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Abstract: In this study, a fibrous composite was developed as synthetic graft for labral reconstruction
treatment, comprised of ultra-high molecular weight polyethylene (UHMWPE) fabric, ultrafine
fibre of polycaprolactone (PCL), and 45S5 Bioglass®. This experiment aimed to examine the
mechanical performance and cytocompatibility of the composite. Electrospinning and a slurry
dipping technique were applied for composite fabrication. To assess the mechanical performance of
UHMWPE, tensile cyclic loading test was carried out. Meanwhile, cytocompatibility of the composite
on fibroblastic cells was examined through a viability assay, as well as SEM images to observe cell
attachment and proliferation. The mechanical test showed that the UHMWPE fabric had a mean
displacement of 1.038 mm after 600 cycles, approximately 4.5 times greater resistance compared
to that of natural labrum, based on data obtained from literature. A viability assay demonstrated
the predominant occupation of live cells on the material surface, suggesting that the composite
was able to provide a viable environment for cell growth. Meanwhile, SEM images exhibited cell
adhesion and the formation of cell colonies on the material surface. These results indicated that the
UHMWPE/PCL/Bioglass® composite could be a promising material for labrum implants.

Keywords: UHMWPE/PCL/Bioglass®; fibrous composite; labrum implant; cyclic
loading; cytocompatibility

1. Introduction

Acetabular labrum is fibrocartilage tissue located in the hip joint, located between the femur and
the acetabular rim [1,2]. Biomechanically, it enhances joint stability and seals the joint to protect the
fluid inside [1–3]. Tears in this region may hinder hip joint-related activities and in the long term could
even progress to osteoarthritis [4–6]. Therefore, it is essential to preserve labrum function. In cases of
severe damage, reconstruction is often required, which involves tissue grafting [6–8]. However, there
are several limitations associated to autografting, including source availability and the requirement
of additional surgical procedures [8,9]. A synthetic graft can be an alternative approach to tackle
these drawbacks.

The architecture of acetabular labrum comprises of a fibrous network [10]. To mimic the native
tissue, a labrum implant is developed using fibre-based materials. These materials are made into
a composite, allowing a combination of different features to be a part of one working system.
To withstand mechanical loads working in the labrum area, ultra-high molecular weight polyethylene
(UHMWPE) fabric is applied as an implant core or macrostructure. To facilitate cell attachment, growth,
and formation of neo tissue, a biodegradable layer of aligned electrospun polycaprolactone (PCL) fibres
is applied, covering the fabric. The main structure of acetabular labrum consists of highly oriented
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collagen fibril, hence this fine fibres layer can also mimic the natural labrum tissue [10]. Additionally, a
bioactive glass coating is added, to further stimulate implant bonding with both bone and soft tissues.

Polyethylene (PE) is widely used as biomaterial. Its biomedical application includes orthopedic
and soft tissue reconstruction [11]. Amongst other PE members, UHMWPE is the most widely
used and studied, also possesses physical and mechanical properties suitable for load bearing
material [11]. Investigation of UHMWPE as fibrocartilage replacement includes application for the
meniscus [12], the artificial intervertebral disc [13–17], and the anterior cruciate ligament (ACL) [18].
Used as reinforcement in polyvinyl alcohol (PVA) hydrogel, UHMWPE provides strength to deliver
similar tensile stiffness to the meniscus in a circumferential direction [12]. UHMWPE fibres were
also composited with PVA cords to develop ACL replacement [18]. This composite showed tensile
behaviour within the range of the native ligament and showed endurance in fatigue testing simulating
normal activities.

More extensive research on UHMWPE was conducted to develop an artificial intervertebral disc
(AID) [13–17]. UHMWPE woven filaments were coated with low-density polyethylene (LDPE) and
sprayed with bioactive ceramic in their upper and lower surfaces. A torsional test showed comparable
value to a human intervertebral disc [13]. Fatigue testing in saline solution demonstrated the implant
durability, without strength deterioration and debris [15]. Simulation of dynamic body motion on
UHMWPE fabric demonstrated a hysteresis loss curve similar to that of natural tissue and potential
durability of more than 30 years [16]. Subsequent tests using a simulated vertebral body confirmed
the physical endurance of the UHMWPE-based implant [17]. A creep test also demonstrated implant
flexibility similar to that of a normal disc [10]. Furthermore, UHMWPE fabric has been applied
in clinical settings [19,20] and the literature reported on the fatigue and abrasion resistance of this
material as an intervertebral disc and ACL replacement [7,9–11]. It could be a promising material for
acetabular labrum implants and therefore its mechanical performance for this particular application
requires investigation.

Polycaprolactone (PCL) is a biodegradable and biocompatible polymer, which has acquired
approval from the Food and Drug Administration (FDA) as a medical device [21,22]. This material
has been broadly studied as a scaffold for fibrocartilage tissue engineering, and has already
reached the preclinical stage [23,24]. Applications on fibrocartilage scaffolds included those
for the meniscus [25–27], vertebral discs [28], cartilage [29,30], and musculoskeletal tissue [31].
The performance of electrospun PCL was also examined in cell culture [25,26,28,29,31–34].
These studies reported favourable results, where fibrous PCL was able to support cell growth.
The electrospun PCL layer facilitated chondrocytes to adhere, spread, and produce an extracellular
matrix (ECM) [34]. Fibre alignment was directive to cells orientation, morphology, attachment,
distribution, and production of extracellular matrix production [26,31,32]. Another study on
intervertebral disc tissue engineering reported that bovine mesenchymal stem cells (MSCs) seeded
on electrospun PCL could mimic the native cells and formed ECM similar to annulus fibrossus, the
fibrous part of the intervertebral disc [28]. Based on these reports, electrospun PCL could also be a
promising material for labrum implants, specifically to attract cell attachment and provide a temporary
environment, or scaffold, for cell growth and neo-tissue formation.

Bioglass® is a highly bioactive material and has been used clinically in hard tissue
reconstruction [35–37]. It has also exhibited potential in facilitating soft tissue bonding [9,38,39].
On soft tissue engineering applications, bioactive glass demonstrated promising outcomes, including
in implant-soft tissue integration, vascularization, control of degradation rate, and promoting
chondrogenesis [37,40–47]. In fibrocartilage replacement, bioactive glass was applied as a coating
and was reported to be capable of stimulating bonding between implant and bone tissue [15,43,48].
Development of the acetabular labrum implant could exploit the potential benefits of bioactive
glass. The use of bioactive glass coating is expected to promote implant integration with
surrounding tissue, improve implant stabilization, and even enhance the healing progress. Ability
to integrate to surrounding tissue determines implant performance, mainly in stability [16,43,49,50].
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Bioactive material could improve implant stabilization through facilitating biological bonding with
surrounding bone tissue [15,36,51]. Therefore, the potential capability of bioactive glass to bond with
both hard and soft tissues could be beneficial for labrum implants, since the labrum was connected to
both tissues.

A labrum implant is proposed as an alternative approach to enhance labral repair and healing.
Extensive studies have been conducted on fibrocartilage implants, such as in the meniscus, the anterior
cruciate ligament, intervertebral discs and the temporomandibular joint. However, investigation on the
labrum implant is still limited. In this study, an implant to assist labral reconstruction was developed
using a novel approach, which was fibrous composite containing UHMWPE fabric, electrospun PCL
and bioactive glass. Electrospinning was applied to form a fibrous PCL layer on UHMWPE fabric,
followed by slurry dipping to introduce Bioglass® coating [52]. These methods were relatively simple,
yet effective for producing the UHMWPE/PCL/Bioglass® composite.

The purpose of this study was to investigate the UHMWPE/PCL/Bioglass® composite for
acetabular labrum implants through mechanical testing and in vitro observation. To evaluate the
mechanical performance of UHMWPE fabric as a load bearing structure, a cyclic loading test was
carried out and the output was compared to the results of similar test on acetabular labrum reported in
the literature [53]. This test was conducted as labrum tissue was not exposed to singular, high tensile
load, but to repetitive loading at relatively lower forces [53]. Besides, the available data on the labrum
provided by this test could be used for comparison.

To assess the biocompatibility of the composite, an in vitro test was conducted to examine
cell responses towards the material surface, including attachment, adhesion, and spreading.
These behaviours influence implant—tissue integration, which sequentially defines successful
implantation [54]. A biocompatibility test on in vitro cell culture could also predict the performance of
biomedical material on biological environments. Similar effects of 45S5 Bioglass® on osteoblasts,
fibroblasts, and macrophages were detected on both in vitro and in vivo experiments [55].
Bioactive glass could support fibroblast viability and proliferation [56–62], but some studies found that
it also had an inhibitive effect on proliferation depending on the amount [63,64]. In this study, fibroblast
response on UHMWPE/PCL/Bioglass® composite was investigated, along with their behaviour on
UHMWPE fabric and UHMWPE/PCL composite. Assessment on UHMWPE/PCL was to observe if the
ultrafine PCL fibres could improve cell attachment. Meanwhile, the effect of Bioglass® on cell viability
was examined by culturing the cells in the UHMWPE/PCL/Bioglass® composite. Cell behaviour on
UHMWPE fabric is also limitedly reported, unlike those on flat and solid surfaces [65–69]. Therefore,
this study is also expected to gain further insights on the cytocompatibility of polyethylene fabric.

2. Materials and Methods

2.1. Electrospinning

Polycaprolactone pellets (Mw 80.000) were dissolved in acetone (Barnes, Sydney, Australia)
overnight to make an electrospinning solution with 10% w/v concentration. The electrospinning
collector was a rotating aluminium mandrel featuring covered gaps [70]. Parameter setting for the
process was flow rate, working distance, and mandrel rotation of 4.5 mL/h, of 12.5 cm, and 1500
RPM, respectively. PCL solution was dispensed from a 10 mL syringe with a 20 G needle onto the
grounded collector. A van der Graaf generator (Serrata, Dural, Australia) was connected to the needle
tip to generate an electrical charge into the polymer solution. A syringe pump (Injectomat Tiva Agilia,
Fresenius Kabi AG, Bad Homburg, Germany) was used to adjust the flow rate.

2.2. Fabrication of UHMWPE/PCL

Two steps of electrospinning were carried out, as depicted in Figure 1. The first step was to form
the layer of aligned PCL fibres in the bottom side. After the PCL fibres deposited on the collector,
UHMWPE fabric (DSM Dyneema SK78, Dimension-Polyant, Kempen, Germany) patches were then
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placed onto it, in the gap area of the collector. PCL/acetone solution was then applied at the edges of
these patches, acting as glue to attach the fabric to the fibres. The second step was then initiated after
the PCL glue dried, to form a layer of PCL fibres covering the upper side. The result was UHMWPE
fabric patches laminated with electrospun fibre, termed PE/PCL.
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Figure 1. Fabrication process of ultra-high molecular weight polyethylene (UHMWPE)/
polycaprolactone (PCL)/Bioglass®.

2.3. Bioglass® Coating

The obtained PE/PCL samples were then coated with Bioglass® particles using a slurry dipping
method (Figure 1) [71,72]. The 45S5 Bioglass® was sourced from the earlier study conducted in our
research group. The melt-derived glass particles (<100 µm) were then suspended in demineralised
water to make a slurry with 5% w/v concentration, followed by 30 min stirring using a magnetic stirrer.
Coating was later applied by gently immersing the PE/PCL patch using tweezers to the slurry for
5 min. The PE/PCL/Bioglass® samples (termed as PE/PCL/BG) were then dried in room temperature.

2.4. Cyclic Loading Test of UHMWPE Fabric

Samples of UHMWPE fabric were divided into two groups (5 samples each): not folded
(10 mm × 70 mm) and folded (20 mm × 70 mm folded into 10 mm × 70 mm size). The testing
method followed the procedure of a cyclic displacement test on acetabular labrum and tissue grafts for
hip labral reconstruction [53]. This test was performed using an Instron 8501 Digital and Computerised
Fatigue Testing Machine (Norwood, MA, USA). The sample was clamped at 2 cm from each end and
the distance between clamps was set at 3 cm. Custom aluminium clips and sandpaper were used
to hold the sample and prevent slippage. Sample width and length were measured using a digital
calliper. Tensile preload was set at 20 N and sinusoidal cyclic loading was then applied from 20 to
50 N for 100 cycles at 0.5 Hz. Maximum load was increased by 50 N after every 100 cycles, until
failure or completion of 100 cycles at 300 N. Cyclic displacement was recorded after 100, 200, 300, 400,
500, and 600 cycles.

2.5. Cell Culture and Seeding

Mouse skin fibroblast (3T3-L1) cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 2.5% antibiotic, 1.25% glutamax, and 1.25% fetal bovine serum (FBS) for 7 days
before seeding. Cells responses were assessed using samples of UHMWPE fabric (PE), UHMWPE/PCL
(PE/PCL) and UHMWPE/PCL/Bioglass® (PE/PCL/BG). The samples were placed in 24-well culture
plates and sterilised prior to seeding by immersion in 70% ethanol for 6 h. The samples were rinsed
three times in phosphate buffered saline (PBS), followed by 24 h incubation in DMEM to enhance
cell attachment [73]. Cell seeding was carried out using the static surface seeding method, then the
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samples were incubated for 3 h to facilitate initial cell attachment and immersed in supplemented
DMEM to support cell growth [74]. The culture medium was replaced every two days.

2.6. Viability Assay

Cell viability on composite surfaces (PE/PCL and PE/PCL/BG) was assessed after one and
seven days of culture. Prior to imaging, the cells-seeded samples were prepared by rinsing in PBS,
then incubation in fluorescence solution (1 µL calcein-AM, 1 µL propidium iodide, and 1 mL PBS;
Sigma Aldrich, Castle Hill, NSW, Australia). Calcein-AM and propidium iodide (PI) were used as
marker for live and dead cells, respectively. Fluorescence imaging was carried out using an Olympus
BX51 microscope (Olympus Corporation, Tokyo, Japan). Images obtained from the microscope were
processed using Fiji ImageJ software (National Institutes of Health, Bethesda, MD, USA).

2.7. Scanning Electron Microscopy

Scanning electron microscope (SEM) imaging was performed to observe cell morphology and
attachment on composite surfaces after one, three, and seven days of culture. Samples without cells
were also imaged to examine the effect of culture medium and the presence of cells on the materials
morphology. Samples were prepared by fixation in 2.5% glutaraldehyde, dehydration in a graded
series of ethanol concentrations (30%, 50%, 70%, 90%, 95%, and 100%) and hexamethyldisilazane
(HMDS), and gold coated using sputter method. Imaging was carried out using Zeiss Ultra Plus (Carl
Zeiss AG, Oberkochen, Germany).

3. Results

Cyclic Loading Test of UHMWPE Fabric

Results from a cyclic loading test on UHMWPE fabric samples were presented in Table 1 and
Figure 2, along with the data of acetabular labrum [53]. The fabric exhibited a far lower mean elongation
than that of acetabular labrum. After 600 cycles, the unfolded fabric had a mean displacement of
1.038 mm, while the labrum showed 4.53 mm. At this point, displacement resistance of the single layer
UHMWPE fabric (unfolded samples) was approximately 4.5 times greater than the native labrum, and
the double layer fabric (folded samples) demonstrated even greater resistance, approximately 10 times.

Fibroblast cells residing on PE/PCL and PE/PCL/BG composites were imaged using fluorescence
microscopy, as depicted in Figure 3. These images showed live cells (green) and dead cells (red)
after one and seven days of culture. Both composites were predominantly occupied by live cells,
suggesting that these materials were able to provide a viable environment. At day one, fewer cells were
observed on the PE/PCL/BG sample compared to the PE/PCL. Nevertheless, both groups exhibited
a comparable cell occupation area and proportion of live cells after seven days of culture. Fibrous
PCL was known as a favourable material capable of supporting fibroblasts growth [25,26,28,29,31–34].
On the other hand, the cytocompatibility of bioactive glass is dose-dependent [63,64]. Hence, this
finding suggested that the amount of Bioglass® in the composite was suitable, as it did not induce an
adverse effect on fibroblast growth.

Table 1. Displacement of UHMWPE fabric and human acetabular labrum from the cyclic loading test.

Cycle (Load) Mean Displacement (mm)

Labrum [53] UHMWPE Fabric Folded UHMWPE Fabric

0–100 (20–50 N) 0.68 0.153 0.106
0–200 (20–100 N) 1.53 0.331 0.200
0–300 (20–150 N) 2.28 0.486 0.269
0–400 (20–200N) 2.99 0.625 0.326
0–500 (20–250 N) 3.75 0.806 0.378
0–600 (20–300 N) 4.53 1.038 0.426
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Cell morphology and attachment on PE, PE/PCL, and PE/PCL/BG samples after one, three,
and seven days of culture are presented in Figures 4–6. On day one, flat cells were observed on the
UHMWPE fabric (Figure 4a,d). These cells tended to take place between fabric threads. Cells attached
on PE/PCL were spread and elongated to the surrounding fibres, and also appeared bigger than
those on the UHMWPE fabric (Figure 4b,e). Meanwhile, fibroblasts exhibited mixed morphology
on the PE/PCL/BG sample. Some cells were spread and elongated similar to those on the PE/PCL
surface (Figure 4c), while the others showed spread and a more rounded structure (Figure 4f). Cells on
PE/PCL and PE/PCL/BG exhibited similar morphology and took place between fibres by holding on
the surrounding fibres.
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Figure 6. Fibroblast attachment on PE fabric (a,d), PE/PCL (b,e), and PE/PCL/BG (c,f) on day seven
at lower (a–c) and higher (d–f) magnification. Arrows show cells.

After incubation for three days, cells on the UHMWPE fabric showed spreading and elongation
to the adjacent fibres (Figure 5a,d), although they spread less when compared to those on the PCL
fibres layer. These cells were flat in shape and took place between fabric threads. This behaviour
was similar to cell response toward PCL fibres after 24 h of culture. At this time point, the PE/PCL
composite showed cell colonization on the PCL fibres layer, although the cell form was not different
than that on day one (Figure 5b,e). Cells on the PE/PCL/BG sample were difficult to recognize due to
their identical appearance to Bioglass® particles, although generally the cells were flat shaped with
attachment sites on the nearby fibres (Figure 5c).

After 7 days of culture, cells residing on the UHMWPE fabric showed flat and broad morphology,
bridging between adjacent fibres (Figure 6a,d). Small cell colonies were also formed. On the PE/PCL
sample, cell colonies spread wider, covering a larger area of the PCL fibres layer (Figure 6b). These cells
spread following fibre direction and formed an even bigger colony than those at previous time points.
These cells also showed more attachment sites anchoring at the neighbouring fibres (Figure 6e).
Meanwhile, cells on PE/PCL/BG also spread following fibre direction and formed a larger colony
covering the composite surface, attaching on PCL fibres and among Bioglass® particulates (Figure 6c,f).
Cells on both PE/PCL and PE/PCL/BG also appeared to be more stretched and broader in shape
compared to those on the UHMWPE fabric.

Cell proliferation and morphological changes were a function of the culture period, as indicated
in Figures 4–6. Cells on all material groups showed broader shape on day three, with more apparent
spreading and elongation after seven days of culture. On PE/PCL samples, cell colonies started to
form on day three, while cell proliferation on other groups was apparent on day seven. On the longest
culture period, the PE/PCL and PE/PCL/BG composites exhibited noticeably larger cell occupation
than the pure UHMWPE fabric.

The morphology of the UHMWPE fabric, PCL fibres, and Bioglass® particles after immersion in
culture medium without the presence of cells are presented in Figure 7. Based on Figures 4–7, there
was no noticeable alteration on the UHMWPE fabric and PCL fibres in respect of the culture period
and the presence of cells, suggesting the stability of these materials in culture media and cellular
environments. Seven days of culture might have no noticeable effect, as UHMWPE is biologically
inert [75] and PCL is a slowly degradable material [21]. Meanwhile, rough surface and nanospheres
formation were observed in the bioactive glass particles (Figure 7c,f,i), which was likely a formation
of an amorphous apatite layer [76,77]. This formation might contain calcite and the amorphous
phase of calcium phosphate, which could grow on the superficial layer of 45S5 Bioglass® particles
when exposed to a culture medium, such as DMEM [78]. These dissolution products could be
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potentially beneficial, in terms of promoting bonding to surrounding tissues [9] and angiogenic effects
for neovascularization [58,79].Materials 2018, 11, x FOR PEER REVIEW  9 of 14 
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4. Discussion

The UHMWPE fabric exhibited far greater resistance to deformation compared to the native
labrum, demonstrating its potential capability to perform as suction seal in the hip joint, a function
carried by acetabular labrum. After reconstruction, a graft construct might endure excessive stretching,
which might affect the sealing function [53]. A more robust material, such as the UHMWPE fabric
tested in this study, could potentially provide a tougher seal. The fabric would also be mechanically
superior to tissue grafts in sustaining cyclic loading, as labrum and tissue grafts for labral reconstruction
showed comparable cyclic loading behaviour [53]. This test simulated activities from a rehabilitation
period post-surgery, thus the greater deformation resistance demonstrated by the fabric also suggested
potential durability for long term use. A hip joint could experience around 2 million loading cycles
per year, or 5000 cycles per day from walking activity [53,80]. This cyclic loading test has showed
that UHMWPE fabric had the potential strength and durability for labrum implants. Follow-up
investigations could then involve tests with more loading cycles to assess the mechanical performance
of UHMWPE fabric as a labrum implant in normal activity.

Cell morphology can be an indicator to evaluate if a substrate is capable of supporting adhesion.
Poor adhesion is signified by rounded and less spread morphology, while flat, broadened and elongated
shape indicate good adhesion [54,66,81]. Cells adhered on the UHMWPE fabric were flat-shaped
(Figure 6d), demonstrating a positive response toward pure fabric. On the layer of PCL fibres,
fibroblasts were more spread out and flattened (Figure 6c,f), indicating that the presence of the
electrospun fibres further enhanced cellular attachment. Cell morphology also influences proliferation,
in which flattened, and well spread cells, split faster than those in a rounded shape [77]. This also
explains the higher proliferation on PCL fibres compared to UHMWPE fabric surface.

Fluorescence and SEM images suggested that Bioglass® could provide viable environment for
fibroblasts, as also reported in several studies [61,62]. Fibroblasts could attach on Bioglass® surface and
showed elongated shape in long term culture, suggesting a favourable surface for attachment [59,62].
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However, cell occupation on PE/PCL/BG sample was lower than that on the PE/PCL sample,
particularly in the earlier culture period. It was possibly due to higher pH and Ca ions leaching
on Bioglass®-contained samples [61,63,82]. Nevertheless, this inhibitive effect was not related to
toxicity [82]. On day seven, cells appeared to form a colony covering the surface of the PE/PCL/BG
(Figures 3d and 6c), demonstrating that Bioglass® could support cell proliferation in the longer term.
The presence of Bioglass® appeared to halt cell growth in a short time period, but increased growth was
observed in longer time periods [59]. Results from fluorescence and SEM images were in agreement,
indicating that the amount of Bioglass® in the composite was not prohibitive on fibroblasts growth.

Addition of Bioglass® in the labrum implant aimed to stimulate bonding between the implant and
the host tissue. Bioactive substances, including Bioglass®, could promote biological bonding [15,36,51],
as well as enhance implant stability [16,43,49,50]. As the amount of bioactive glass could affect
fibroblast growth [63,64], identification of the appropriate amount is essential. Cytocompatibility test
in this study showed the favourable effect of Bioglass® on cells growth, indicating suitable Bioglass®

content in the composite. This result further demonstrated the potential biological compatibility of
this composite in vivo, since cell response to Bioglass® was reported to be similar in both in vitro and
in vivo settings [55]. Further studies could address the mechanical performance and biocompatibility
of this composite in an animal model, including the efficacy of Bioglass® in promoting implant bonding
to the surrounding tissues.

5. Conclusions

Mechanical testing and cytocompatibility analysis in this study demonstrated that the
UHMWPE/PCL/Bioglass® composite could be a promising material for labrum implants. Tensile
cyclic loading testing showed that UHMWPE fabric had greater resistance to displacement,
approximately 4.5 times higher than labrum tissue and tissue grafts for labral replacement.
This suggested that the fabric had the potential capability to function as a suction seal on the hip joint,
as well as showing a promising durability as an artificial graft for labrum replacements. Observations
on fibroblasts attachment, morphology, and viability suggested that the UHMWPE/PCL/Bioglass®

composite was cytocompatible. The presence of electrospun PCL fibres layers enhanced cell
attachment, morphology, and proliferation. The addition of Bioglass® particles also supported
cell growth, suggesting that the added amount was appropriate and effective. These results
laid the groundwork for further in vivo investigations examining mechanical performance and
biocompatibility of UHMWPE/PCL/Bioglass® composite. Further tests could also address implant
design, prototyping, and surgical procedure.
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