ml.321

Importantly, inclusion of these 13 gels at the LOD did not alter our main conclusion; specifically, the322

SiGMA model remained the best model for Datasets 1-4 and the Sat model remains the best model323

when we used Datasets 1-5 (results not shown).324

The best fit model varies with chosen subset of the data. Experimental data sug-325

gest that the CTL (OT1) concentration of approximately 106 cell/ml is critical for removal of B16326

melanoma cells [1]. Specifically, at concentrations E < 106 cell/ml the tumor cell concentration327

increases (Supplemental Figure S1A-C) while at E > 106 cell/ml tumor cell concentration de-328

clines (Supplemental Figure S1B-D). The growth and death rates of the tumors are similar when329
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E ≈ 106 cells/ml and interestingly, in one dataset, the B16 tumor concentration initially declines330

but after 48h starts to increase (Supplemental Figure S1C). None of our current models could331

explain this latter pattern. To investigate if the data with CTL concentrations of 106 cell/ml may332

bias the selection of the best fit model we fitted our 4 alternative models to the data that excludes333

gels with B16 target concentrations of 105 and 106 cell/ml and CTL concentrations of 106 cell/ml334

from Dataset 3 and Dataset 4, respectively. Interestingly, for these subset of data the Power model335

fitted the data with best quality (based on AIC) predicting that the death rate of B16 tumor cells336

scales sub-linearly (n = 0.42) with CTL concentration (Supplemental Table S3). The Power337

model also provided the best fit if we included 7 additional gels from the Dataset 5 (with highest338

CTL concentrations, Supplemental Table S3). Interestingly, the MA model fitted this data subset339

with much better quality visually even though statistically the fit was still the worst out of all four340

models tested (Supplemental Table S3 and results not shown).341

We further investigated if focusing on smaller subsets of data may also result in other models342

fitting such data best. For example, in one approach we focused on fitting the models to subsets of343

data with a single target B16 tumor cell concentration (Supplemental Table S4). Interestingly, for344

B16 concentrations of 104 and 106 cell/ml, the Power model provided the best fit but for target B16345

concentration of 105 cell/ml, the Power and SiGMA models gave best fits. Including Dataset 5 in346

these analyses often led to the Sat model being the best (Supplemental Table S4). Finally, dividing347

the data into subsets for different experiments (out of 3), the Power model fitted best the data from348

Experiment 1 and 3 and SiGMA model fitted best the data from Experiment 2 (see Supplemental349

Table S5). Taken together these analyses strongly suggest that selecting the best model describing350

the dynamics of B16 tumor cells depends on the specific subset of data chosen for the analysis.351
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Figure 3: The CTL concentration needed to eliminate most B16 tumor cells depends on the
model of tumor control by CTLs. For every best fit model (Table 1) we calculated the time to kill 90%
of B16 targets for a given concentration of CTLs (eqn. (7)). For every model we also calculated the control
CTL concentration (Ec) that is required to eliminate at least 90% of the tumor cells within 100 days.

Alternative models predict different CTL concentrations needed to control tumor352

growth. Given the difficulty of accurately determining the exact model for B16 tumor growth and353

its control by CTLs one could wonder why we need to do that. To address this potential criticism354

we calculated the time (eqn. (7)) it would take for CTLs to eliminate most (90%) of tumor cells if355
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CTLs control tumor growth in accord with one of the 4 alternative models (e.g., with parameters356

given in Table 1). Interestingly, the MA model predicted the largest CTL concentration that would357

be required to eliminate most of the tumor cells in 100 days while the SiGMA model required358

the fewest (1.54 × 106cell/ml vs. 0.41 × 106cell/ml, respectively, Figure 3). The 4-fold difference359

may be clinically substantial in cancer therapies using adoptively transferred T cells (e.g., in tumor360

infiltrating lymphocyte-based therapies [67]). Interestingly, however, that the difference in predicted361

CTL concentration was somewhat similar for SiGMA and Power models that provided best fits for362

subsets of the data (Figure 3). Interestingly, the range of CTL concentrations was wider between363

alternative models fitted to subsets of the data (results not shown) further highlighting the need of364

better, more rigorous understanding how CTLs control tumor’s growth in collagen-fibrin gels.365

Mathematical models different from simple exponential growth are needed to explain366

B16 tumor dynamics in the absence of CTLs. In our analyses so far we focused on different367

ways CTLs can control growth of the B16 tumor cells which assuming that in the absence of CTLs368

tumors growth exponentially (eqns. (3)–(6)). In our new Dataset 4 in which gels were sampled at 0,369

4, 8, 12, and 24 hours after inoculation we noticed that B16 tumor cells did not grow exponentially370

early after inoculation into gels (Supplemental Figure S1D). We therefore investigated whether a371

simple model in which B16 tumor cells grow exponentially is in fact consistent with our data.372

First, we fitted the exponential growth model (eqn. (3) with E = 0) to all data from Dataset 1-5.373

Interestingly, while the model appeared to fit the data well (Figure 4A) and statistically the fit was374

reasonable (e.g., residuals normally distributed), model fits did not describe all the data accurately.375

In particular, the model over-predicted the concentration of B16 tumor cells at low (103−104 cell/ml)376

and high (108 cell/ml) targeted B16 concentrations. Lack of fit test also indicated that the model did377

not fit the data well (F20,154 = 7.12, p < 0.001). Finally, allowing the tumor growth rate to vary with378

the targeted B16 concentration resulted in a significantly improved fit (F4,170 = 19.77, p < 0.001)379

suggesting that the growth rate of B16 tumor cells in the absence of CTLs may be density-dependent380

(r0 = 0.59/day, r0 = 0.65/day, r0 = 0.64/day, and r0 = 0.85/day, r0 = −0.15/day for targeted B16381

tumor cell concentrations of 103, 104, 105, 106, and 107 cell/ml, respectively, and α = 2.48).382

Second, we noticed that in our new dataset with B16 tumor growth kinetics recorded in the383

first 24 hours after inoculation into gels (Dataset 4) does not follow a simple exponential increase384

(Supplemental Figure S1D). Instead, there is appreciable decline and then increase in the B16385

cell concentration. We therefore fitted an exponential growth (EG) model along with two alternative386

models that allow for non-monotonic dynamics – i) a phenomenological model (eqn. (8)), and ii) a387

mechanistic model allowing for 2 sub-populations of tumor cells, one dying and another growing over388

time (eqn. (9)). Interestingly, while the EG model did not fit the data well, either of the alternative389

models described the data relatively well (Figure 4). These analyses thus strongly suggest that the390

dynamics of B16 tumor cells in collagen-fibrin gels in the absence of CTLs are not consistent with a391

simple exponential growth model.392

Experiments with several measurements of B16 tumor concentrations at specifically393

chosen CTL densities will best allow to discriminate between alternative models. In394

several alternative analyses we found that the best model describing the dynamics B16 tumor cells395

in collagen fibrin gels depends on specific dataset chosen for the analysis. It is unclear why this may396

be the case. One potential explanation is that individual datasets are not balanced, some have more397

measurements but on a shorter time scale while others are of a longer duration with fewer replicates.398

Because the exact mechanism of how CTLs impact tumor dynamics is important in predicting the399
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Figure 4: Pure exponential growth (EG) model is not consistent with the data on B16 tumor
dynamics in the absence of CTLs. (A): we fitted with an exponential growth model (eqn. (3) with
E = 0) to data on B16 growth from all datasets 1-5 with OT1 = 0. The best fit values for the parameters
along with 95% confidence intervals are: α = 2.6 (2.4− 2.8) and r = 0.74 (0.69− 0.79)/day. (B): we fitted
exponential growth and two alternative models (eqn. (3) with E = 0 and eqns. (8)–(9)) to the data from
Dataset 4 for which OT1 = 0. The relative quality of the model fits is shown by Akaike weights w (see
Table S6 for model parameters and other fit quality metrics). The data are shown by markers and model
predictions are shown by lines.

concentration of CTLs needed for tumor elimination (Figure 3), we next sought to determine whether400

specific experimental designs may be better suited to discriminate between alternative models [62].401

We therefore performed stochastic simulations to generate “synthetic” data from a given assumed402

model for different experimental designs and tested whether by fitting alternative models to the403

synthetic data we can recover the model used to generate the data.404

We considered three different designs and compared two types within each design.405

• Design D1: Two time point experiment (Type A) vs four time point experiment (Type B).406

The two time point experiment have 48 observations. B16 target concentrations are 103, 104,407

105, 105, 106, 107, 108 cells/ml, OT1 concentrations are 0, 105, 106, 107 cells/ml and time408

points are 0 and 24 hours. The four time point experiment have 48 observations. B16 target409

concentrations are 105, 106, 107 cells/ml, OT1 concentrations are 0, 105, 106, 107 cells/ml and410

time points are 0, 24, 48, 72 hours.411

• Design D2: Short-term experiment (Type A) vs long-term experiment (Type B). The short412

time experiment have 48 observations. B16 target concentrations are 105, 106, 107, OT1 con-413

centrations are 0, 105, 106, 107 cells/ml and time points are 0, 8, 16, 24 hours. The long time414

experiment have 48 observations. B16 target concentrations are 105, 106, 107 cells/ml, OT1415

concentrations are 0, 105, 106, 107 cells/ml, and time points are 0, 24, 48, 72 hours.416

• Design D3: More frequent OT1 experiment (Type A) vs less frequent OT1 experiment (Type417

B). The more frequent OT1 experiment have 40 observations. B16 target concentrations are418

105, 106 cells/ml, OT1 concentrations are 0, 5 × 105, 106, 5 × 106, 107 cells/ml and time points419

are 0, 24, 48, 72 hours. The less frequent OT1 experiment have 40 observations. B16 target420

concentrations are 105, 106 cells/ml, OT1 concentrations are 0, 104, 105, 106, 107 cells/ml and421

time points are 0, 24, 48, 72 hours.422
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Figure 5: Power analysis indicates that longer experiments with several, closely spaced CTL
concentrations would allow to best discriminate between alternative models. We performed
three sets of simulations to get insights into a hypothetical future experiment which may allow to better
discriminate between alternative mathematical models. (A): Three experimental designs are: D1 – 2 time
point vs 4 time point experiments; D2 — short time scale (0-24h) vs. long time scale (0-72h) experiments; D3
— more frequently chosen values of CTL concentrations vs less frequently chosen vales of CTL concentrations
(see Figure S5 and Materials and methods for more details). For every experimental setup we calculate
D – the determinant of a matrix formed from a simulated experimental set whose columns are constrained.
(B): We define a test measure |∆D|obs between two sets of each of D1, D2 and D3 and compare the observed
|∆D|obs with the universal null distribution of |∆D|null to compute the p-value. The values of D in red in
panel A shows the better experimental designs in the pairs.

To draw a statistical comparison between the Types A and B of the experimental designs described423

above, we first chose one of the Saturation, Power, or SiGMA models with their best fit parameters424

(Table 1) and generated 48 observations for D1 and D2, or 40 observations for D3 for each of Types425

A and B. We excluded the MA model from these analyses as it never fitted the data well. In each426

of the generated predictions we added an error randomly chosen from the list (yi − ȳt), where yi is427

the observed B16 count in the data and ȳt is the average of yi at time t. Next, we simulated 100428

replicates of such pseudo experiments, fitted the three models (Sat, Power, and SiGMA) to these429

100 replicates, and computed the Akaike weights to determine the best fit model for each replicate.430

Due to the randomly chosen error structure for these hypothetical experiments, we found substantial431

variability among these 100 replicates where the best fit model was often different from the model432

from which the identical replicates were generated. For example, generating 100 simulated datasets433

from the Saturation model, we found that the Saturation model fitted these data only in 52% cases434

while the Power model fitted the best 36% of the time and the SiGMA model 12% of the time (first435
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column of the first Type A matrix of Supplemental Figure S5D1).436

By repeating the analysis for all three models we generated a matrix of Akaike weights with437

diagonal terms being heavier than the off-diagonal terms along with a constraint that the sum of438

a column should always add up to one (see Supplemental Figure S5). In this representation,439

a better experimental design among each types has a heavier diagonal than off-diagonal elements.440

Following this rule we see that D1 (Type B), D2 (Type B) and D3 (Type A) are the better experiment441

types (Supplemental Figure S5). To show that the difference between experimental design are442

statistically significant we used a resampling approach. We defined a test statistic measure given by443

|∆D| = ||D(A)| − |D(B)||, (12)

where D is the determinant of the matrix and |∆D| is the absolute difference between two deter-444

minants. |∆D| is equivalent to a difference in volume of two 3D parallelepipeds which edges are445

the columns of a matrix. For the hypothesis testing we defined the null hypothesis as: the column446

vectors, with constraints that the sum of elements must be unity, belong to the same class for both447

the experimental designs. We performed a null distribution test and a permutation test to reject the448

null hypothesis and showed that the column vectors which constitute the experimental designs are449

significantly different.450

For the null distribution test, we randomly generated Type A and Type B sets of 106 matrices with451

their columns being normalized to unity. |∆D| was then computed for the the Types A and B which452

forms a universal null distribution. The p-value is then the number of times |∆D|null’s are greater453

than observed |∆D|obs normalized by the total number of simulations (106). The p-values for each of454

designs D1, D2 and D3 (Supplemental Figure 5B) confirms that a long time experiment with more455

time point observations and closely spaced CTL concentrations is a significantly better experimental456

design. For the permutation test, we generated three column matrices from all permutations of the six457

columns for each of designs D1, D2 and D3. The columns were chosen from the constructed matrices458

of Supplemental Figure S5. Then we randomly chose sets of two matrices for Types A and B from459

all the permutations of the previous step. |∆D|per was computed for the Types A and B which forms460

a distribution. The p-value was then the number of times the permuted |∆D|per’s are greater than461

observed |∆D|obs normalized by the total number of permuted sets (Supplemental Figure S5).462

With a permutation test we found that a long time experiment with more time point observations is463

a significantly better experiment but fail to confirm the same for closely spaced OT1 concentrations464

with statistical significance (see right panels of Supplemental Figure S5 for p-values). Taken465

together, these simulations suggest that longer experiments with at least 4 time points and a variable466

CTL concentration should provide best statistical power to discriminate between alternative models467

of B16 tumor control.468

Discussion469

Quantitative details of how CTLs kill their targets in vivo remain poorly understood. Here we470

analyzed unique data on the dynamics of SIINFEKL peptide-pulsed B16 melanoma tumor cells in471

collagen-fibrin gels – that may better represent in vivo tissue environments — in the presence of472

known numbers of SIINFEKL-specific CTLs (OT1 T cells) [1]. We found that a previously proposed473

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.534600doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.534600
http://creativecommons.org/licenses/by-nc-nd/4.0/


model in which tumors grow exponentially and are killed by CTLs proportional to the density of474

CTLs (mass-action law) did not describe the experimental data well. In contrast, the model in475

which CTLs suppress the rate of tumor replication and kill the tumors in accord with mass-action476

law fitted a subset of the data (Datasets 1-4 with physiologically relevant CTL concentrations of477

E ≤ 107 cell/ml with best quality (Table 1). This result raises an interesting hypothesis that478

control of tumors by CTLs may extend beyond direct cytotoxicity, e.g., by secretion of cytokines. In479

fact, previous observations suggested that IFNg and TNFa may suppress tumor growth in different480

conditions although the ultimate effect of these cytokines on tumor progression in vivo is inconclusive481

as IFNg may in fact improve metastasis of some tumors [64–66].482

Importantly, however, fitting the alternative models to different subsets of data resulted in dif-483

ferent best fit models, e.g., including the data with high CTL concentrations (E ≤ 108 cell/ml)484

typically predicted that the death rate of B16 tumor cells saturated at high CTL concentrations485

(Supplemental Table S1). In other cases, a power model in which the death rate of tumors scales486

sublinearly with the CTL concentration described subsets of the data best (Supplemental Table487

S3). Analysis of a new dataset on B16 tumor growth in the first 24 hours after inoculation into gels488

with no CTLs suggested that a simple exponential model does not describe these data adequately;489

instead models that allow for initial loss and then rebound in the number of B16 tumor cells was490

the best (Figure 4B). We also developed a novel methodology and proposed designs of experiments491

that may allow to better discriminate between alternative mathematical models. Our analysis sug-492

gested that longer-term experiments (0-72 hours) with 4 measurements of B16 cell concentration with493

several OT1 concentrations would have the highest statistical power (Figure 5).494

Determining the exact mechanism by which CTLs control growth of B16 tumors may go beyond495

academic interest. In T cell-based therapies for the treatment of cancer, knowing the number of T496

cells required for tumor control and elimination is important. Our analysis suggests that specific497

details of the killing term do impact the minimal CTL concentration needed to reduce the tumor size498

within a defined time period (Figure 3). Other parameters characterizing impact of CTLs on tumor499

growth may also be important (Figure 6). For example, our analysis suggests that tumor’s growth500

rate, per capita killing rate by CTLs or the overall death rate of the tumors depend differently on501

CTL concentration given the underlying model (Figure 6A-C). The latter parameter, the death rate502

of CTL targets, has been estimated in several previous studies (reviewed in [44]) and ranges from503

0.02/day to 500/day [37, 39, 40, 43, 68–72]. While our estimates are consistent with this extremely504

broad range whether killing of B16 tumor cells in collagen-fibrin gels occurs similarly to elimination505

of targets in vivo (peptide-pulsed or virus-infected cells) remains to be determined. Interestingly,506

our models predict a highly variable number of B16 tumor cells killed per day especially at low CTL507

concentrations (Figure 6D). We estimate that a relatively small number of targets are killed per508

CTL per day that is in line of previous estimates for in vivo killing of peptide-pulsed targets by509

effector or memory CD8 T cells [42, Figure 6D].510

Our work has several limitations. First, specifics of tumor cell and CTL movements in the gels511

remain poorly defined. Previous studies suggested that CTL motility in collagen-fibrin gels may be512

anisotropic creating bias in how different CTLs locate their targets [61]. Second, errors in estimating513

the number of surviving B16 tumor cells have not been quantified. For example, in some cases514

zero B16 cells were isolated from the gels while other gels in the same conditions contained tens-to-515

hundreds of cells (Supplemental Figure S1B-C). In our experience, the clonogenic assays typically516

do not allow to recover 100% of inoculated cells that is also indicated by estimated parameters α > 1.517

In fact, α = 2.8 suggests that only 1/2.8 = 35% of inoculated B16 tumor cells are typically recovered.518
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Figure 6: Metrics to quantify efficacy of CTL-mediated control of tumors are model-dependent.
For the three alternative models (Sat, Power, and SiGMA) that fitted some subsets of data with best quality
we calculated metrics that could be used to quantify impact of CTLs on tumor growth depending on the
concentration of tumor-specific CTLs. These metrics include (A): the growth rate of the tumors (fg in eqn.
(1)); (B): per capita kill rate of tumors (per 1 CTL per day, fk/E in eqn. (1)); (C): the death rate of tumors
due to CTL killing (fk in eqn. (1)). The grey box shows the range of experimentally observed death rates
of targets as observed in some previous experiments (see Discussion for more detail and [44]); (E): the total
number of tumors killed per day as the function of 3 different initial tumor cell concentrations (indicated
on the panel); and (D): the number of tumors killed per 1 CTL/ml per day. The latter two metrics were
computed by taking the difference of growth and combined killing at 24 hours. The parameters for the
models are given is Table 1 and model equations are given in eqns. (4)–(6).

In the way of how we fitted models to data (by log-transforming model predictions and the data),519

we had to exclude the gels with zero B16 tumor cells from the analysis. While this exclusion did520
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not impact our overall conclusions, future studies may need to develop methods to include 0 values521

in the analysis. Third, the density of gels may change over the course of experiment reducing the522

ability of CTLs to find their targets. Using microscopy to track tumor cells and CTLs may better523

define if the movement patterns of the cells change over time in the gel. Fourth, the dynamics of524

CTLs and loss of peptide by B6 tumor cells have not been accurately measured. In particular, we525

observed that at CTL concentration of 106 cells/ml and targeted B16 tumor cell concentration of526

106 cell/ml, after the initial decline, B16 tumor concentration rebounded (Figure S1C). Decline in527

CTL concentration with time could be one explanation; however, in other conditions, B16 tumor528

cells continue declining exponentially, arguing against a loss of CTLs in the gels. Tumor escape could529

be another explanation. Future experiments would benefit from also measuring CTL concentration530

in the gel, along with B6 tumor cells, especially in longer (48-72h) experiments. Fifth, the final531

fits of the models to data did not pass the assumption of normality as the residuals were typically532

not-normally distributed (e.g., by Shapiro-Wilk normality test). We have tried several methods533

to normalize the residuals (e.g., excluding the outliers, using arcsin(sqrt) transformation) but none534

worked. Whether non-normal residuals led to biased parameter estimates of our best fit models535

remains to be determined. Sixth and finally, we assumed that every CTL is capable of killing and536

every target is susceptible to CTL-mediated killing which may not be accurate. Indeed, the result537

that Power model fits several subsets of data with best quality and predicts sublinear increase in the538

death rate of targets with CTL concentration may be due to heterogeneity in CTL killing efficacy.539

However, such a model would need to assume that inoculation of CTLs into gels results in a bias of540

inoculating a smaller fraction of killer T cells at higher CTL concentrations which seems unlikely.541

Our work opens up avenues for future research. One curious observation of Budhu et al. [1] is542

that the death rate of B16 tumor cells does not depend on the concentration of the targets in the gel.543

We confirmed this observation as the models that include dependence of the B16 tumor cell death544

rate on tumor cell concentration (e.g., the updated SiGMA model with fk = kE/(1 + a1T + a2E)545

did not improve the fit quality (e.g., in the best fits of Datasets 1-4 we found a1 → 0 and a2 → 0).546

This model-driven experimental observation is inconsistent with effector to target ratio-dependence547

in chromium release assays and with many theoretical arguments suggesting that killing of targets548

(or interactions between predators and preys) should be ratio-dependent, not density-dependent549

[29, 73–75]. Interestingly, our analysis of data from experiments on killing of peptide-pulsed targets550

in murine spleens by activated and memory CD8 T cells also showed no dependence on target cell551

concentration [42]. Future studies need to reconcile the difference between theoretical arguments and552

in vitro experiments and experimental observations in gels and in vivo.553

The hypothesis that CTLs may impact the rate of tumor growth in collagen-fibrin gels can be554

tested experimentally. One such experiment could be to use two populations of tumors expressing555

different antigens, e.g., SIINFEKL and Pmel, in the presence or absence of SIINFEKL-specific CTLs556

(OT-1 T cells) [76]. Our experiments and mathematical modeling-based analyses can be extended557

to other types of tumor cells, CTL specifitiy, and the type of gels. Whether the CTL killing rates558

estimated from in vitro data correlates with CTL efficacy in vivo remains to be determined. Effective559

cancer immunotherapy relies on the infiltration and killing response of CD8+ T-cells [77, 78]. Increase560

of intratumoral CD8+ T-cells are shown to have direct correlation with radiographic reduction in561

tumor size in patients responding to treatment [79]. In B16 preclinical melanoma models cancer562

vaccines are found to induce cancer specific CD8+T-cells into tumors leading to cytotoxicity [80].563

Estimating CTL killing efficiency such as kill rate per day or the number of melanoma cells killed564

per day could be useful in providing guidelines on cancer immunotherapy research and thus our565

modeling platform could therefore provide valuable insights for estimating the efficacy of T-cell based566
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immunotherapies against cancer. The collagen-fibrin platform could be also useful to determine the567

killing efficiency of T cells (either expanded tumor infiltrating lymphocytes (TILs) or chimeric antigen568

receptor (CAR) T cells) prior to adoptively transferring them into patients; correlating this killing569

efficacy metric with actual success or failure of the therapy in patients may be a cheaper way to570

predict the overall efficacy of the therapy thus saving time and resources.571

Data sources572

The data for the analyses is provided as a supplement to this publication and on github:573

https://github.com/vganusov/killing_in_gels.574
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Supplemental Figure S1: Data on the dynamics of B16 tumor cells for different time periods
and at different CTL concentrations. We show all 5 datasets (Dataset 1-5, panels A-E) analyzed in
this paper. (A) Dataset 1 (no CTLs) is on B16 tumor growth for 72 hours in the absence of CTLs; (B)
Dataset 2 is on B16 tumor dynamics for 24 hours at different initial B16 cell and CTL concentrations
(note that 5 gels had 0 B16 cells recovered, all at OT1= 107 cells/ml); (C) Dataset 3 is on B16 tumor
dynamics for up to 96 hours at different initial B16 cell and CTL concentrations (note that 8 gels had 0 B16
cells recovered at 72 and 96 hours post inoculation); (D) Dataset 4 on B16 tumor dynamics in the first 24
hours after inoculation at 3 different CTL concentrations, and (F) Dataset 5 (high CTL density) on B16
tumor dynamics for 24 hours at 0 and 108 OT1 cells/ml. The size of markers indicates the different targeted
number of B16 tumor cells. The lines connect average numbers (excluding gels with 0 B16 cells in B&C).
For each panel we also show the number of gels n and sum of squared residuals (SSR) are computed by the
relation SSR =

∑N
i=1(yi − ȳt)2. The red horizontal dashed line is the limit of detection for the experiments

set at 2 cells/ml.
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Supplemental Figure S2: Regression analysis suggests nonlinear change of the death rate of
B16 tumor cells with increasing CTL concentration. For the data in Datasets 1-4 we estimated the
net rate of growth of B16 tumor cells over time rnet for every CTL and targeted B16 tumor concentrations
(see Supplemental Figure S1 for the average rnet per CTL concentration). In the absence of CTLs, the
net growth rate of tumors was rnet = r0 = 0.62/day. We then calculated the death rate of B16 tumor
cells K by substracting the estimated net rate of tumor change from r0, K = r0 − rnet. Individual symbols
are estimates of K for different target B16 tumor concentrations at a given CTL level. Assuming that
death rate depends on CTL concentration as powerlaw with scale n, we estimated n for individual ranges of
CTL concentrations. For example, the death rate of targets scales as K ∼ E0.25 for CTL concentrations E
between 104 and 105 cells/ml. The dashed line shows a linear relationship K ∼ E between the death rate
of targets K and CTL concentration E as predicted by the exponential-growth-mass-action-killing model
(eqn. (3)).
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Datasets 1-5 (E ≤ 108 cell/ml): n=438

Model α r, 1/day k h n g0 g1 g2 SSR AIC ∆AIC w

MA 2.78 0.24 1.85× 10−7 779 1503 779 0

Sat 2.81 0.696 7.32 8.63× 106 131 724 0 1

Power 2.78 0.792 0.0017 0.477 147 776 52 0

SiGMA 2.95 1.72× 10−7 2.88× 10−8 0.86 291 583 1380 656 0

Supplemental Table S1: The model with exponential growth of tumors and saturated killing
rate by CTLs gives the best fit when the models are fitted to all data (Datasets 1-5). We list
the best-fit parameters for the alternative models along with SSR, AIC, ∆AIC and Akaike weights w. Other
details are similar to those given in Table 1.
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SiGMA model Sat model
Datasets 1-4 (n = 431) Datasets 1-4 (n = 438)

Parameters Fixed α Varied α Fixed α Varied α

α 2.71 2.82

α1 3.18 2.89

α2 2.7 2.82

α3 2.74 2.86

α4 2.49 2.64

α5 3.85 3.56

r 0.7 0.7

k 3.29×10−7 3.24×10−7 7.2 7.2

h 8.64× 106 8.14×106

g0 0.12 0.096

g1 0.65 0.67

g2 6714 6382

AIC 654.2 650.5 723.7 727.5

LR 11.8 4.3

χ(0.95,4) 9.5 9.5

p 0.02 0.37

Supplemental Table S2: Assuming different scaling factors α in best fit models moderately
improves the fit but results in similar parameter estimates. We fitted the SiGMA model (eqn. (6))
to the data from Datasets 1-4 or the Sat model (eqn. (4)) to the data from Datasets 1-5 with one or five
different scaling factors α.
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Datasets 1-4 (subset) n = 371

Models α r k h n g0 g1 g2 SSR AIC ∆AIC w

MA 2.88 0.72 3.84×10−7 88 526 99.7 0

Sat 2.74 0.72 4.8 2.49×106 71 451 24.7 10−6

Power 2.67 0.74 0.004 0.423 66.7 426.3 0 0.93

SiGMA 2.68 3.17×10−7 6.84×10−8 0.72 7930 67.3 431.4 5.1 0.072

Datasets 1-5 (subset) n = 378

Models α r k h n g0 g1 g2 SSR AIC ∆AIC w

MA 2.85 0.32 1.87×10−7 724 1327 889 0

Sat 2.86 0.72 9.36 1.39×107 82 503 65 0

Power 2.62 0.72 0.01 0.37 69 438 0 1

SiGMA 2.94 1.76×10−7 1.18×10−7 0.84 252 544 1222 784 0

Supplemental Table S3: A phenomenological Power model gives the best fit for the subset of
the data. B16 tumor dynamics in two settings (at T = 106 cell/ml and E = 106 cell/ml from Dataset 3
and T = 105 cell/ml and E = 106 cell/ml from Dataset 4) is not monotonic (Supplemental Figure S1).
We fitted 4 alternative models (eqns. (3)–(6)) to the subset of the data that excludes these two settings for
Datasets 1-4 (top) or Datasets 1-5 (bottom). Other details are similar to those given in Table 1.

S6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.28.534600doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.534600
http://creativecommons.org/licenses/by-nc-nd/4.0/


Datasets 1-4 B16 = 104 n = 80

Models α r k h n g0 g1 g2 SSR AIC ∆AIC w

MA 2.74 0.6 3.55×10−7 14 96 60.5 0

Sat 2.67 0.62 4.08 1.85×106 8 54 18.5 10−4

Power 2.46 0.65 0.009 0.37 6.4 35.5 0 0.99

SiGMA 2.52 2.93×10−7 1.2×10−7 0.67 8162 7.5 50 14.5 10−3

Datasets 1-4 B16 = 105 n = 142

Models α r k h n g0 g1 g2 SSR AIC ∆AIC w

MA 2.42 0.53 4.63×10−7 20 134 36.65 0

Sat 2.36 0.58 6.48 4.07×106 16.5 107 9.65 4.2×10−3

Power 2.33 0.58 0.001 0.52 15.37 97.35 0.17 0.48

SiGMA 2.34 4.1×10−7 1.37×10−7 0.6 7322 15.14 97.18 0 0.52

Datasets 1-5 B16 = 105 n = 149

Models α r k h n g0 g1 g2 SSR AIC ∆AIC w

MA 3.34 0.38 ×10−7 175 454 336.6 0

Sat 2.4 0.55 9.12 9.6×106 18 117.4 0 1

Power 2.35 0.62 0.02 0.33 22 149 31.6 0

SiGMA 2.96 9.38×10−8 1.38×10−7 0.9 6106 139 425 307.6 0

Datasets 1-5 B16 = 106 n = 112

Models α r k h n g0 g1 g2 SSR AIC ∆AIC w

MA 3.16 0.89 3.79×10−7 28 170 39 0

Sat 2.93 0.89 4.56 2.1×106 21.5 143 12 2×10−3

Power 2.8 0.89 0.008 0.39 19.36 131 0 0.82

SiGMA 2.8 2.95×10−7 9.8×10−8 0.9 10243 19.43 134 3 0.18

Supplemental Table S4: The Power model fits the subset of data best when we focus on a
single targeted B16 tumor cell concentration in the gel. Here we divided Datasets 1-4 (top) or
Datasets 1-5 (bottom) based on the target B16 concentration. For T = 104 and 106, the Power model
provides the best fit. For T = 105 without the high CTL data (Datasets 1-4), both the SiGMA and the
Power model fits the data with similar Akaike weights. However, if we include the high CTL data (Datasets
1-5), the Sat model best explains the data. For other details of the table refer to Table 1.
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Supplemental Figure S3: The residuals of the best models for sub-datasets with T = 104 and
105 are normally distributed. Here we show the normal probability plot of the best models of Table S4
for T = 104 (A) and 105 (B,C,D) with the p-value of the Shapiro-Wilk (SW) test.
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Experiment 1 dataset n = 125

Models α r k h n g0 g1 g2 SSR AIC ∆AIC w

MA 2.57 0.65 3.84×10−7 34 201 27 0

Sat 2.44 0.67 4.75 2.26×106 27.8 177 3 0.18

Power 2.39 0.67 0.003 0.44 27.15 174 0 0.8

SiGMA 2.43 3.22×10−7 9.6×10−8 0.7 12726 28.4 182 8 0.015

Experiment 2 dataset n = 126

Models α r k h n g0 g1 g2 SSR AIC ∆AIC w

MA 3.47 0.84 3.84×10−7 32 191 29.2 0

Sat 3.32 0.86 4.8 2.78×106 27 174 12.2 0.002

Power 3.2 0.86 0.005 0.42 25 164 2.2 0.25

SiGMA 3.18 3.07×10−7 0.018 0.84 6448 24.2 161.8 0 0.75

Experiment 3 dataset n = 120

Models α r k h n g0 g1 g2 SSR AIC ∆AIC w

MA 2.69 0.67 3.84×10−7 18 121 61.6 0

Sat 2.55 0.7 4.8 2.45×106 12.5 79.5 20.1 0

Power 2.47 0.7 0.005 0.41 10.6 59.4 0 0.86

SiGMA 2.50 3.22×10−7 1.08×10−7 0.72 8650 10.76 63 3.6 0.14

Supplemental Table S5: The Power and the SiGMA models give the best fit if we fit the
models to subsets of data experiment-wise. As we described in Materials and methods, each Datasets
1-4 has three experiments performed in duplicates. If we divide the data based on the three Experiments
1, 2 and 3 then the Power model gives the best fit for Experiment 1 and 3. For Experiment 2, the SiGMA
model gives the best fit. The description of the table remain same as that of Table 1.
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A Dataset 4 n = 90

Models α r k h n g0 g1 g2 SSR AIC ∆AIC w

MA 1.94 0.048 4.78×10−7 9.67 63 11.5 0

Sat 1.94 0.31 8.64 7.42×106 8.35 51.5 0 0.5

Power 1.94 0.31 8.16×10−5 0.68 8.35 51.5 0 0.5

SiGMA 1.94 4.75×10−7 6.98×10−9 0.23 445106 9.26 63 11.5 0
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Supplemental Figure S4: The phenomenological Power and the Sat models equally well de-
scribe the data for Dataset 4. Dataset 4 describes dynamics of B16 tumor cells within first 24 hours
after inoculation into collagen-fibrin gels and has n = 90 data points. Parameter estimates are shown in
panel A, and q-q plot for the the residuals for the models is shown in panel B. The table details in (A) are
similar to Table 1.
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Dataset 4 OT1=0 n = 30

Models α r t’ d fd SSR AIC ∆AIC w SW p

EG 2.22 0.5 2.24 13.4 12.8 0 0.46

Alt 1 2.48 1.13 8 1.37 0.6 0 0.59 0.6

Alt 2 1.79 3.12 1.03 0.95 1.3 1.3 0.7 0.41 0.43

Supplemental Table S6: Both the alternative models fit the data better than the EG model
for the growth only subset of the data in the Dataset 4. We selected the data on B16 tumor growth
with OT1=0 resulting in n = 30 data points and fitted the EG, Alt 1, and Alt 2 models (eqn. (3) and eqns.
(8)–(9), respectively) to these data (see Figure 4B for model fits). We show the results of the Shapiro-Wilk
(SW) normality test of the residuals. Other details are similar to those in Table 1.
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Supplemental Figure S5: Statistical power to detect a difference in the fit quality between
alternative mathematical models depends on experimental design. We performed simulations of 3
experimental designs measuring impact of CTLs on B16 tumor dynamics (see Figure 5 and Main text for
details). For designs D1 and D2 we show that the experiment type A and B are significantly different from
each other. With permutation test, however, for D3 we fail to reject the null hypothesis that the experiments
are similar. For three simulated experimental designs D1, D3 and D3 we simulated 100 identical replicas
for investigation Type A and B from a model while choosing the errors randomly and then fitted them
with models. This allowed us to get matrices like the ones in the left 2 panels. The red diagonal entries
show fraction of replicas generated by the a model is also best fitted by the same model where as the off
diagonal entries present fraction of replicas generated by a model but best fitted by a different model. The
experimental Type A or B with heavier diagonal terms would indicate a better experiment. In this plot we
did a permutation test to compare the observed |∆D|obs in a permutated distribution of |∆D|per to obtain
a p-value, where D is a determinant of the matrices. This test allowed us to statistically comment on the
structural difference of the design Types A and B. The details of the test is discussed in the end of Results
section. See eqn. (12) for test statistic measure.
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