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Transcription termination by RNA polymerase I in Saccharo-
myces cerevisiae is mediated by a ‘torpedo’ mechanism:
co-transcriptional RNA cleavage by Rnt1 at the ribosomal DNA
30-region generates a 50-end that is recognized by the 50–30

exonuclease Rat1; this degrades the downstream transcript and
eventually causes termination. In this study, we identify Grc3 as a
new factor involved in this process. We demonstrate that GRC3,
an essential gene of previously unknown function, encodes a
polynucleotide kinase that is required for efficient termination by
RNA polymerase I. We propose that it controls the phosphory-
lation status of the downstream Rnt1 cleavage product and thereby
regulates its accessibility to the torpedo Rat1.
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INTRODUCTION
The enzyme RNA polymerase (Pol) I is dedicated to the synthesis
of ribosomal RNA (rRNA). Despite using distinct transcription
systems, Pol I and Pol II show close parallels in the process of
transcription termination (El Hage et al, 2008; Kawauchi et al,
2008), as they both terminate by a ‘torpedo’ mechanism
(Kim et al, 2004; West et al, 2004). On ribosomal DNA (rDNA),
co-transcriptional cleavage of the transcript by Rnt1 releases the

35S pre-rRNA, but also generates a free 50-end in the downstream
Pol I-associated 30-transcript. This acts as a substrate for the
50–30 exonuclease Rat1 that degrades the 30-transcript. This
process is associated with destabilization of the transcription
complex and consequent termination (El Hage et al, 2008;
Kawauchi et al, 2008).

Eukaryotic Clp1 is a component of the messenger RNA (mRNA)
cleavage and polyadenylation machinery (Minvielle-Sebastia
et al, 1997; de Vries et al, 2000). Human Clp1 (hClp1) has been
identified as a RNA kinase and phosphorylates the 50-end of both
synthetic short interfering RNAs and transfer RNA (tRNA) 30-exons
during tRNA splicing (Weitzer & Martinez, 2007). A potential
enzymatic role for hClp1 in Pol II transcription termination has
also been proposed, in which it acts to maintain a 50-phosphate on
the downstream cleavage product generated by mRNA 30-end
processing. This might provide Rat1 (Xrn2 in mammals) with a
favourable substrate for exonucleolytic degradation and consequent
Pol II termination (Weitzer & Martinez, 2007).

Although the human protein is an RNA kinase, no such activity
has been identified in Saccharomyces cerevisiae Clp1 (Noble
et al, 2007; Ramirez et al, 2008). A polynucleotide kinase-active
Clp1 has been characterized in Archaea, suggesting the ancestral
Clp1 possessed enzymatic activity ( Jain & Shuman, 2009). It is
possible that this activity was lost during yeast evolution, as the
tRNA ligase Trl1 has intrinsic kinase activity.

We looked for other potential RNA kinases in yeast that are
functionally related to Clp1. From this work, we identified Grc3
by bioinformatic analysis (Supplementary Fig S1 online).

GRC3 is an essential gene in S. cerevisiae and its transcription
is cell cycle regulated (El-Moghazy et al, 2000), but its function
is unknown. A genome-wide study has shown that Grc3 is
associated with rRNA processing, and in particular with the
removal of internal transcribed sequence 2 (ITS2; Peng et al,
2003). Grc3 was also observed, together with ribosomal proteins,
in a protein fraction that was isolated by affinity purification of
Rai1 (Sydorskyy et al, 2003), which co-purifies with and enhances
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Rat1 exoribonuclease activity (Xue et al, 2000; Xiang et al, 2009).
Interestingly, pyrophosphatase activity has also been identified in
Schizosaccharomyces pombe Rai1 (Xiang et al, 2009).

These molecular connections led us to investigate a possible
role for Grc3 in Pol I transcription termination. In particular, we
considered the possibility that the phosphorylation status of the
50-end generated by Rnt1 cleavage on rRNA is fine-tuned by RNA
kinase and phosphatase activities. Rat1 is closely related to
the exonuclease Xrn1 (Kenna et al, 1993), which preferentially
hydrolyses substrates with a 50-monophosphate end (Stevens,
1980). This end is normally generated by the RNase III-like activity
of Rnt1 (Gan et al, 2008) but other modifying enzymes could also
be involved.

In this study, we show that Grc3 is a polynucleotide kinase, is
present on rDNA and that its inactivation reduces the efficiency of
termination by Pol I. We propose that Grc3 kinase activity is
required to maintain the phosphorylated status of the downstream
Rnt1 cleavage product, which in turn allows the torpedo activity
of Rat1 to efficiently terminate Pol I transcription.

RESULTS
Grc3 is a polynucleotide kinase
In S. cerevisiae, no polynucleotide kinase activity has been
identified except for tRNA ligase Trl1. Although hClp1 is an RNA
kinase, yeast Clp1 lacks kinase activity ( J. Martinez, unpublished
results; Noble et al, 2007; Ramirez et al, 2008). Performing
National Center for Biotechnology Information–protein basic local
alignment search tool (NCBI–BLASTP) searches within the NCBI
non-redundant database, we identified two protein families related
to Clp1 orthologues (Supplementary Fig S1 online): a group of
hypothetical proteins from Eubacteria and Archaebacteria and a
eukaryotic protein family including S. cerevisiae Grc3. These
proteins share a carboxy-terminal domain of unknown function
and a central nucleotide-binding domain containing a highly
conserved structural element of the NTPase fold, the P-loop/
Walker A box (Fig 1A).

To determine whether yeast Grc3 has kinase activity, we
expressed and purified the glutathione-S-transferase-tagged
protein and performed an in vitro kinase assay using radiolabelled
single- or double-stranded RNA or DNA as substrates (Fig 1B).
As a positive control, we tested T4 polynucleotide kinase in
parallel. Phosphorylation was detected as a mobility shift on
a polyacrylamide denaturing gel. As shown in Fig 1B, Grc3
displayed polynucleotide kinase activity on both single- and
double-stranded RNA and on single-stranded DNA alone, but not
double-stranded DNA alone. Therefore, these results support our
bioinformatic analysis and confirm that Grc3 is a polynucleotide
kinase.

Grc3 ChIPs on rRNA encoding and terminator regions
Genome-wide studies suggest that Grc3 is involved in rRNA
processing (Peng et al, 2003), which implies that it is present
in the nucleolus. To determine whether this protein is recruited
onto rDNA, we prepared a 3� haemagglutinin (3HA–GRC3)-tagged
strain and performed chromatin immunoprecipitation (ChIP)
analysis across the Pol I transcription unit. As a control, we also
probed the coding region of ISY1, a Pol II-transcribed gene.
ChIP signals were detected above background across the rDNA
gene (Fig 2A,B; regions 18,2 and 25,3), as well as over the

terminator region (2 and 6þ7). No significant enrichment was
detected upstream to the transcription start site or further
downstream in the 35S 30-regions (US5S and 8). ChIP signals
were relatively low but reproducible, consistent with a transient
association of Grc3 with chromatin as an enzyme involved in
rRNA processing. However, the presence of Grc3 over the
terminator region prompted us to test further whether Grc3 is in-
volved in 35S 30-processing and/or Pol I transcription termination.

Grc3 depletion stabilizes 30-ETS Pol I transcripts
We first determined whether the levels of 30-external transcribed
sequence (ETS) transcripts were influenced by Grc3 using a strain
in which GRC3 is under the control of a regulatable promoter
(Tet Off). The addition of doxycycline severely affected cell
growth and GRC3 mRNA levels dropped to about 20% of the
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wild-type (WT) level after 5 h (data not shown). We extracted total
RNA from WT or Tet Off-GRC3 cells, performed reverse
transcription with oligonucleotides p1–p6 (Fig 2A) and PCR with
the same oligonucleotides and a common forward primer p0,
annealing downstream to the Rnt1 cleavage site. With this method
we detected transcripts produced by Pol I downstream to the main
terminator element T1. On rDNA, a small proportion of polymerases
read through this signal, mostly terminating at the downstream T2
element (Lang et al, 1994; El Hage et al, 2008). In the WT strain,
reverse transcriptase PCR (RT–PCR) signal was detectable with oligo-
nucleotide p1 (upstream to T2), very weak with p2 and not present
at all further downstream (Fig 2C; left). By contrast, on depletion of
Grc3, 30-extended transcripts were visible (oligonucleotides
p2–p5), up to the 5S gene (Fig 2C; right). We conclude that Grc3
is involved in Pol I transcription termination or in stabilization of
30-transcripts that extend beyond the normal termination site.

Grc3 depletion causes defective Pol I termination
Although RT–PCR measures steady-state RNA levels, transcriptional
run on (TRO) analysis monitors nascent transcription and, thus,
provides a map of the active polymerase density indicating where
transcription termination occurs. Using TRO analysis, we further
compared WT and Tet Off-GRC3 strains, using probes covering
the rDNA terminator region (outlined in Fig 2A). As a control, we
also used a probe upstream to the Pol I transcriptional start site
(Pro), providing background signal, and over the actin gene (Act),
transcribed by Pol II. All data were quantified relative to probe 2,
overlapping the T1 terminator, as previously described (Jones et al,
2007). In WT, we obtained the expected termination profile with a
strong signal over probe 2, reduced signal over probe 3 and near
to background signal downstream (Fig 2D). On depletion of Grc3,
we observed a proportionally higher signal over the downstream
probes (3–7), indicating a termination defect. We conclude that
not only RNA stability, but also Pol I termination itself is affected
by the loss of Grc3.

Pol I termination requires Grc3 kinase activity
Next, we aimed to determine whether the effect of Grc3 on Pol I
termination is mediated by its polynucleotide kinase activity.
We mutated specific conserved residues in the Walker A box of
Grc3, based on the sequence homology with hClp1. In particular,
we produced K252A and S253A mutants because the correspond-
ing mutations abolish the kinase activity in hClp1 (Weitzer &
Martinez, 2007).

We assessed the kinase activity of the mutants using purified
glutathione-S-transferase-tagged Grc3 (WT, K252A or S253A) with
a mixture of single- and double-stranded RNA substrate in the
kinase assay, as before. The WT protein rapidly phosphorylated
the RNA (Fig 3A), whereas the mutant K252A showed partial
activity only after overnight incubation, and S253A was almost
completely inactive.

To test these mutants in vivo, we replaced the endogenous
GRC3 promoter with the regulatable GAL1 promoter, repressed its
transcription in glucose and expressed Grc3, WT or mutant forms,
from a centromeric plasmid. As shown in Fig 3B, control cells
transformed with the empty plasmid showed scarce growth, both
on plate and in liquid culture as expected, because GRC3 is
essential. Also transformation with WT Grc3 produced viable cells
with nearly normal growth phenotype. Both K252A and S253A

mutation strongly affected cell growth, the latter more severely,
confirming that we had mutated critical residues in the Grc3
active site.

Next, we tested Pol I transcription termination of the K252A
mutant by TRO (Fig 3C). The S253A mutant was too severely
growth-retarded to allow further analysis. However, quantitative
analysis of K252A produced a Pol I termination profile similar to
that obtained after Grc3 depletion. Thus, a clear termination
defect (higher polymerase density over probes 3–7) was obtained,
strongly suggesting that the kinase activity of Grc3 is required for
efficient termination. We conclude that Grc3 polynucleotide
kinase activity has an important role in determining efficient
termination by Pol I.

DISCUSSION
We have shown that Grc3, an essential yeast protein of previously
unknown function, is a polynucleotide kinase with similarities to
Clp1. Furthermore, this enzyme seems to have a physiological role
in Pol I transcription termination, as kinase-inactive Grc3 mutants
produce increased read-through transcription in the rDNA 30-ETS.

How is a polynucleotide kinase involved in the termination
process? Pol I transcription termination involves co-transcriptional
RNA cleavage by Rnt1, followed by degradation of the down-
stream cleavage product by the 50–30 exonuclease Rat1. This
‘torpedoes’ Pol I and eventually causes termination by releasing it
from the DNA template (El Hage et al, 2008; Kawauchi et al,
2008). The phosphorylation status of the downstream Rnt1
cleavage product might have a critical role in its recognition by
Rat1. Substrates with 50-monophosphate ends are strongly
preferred to non-phosphorylated 50-ends by the 50–30 exonuclease
Xrn1 (Stevens, 1980). It is likely that Rat1, closely related to Xrn1,
has similar specificity. We propose that Grc3 acts to maintain the
phosphorylated status of the downstream RNA after Rnt1
cleavage, possibly by counteracting phosphatase activity (Fig 4).
This equilibrium might regulate the kinetic and overall efficiency
of transcription termination by Pol I. In support of this model,
Grc3 has been observed to immunoprecipitate with Rai1, the
Rat1-activating partner (Sydorskyy et al, 2003). Previous results
have connected Grc3 with rRNA processing (Peng et al, 2003).
Interestingly, Rat1 is also the RNA exonuclease involved in
50-trimming of rRNA-processing intermediates (Kufel et al, 1999).
Therefore, our studies predict a functional coupling between these
two activities.

METHODS
Clp1/Grc3 protein family collection. hClp1 (NP_006822.1) was
used as a query for NCBI–BLASTP searches within the NCBI non-
redundant database (Altschul et al, 1997). To expand the protein
family, significant hits (E-values o1� 104) were used as queries in
further searches. Selected proteins were aligned using MUSCLE
(Edgar, 2004).
Expression and purification of Grc3. The open reading frame of
Grc3 (WT, K252A or S253A) was cloned into pDEST20 using the
Gateway technique (Invitrogen) and expressed in sf9 insect cells.
After collection, cells were lysed in 100 mM NaCl, 50 mM
Tris–HCl (pH 8), 5 mM MgCl2, 0.1 mM 4-(2-aminoethyl) benzene-
sulphonyl fluoride hydrochloride, 1 mM dithiothreitol and soni-
cated. Purification was performed using glutathione Sepharose 4B
(GE Healthcare). Protein was eluted with 20 mM glutathione,
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concentrated on Vivaspin 500 columns (Sartorius) and dialysed
against 30mM 4-(2-hydroxyethyl)-1-piperazineethanesulphonic
acid (pH 7.4), 5 mM MgCl2, 100 mM KCl, 10% glycerol and
0.1 mM 4-(2-aminoethyl) benzenesulphonyl fluoride hydrochloride.
In vitro kinase assay. Kinase assays were performed as described
previously (Weitzer & Martinez, 2007) in the presence of 5 mM
ATP at 30 1C. Substrates were 21-nucleotides long and either
single-stranded or annealed to a complementary oligonucleotide
to create blunt double strands. The RNA substrates were 30-end-
labelled with 32P pCp using T4 RNA Ligase (Amersham) and
then dephosphorylated with alkaline phosphatase (Roche) to

obtain 50, 30-hydroxylated RNA substrates. The DNA substrates
were labelled with 32P cordycepin and recombinant terminal
deoxynucleotidyl transferase (Promega). Phosphorylation was
monitored on 15% polyacrylamide/urea gel.
Yeast strains and plasmids. Strains used were pGAL-3HA-GRC3
(MAT-a; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; ura3-1;
PGAL1-3HA-GRC3 KANMX6) and untagged W303-1a (MAT-a; ade2-1;
can1-100; his3-11,15; leu2-3,112; trp1-1; ura3-1) (Fig 2B) and
WT R1158 (MAT-a; his3-1; leu2-0; met15-0; URAHCMV-tTA) and
Tet Off-GRC3 (MAT-a; his3-1; leu2-0; met15-0; URAHCMV-tTA;
kanR-tetO7-TATA-GRC3) (Fig 2C,D). GRC3 was repressed by
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treating the cells with 10mg/ml doxycycline for 5h. pGAL-3HA-GRC3
strain was transformed with a modified pCM252 (lacking the Tet-O
box repeats) containing GRC3 open reading frame (WT or mutant)
cloned at the StuI site (Fig 3). Standard media and growth conditions
were used.
ChIP. The ChIP analysis was performed as described previously
(Kawauchi et al, 2008), using Anti-HA Clone F7 antibody
(Santa Cruz Biotechnology). Background signal from the untagged
strain was subtracted to 3HA-GRC3 signal at each position.
Oligonucleotide sequences have been described previously
(Kawauchi et al, 2008).
RT–PCR. RT–PCR was performed with Superscript III RT
(Invitrogen) on 400 ng RNA priming the reaction with a mixture
of oligonucleotides p1–p6. A total of 28 cycles of PCR were
performed with the communal oligonulceotide p0 and each of the
p1–p6 oligonucleotides. The PCRs with oligonucleotide p1 and no
RT were used as a negative control. Primer sequences have been
described previously (Kawauchi et al, 2008).
TRO. The TRO analysis and probes have been described previously
(Kawauchi et al, 2008). Five micrograms of each single-stranded
DNA probe was immobilized on Hybond-N membrane (Amersham).
Cells collected in log-phase were permeabilized with sarkosyl and
then incubated in transcription buffer containing a-32P UTP for
5 min to label nascent transcripts. Extracted RNA was then partly
hydrolysed and hybridized to the membrane.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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