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Abstract
Objectives Our aimwas to assess the ability of semi-automatically extracted magnetic resonance imaging (MRI)–based radiomic
features from tibial subchondral bone to distinguish between knees without and with osteoarthritis.
Methods The right knees of 665 females from the population-based Rotterdam Study scanned with 1.5T MRI were analyzed. A
fast imaging employing steady-state acquisition sequence was used for the quantitative bone analyses. Tibial bone was segment-
ed using a method that combines multi-atlas and appearance models. Radiomic features related to the shape and texture were
calculated from six volumes of interests (VOIs) in the proximal tibia. Machine learning–based Elastic Net models with 10-fold
cross-validation were used to distinguish between knees without and with MRI Osteoarthritis Knee Score (MOAKS)–based
tibiofemoral osteoarthritis. Performance of the covariate (age and body mass index), image features, and combined covariate +
image features models were assessed using the area under the receiver operating characteristic curve (ROC AUC).
Results Of 665 analyzed knees, 76 (11.4%) had osteoarthritis. An ROC AUC of 0.68 (95% confidence interval (CI): 0.60–0.75)
was obtained using the covariate model. The image features model yielded an ROCAUC of 0.80 (CI: 0.73–0.87). The model that
combined image features from all VOIs and covariates yielded an ROC AUC of 0.80 (CI: 0.73–0.87).
Conclusion Our results suggest that radiomic features are useful imaging biomarkers of subchondral bone for the diagnosis of
osteoarthritis. An advantage of assessing bone on MRI instead of on radiographs is that other tissues can be assessed
simultaneously.
Key Points
• Subchondral bone plays a role in the osteoarthritis disease processes.
• MRI radiomics is a potential method for quantifying changes in subchondral bone.
• Semi-automatically extracted radiomic features of tibia differ between subjects without and with osteoarthritis.
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Abbreviations
FIESTA Fast imaging employing steady-state acquisition
GLSZM Gray level size zone matrix
MOAKS MRI Osteoarthritis Knee Score

Introduction

Osteoarthritis is the most common joint disease affecting over 40
million people in Europe [1]. It reduces the quality of life of an
individual and imposes a large economic burden on the society,
since the direct and indirect costs can be as high as 2.5% of the
gross domestic product of a nation [2, 3]. Osteoarthritis affects all
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tissues in the joint, e.g., causing progressive degeneration of
articular cartilage and changes in the subchondral bone density
and structure [4, 5]. Macroscopic alterations in the subchondral
bone include osteophytes, bone sclerosis (stiffening), and cysts
[4, 5]. Advances in osteoarthritis diagnostics, prevention, and
treatment will have a major impact on patients and society.

It has been recognized that subchondral bone plays a role in the
pathogenesis of osteoarthritis [5–7] and subchondral bone has been
suggested as a target for potential disease-modifying osteoarthritis
drugs [8]. However, the exact role of subchondral bone in the de-
velopment and progression of osteoarthritis is still unclear [5].

Magnetic resonance imaging (MRI) is considered the most
comprehensive imaging modality for knee osteoarthritis as-
sessment [9]. Semi-quantitative scoring systems have been
developed to assess osteoarthritis-related structural deteriora-
tion of tissues on MRI [10]. Furthermore, many quantitative
methods to assess articular cartilage and meniscus exist
[11–13]. As subchondral bone is also involved in osteoarthri-
tis disease processes, quantitative imaging biomarkers from
bone might be helpful in the detection, prediction, and moni-
toring of the disease.

Radiomics is a field where a large number of quantitative
image features (features related to intensity, geometric shape,
and texture) are extracted from an image and correlated to
biological markers and clinical outcomes. Radiomic methods
have been successfully applied to different MRI data [14] but
these methods have not yet been widely used for the assess-
ment of knee osteoarthritis. Bone shape and texture variables
have been previously extracted from knee MRI to assess os-
teoarthritic changes [15–18] and texture has been shown to
correlate with the actual three-dimensional microstructure of
subchondral bone [19]. However, previous texture analysis
studies have manually defined regions of interests, analyzed
limited number of slices, and used a limited number of texture
variables.

As subchondral bone plays a role in the osteoarthritis disease
processes, the aim of this study was to semi-automatically ex-
tract radiomic features from tibial subchondral bone using knee
MRI data and to assess the ability of these radiomic features to
distinguish between knees without and with osteoarthritis in a
large population-based cohort.

Subjects and methods

Study cohort

The study data consisted of baseline data of 665 female par-
ticipants from a sub-study (RS-III-1) of the Rotterdam Study,
a population-based study in the Netherlands that investigates
prevalence, incidence, and risk factors for various chronic
disabling diseases [20–22]. Of the participants of the RS-III-
1, the first 1116 females aged 45–60 years were invited to join
a sub-study investigating early signs of knee osteoarthritis [20,
21]. Of the 891 females who agreed to participate, 665 fe-
males with sufficient MR image quality and visual MRI
grades available were included in the current study. The mean
age and body mass index (BMI) of the subjects were 54.6
(standard deviation (SD): 3.7) years and 26.8 (SD: 4.6) kg/
m2, respectively. The Medical Ethics Committee of Erasmus
UniversityMedical Center approved the study and all subjects
provided written informed consent.

MRI acquisition

All participants were scanned with a 1.5-T MRI scanner
(Signa Excite 2, General Electric Healthcare) using an eight-
channel cardiac coil that allowed imaging of both knees at
once without repositioning the subject. The scanning protocol
consisted of sagittal dual-echo fast spin echo (FSE) proton
density–weighted, FSE T2-weighted with fat suppression,
spoiled gradient echo with fat suppression, and fast imaging
employing steady-state acquisition (FIESTA) sequences
(Table 1).

MRI assessment

Two experienced readers scored the MRIs using the MRI
Osteoarthritis Knee Score (MOAKS) [10]. The readers were
extensively trained by an experienced musculoskeletal radiol-
ogist (E.O., > 15 years of experience with musculoskeletal
MRI in clinical and research settings), as described previously
[23].

Table 1 Parameters of the magnetic resonance imaging protocol

Sequence TR (ms) TE (ms) FOV (mm) Matrix Flip angle (degrees) Slice thickness/spacing (mm)

Dual echo FSE PD 2700 16 160*160 512*512 90 3.2/3.2

FSE T2-weighted FS 4100 59 160*160 512*512 90 3.2/3.2

SGE FS 27 6.3 160*160 512*512 30 3.2/1.6

FIESTA 5.6 1.8 160*160 512*512 35 1.2/0.6

FIESTA, fast imaging employing steady-state acquisition; FS, fat suppression; FSE, fast spin echo; FOV, field of view; PD, proton density; SGE, spoiled
gradient echo; TE, time to echo; TR, repetition time
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We used a previously proposed definition for the identifi-
cation of tibiofemoral osteoarthritis on MRI [24, 25].
Tibiofemoral osteoarthritis was defined as the presence of a
definite osteophyte and full-thickness cartilage loss, or one of
these features and two of the following features: (1)
subchondral bone marrow lesion or cyst not associated with
meniscal or ligamentous attachments, (2) meniscal maceration
or degeneration (including a horizontal tear), or (3) partial
thickness cartilage loss [24]. Grade 1 and 2 cartilage lesions
were classified as partial thickness lesions and grade 3 lesions
as full-thickness lesions. Grade 2 and 3 osteophytes were clas-
sified as definite osteophytes. Bone marrow lesions and cysts
were present when scored as grade 1 or higher. Meniscus-
associated features were present when maceration or degener-
ation had grade 1 or higher or a horizontal tear was present.
We did not assess meniscal subluxation or bone attrition.

In addition to the tibiofemoral osteoarthritis, the ability
of radiomic features to distinguish between knees without
and with medial tibial cartilage damage, osteophytes, and
bone marrow lesions were analyzed. A subject was included
in the medial tibial cartilage damage group if she had any
cartilage loss (grade 1 or higher for the size of any cartilage
loss) in the medial anterior, central, or posterior tibia.
Similarly, a subject was included in the medial tibial
osteophytes group if she had osteophytes in the medial tibia
(grade 1 or higher) and in the bone marrow lesion group if
she had any bone marrow lesions (grade 1 or higher for the
size of bone marrow lesions) in the medial anterior, central,
or posterior part of tibia.

Automatic segmentation of tibia

The FIESTA scans were used in the quantitative analyses. Tibial
bones from the right knees of the participants were segmented
using an in-house automatic segmentationmethod that combines
multi-atlas and appearance models [26, 27]. Twenty manually
segmented tibias were used as atlases for the multi-atlas model
and as training data for the appearance model. In the multi-atlas
part, the atlas images were registered to the target image (i.e., the
image to be segmented) using the Elastix software [28]. The
registration was done by estimating an affine transformation
followed by a non-rigid transformation. Mutual information
was used as similarity measure for both transformations. The
obtained registration parameters were used to deform the manual
segmentations of the atlas images. The probability of a voxel in
the target image to be part of the tibia segmentation or the back-
ground (i.e., non-tibia) was computed by averaging the deformed
segmentations of all atlas images. The appearance model
consisted of a random forest classifier that was trained on
Gaussian scale space features in the training set. The feature
vector (49 features) consisted of the intensity values and
Gaussian-filtered version of the original images, first-order and
second-order Gaussian derivatives in every axis direction, the

gradient magnitude, the Laplacian, Gaussian Curvature, and the
three eigenvalues of the Hessian of the Gaussian-filtered images.
The classifier was then used to classify voxels on the target image
to be either tibia or background. The final output of the segmen-
tationmethodwas obtained by combining the probabilities of the
multi-atlas and appearance components. The segmentationswere
visually inspected and manually corrected if needed.

Altogether six three-dimensional volumes of interest (VOI)
were automatically extracted from the medial and lateral com-
partments of the tibia (Fig. 1). Medial and lateral tibial spines
were located by searching the highest and the second-highest
coordinates along the vertical axis of the segmented sagittal
slices. Because the positioning of the knee was similar among
all scans, the medial and lateral compartments were identified
using the tibial spines and outer borders of the tibia as land-
marks.Medial and lateral subchondral bone VOIs were placed
immediately below the cartilage-bone interface. The bottom
coordinates for the abovementioned VOIs were defined as
10 mm below the cartilage-bone interface on the middle point
of each compartment. Medial and lateral mid-part VOIs were
placed under the subchondral bone VOIs. Medial and lateral
trabecular bone VOIs were placed under the middle region
VOIs. The height of the mid-part and trabecular bone VOIs
was 10 mm. It should be noted that despite referring the VOIs
to as the subchondral bone, mid-part, and trabecular bone
VOIs, different bone types are mixed in the VOIs [29, 30].

Radiomics

Radiomic features that are related to the shape and texture of
the region were calculated from each VOI using the open-
source Workflow for Optimal Radiomics Classification pack-
age (v. 3.0.0) in Python [31]. Seventeen shape features, 3

Fig. 1 3-D volumes of interest (VOIs) were extracted frommedial (SBM)
and lateral subchondral bone (SBL), mid-part of medial (MidM) and
lateral (MidL) compartments, and medial (TBM) and lateral trabecular
bone (TBL)
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orientation features, 12 histogram-based features, and 271 tex-
ture features were extracted (Supplementary Table 1). Texture
features included local binary patterns, gray level co-
occurrencematrix, gray level run lengthmatrix, gray level size
zone matrix (GLSZM), neighborhood gray tone difference
matrix, and Gabor features. Features associated with shape
were calculated only for the whole tibial volume.

Statistical analyses

To assess the accuracy of the automatic segmentation, the
Dice similarity coefficient [32] was used to determine the
overlap between five automatically and manually segmented
tibias. These tibias were not included in the atlas set. The Dice
coefficient ranges between 0 and 1 and higher value indicates
better segmentation accuracy.

Machine learning was used for dimensionality reduction
and to evaluate how well subjects without and with osteoar-
thritis can be distinguished using radiomics features from tib-
ial bone. Three different models were used: (1) covariate mod-
el that included age and BMI that are two common risk factors
for osteoarthritis [33], (2) image features model, and (3) com-
bined covariate + image features model. Dimensionality re-
duction and classification were done using the Elastic Net
regression, which is a regularized logistic regression method
[34, 35]. The Elastic Net linearly combines the L1 and L2
penalties of lasso and ridge regression methods. To optimize
the ratio of the L1 and L2 penalties (α) and the strength of the
penalty parameter (λ) of the Elastic Net, 10-fold cross-valida-
tion with a grid search and 100 repetitions was performed. In
the grid, the values ofα varied from 0.1 to 1 with an increment
of 0.05 and λ from 0.001 to 0.15 with an increment of 0.009.
When α is close to 0, the Elastic Net approaches ridge regres-
sion, while when α is 1, lasso regression is performed. In
cross-validation, the performance of the aforementioned three

models to distinguish between subjects without and with os-
teoarthritis was assessed using the area under the receiver
operating characteristic (ROC AUC) and precision-recall
curves (PR AUC) along with 95% confidence intervals (CI)
[36]. To assess the ability of radiomic features from medial
tibial bone to distinguish individual osteoarthritis-related
structural changes, analyses were repeated using medial tibial
cartilage damage, osteophytes, and bone marrow lesions as an
outcome variable. The Elastic Net experiments were done
using the R software (version 3.5.2) with Caret [37],
PRROC [38], glmnet [34], and precrec [39] packages.

Results

Of the 665 analyzed knees, 76 (11.4%) had tibiofemoral os-
teoarthritis, 91 (13.7%) had medial tibial cartilage damage, 85
(12.8%) had a medial tibial osteophyte, and 70 (10.5%) had a
medial tibial bone marrow lesion. The mean Dice similarity
coefficient for the uncorrected automatic segmentation of the
tibia was 0.96 (SD: 0.02). Of the automatically segmented
knees, 86 (12.9%) were manually corrected.

When classifying knees without and with tibiofemoral os-
teoarthritis, ROC AUC and PR AUC of 0.80 (95% CI: 0.73–
0.87) and 0.46 (95% CI: 0.33–0.58) were obtained with the
model that combined image features from all VOIs and covar-
iates (Table 2, Fig. 2). When each VOI was assessed separate-
ly, the medial subchondral bone VOI had the highest ROC
AUC (Table 2). Themodel that combined image features from
the medial subchondral bone VOI with covariates had an
ROC AUC of 0.80 (95% CI: 0.72–0.87) and a PR AUC of
0.46 (95% CI: 0.33–0.58) (Supplementary Figure 1).

When classifying knees without and with medial tibial car-
tilage damage, the model that included image features from
the medial subchondral bone VOI and covariates had the

Table 2 Area under the receiver operating characteristic curve (ROC
AUC) and area under the precision-recall curve (PR AUC) values to
distinguish between knees without and with osteoarthritis using models

with only covariates (age and body mass index), only image features, and
combined covariates and image features model for different volumes of
interests (VOIs)

VOI Covariates Image features Covariates + image features

ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC

All 0.68 (0.60–0.75) 0.28 (0.18–0.38) 0.80 (0.73–0.87) 0.45 (0.32–0.58) 0.80 (0.73–0.87) 0.46 (0.33–0.58)

SBM 0.68 (0.60–0.75) 0.28 (0.18–0.38) 0.79 (0.71–0.86) 0.46 (0.33–0.58) 0.80 (0.72–0.87) 0.46 (0.33–0.58)

MidM 0.68 (0.60–0.75) 0.28 (0.18–0.38) 0.77 (0.70–0.84) 0.39 (0.28–0.51) 0.78 (0.71–0.86) 0.41 (0.33–0.58)

TBM 0.68 (0.60–0.75) 0.28 (0.18–0.38) 0.74 (0.67–0.81) 0.33 (0.22–0.44) 0.76 (0.68–0.83) 0.35 (0.24–0.46)

SBL 0.68 (0.60–0.75) 0.28 (0.18–0.38) 0.72 (0.65–0.80) 0.32 (0.21–0.43) 0.74 (0.67–0.81) 0.35 (0.23–0.46)

MidL 0.68 (0.60–0.75) 0.28 (0.18–0.38) 0.73 (0.66–0.80) 0.33 (0.22–0.44) 0.75 (0.68–0.82) 0.35 (0.24–0.47)

TBL 0.68 (0.60–0.75) 0.28 (0.18–0.38) 0.74 (0.66–0.81) 0.34 (0.23–0.45) 0.76 (0.69–0.83) 0.37 (0.25–0.49)

All, all VOIs in the same model; SBM, medial subchondral bone VOI; MidM, medial mid-part VOI; TBM, medial trabecular bone VOI; SBL, lateral
subchondral bone; MidL, lateral mid-part VOI; TBL, lateral trabecular bone VOI
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highest ROC AUC and PR AUC (0.66 (95% CI: 0.59–0.73)
and 0.30 (95% CI: 0.21–0.39)) (Table 3, Supplementary
Figure 2).

When classifying knees without and with medial tibial
osteophytes, an ROC AUC of 0.80 (95% CI: 0.73–0.86) and
a PR AUC of 0.45 (95% CI: 0.34–0.57) were obtained with
the model that included image features from all medial side
VOIs and covariates (Table 4, Supplementary Figure 3).
When each VOI was assessed separately, medial mid-part
VOI had the highest ROC AUC and PR AUC (0.79 (95%
CI: 0.73–0.89) and 0.44 (95% CI: 0.33–0.56)) (Table 4).

When classifying knees without and with medial tibial
bone marrow lesions, the model that included image fea-
tures from the medial mid-part VOI and covariates had the
highest ROC AUC and PR AUC (0.69 (95% CI: 0.60–0.77)
and 0.28 (95% CI: 0.17–0.38)) (Table 5, Supplementary
Figure 4).

The values for α and λ hyperparameters and five variables
with largest coefficients in the best performing Elastic Net
models for classifying knees without and with tibiofemoral
osteoarthritis, medial tibial cartilage damage, medial tibial
osteophytes, and medial tibial bone marrow lesions are pre-
sented in Supplementary Table 2.

Discussion

In this study, we applied a semi-automatic segmentationmeth-
od and extracted radiomic features from tibial bone using knee
MRI data of a large population-based cohort. The highest
ROC AUC and PR AUC for classifying knees without and
with tibiofemoral osteoarthritis were obtained when all VOIs
were combined in the same model. When each VOI was used
separately in the model, image features from the medial

Fig. 2 Receiver operating characteristic and precision-recall curves and
respective area under the curve (AUC) values to distinguish between
knees without and with osteoarthritis using models with covariates (age

and body mass index), image features from all VOIs, and covariates and
image features in the same model

Table 3 Area under the receiver operating characteristic curve (ROC
AUC) and area under the precision-recall curve (PR AUC) values to
distinguish between knees without and with medial tibial cartilage

damage with the models using only covariates (age and body mass in-
dex), image features, and combined covariates and image features model
for different volumes of interests (VOIs)

VOI Covariates Image features Covariates + image features

ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC

All medial 0.60 (0.52–0.69) 0.21 (0.15–0.27) 0.62 (0.54–0.69) 0.27 (0.18–0.36) 0.62 (0.54–0.70) 0.27 (0.18–0.36)

SBM 0.60 (0.52–0.69) 0.21 (0.15–0.27) 0.66 (0.59–0.73) 0.29 (0.20–0.38) 0.66 (0.59–0.73) 0.30 (0.21–0.39)

MidM 0.60 (0.52–0.69) 0.21 (0.15–0.27) 0.58 (0.50–0.66) 0.22 (0.15–0.29) 0.59 (0.51–0.67) 0.22 (0.15–0.30)

TBM 0.60 (0.52–0.69) 0.21 (0.15–0.27) 0.55 (0.47–0.63) 0.20 (0.13–0.26) 0.55 (0.48–0.63) 0.20 (0.14–0.26)

All medial, all medial VOIs in the same model; SBM, medial subchondral bone VOI; MidM, medial mid-part VOI; TBM, medial trabecular bone VOI
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subchondral bone and mid-part VOIs had the highest ROC
AUC and PR AUC. This can be explained by the fact that
the medial side of the knee is more commonly affected in
osteoarthritis than the lateral compartment [40, 41].

For comprehensiveness, we also tested if the radiomic fea-
tures are able to distinguish between subjects without and with
medial tibial cartilage damage, osteophytes, and bone marrow
lesions. Image features from the medial subchondral bone
VOI had the highest ROC AUC and PR AUC to distinguish
between knees without and with medial tibial cartilage dam-
age indicating an interplay between cartilage and subchondral
bone. Image features from the medial mid-part VOI had the
highest ROCAUC and PR AUC to distinguish between knees
without and with medial tibial bonemarrow lesions. Themod-
el that combined all medial side VOIs in the same model had
the highest ROC AUC and PR AUC to distinguish between
knees without and with medial tibial osteophytes. These find-
ings suggest that in addition to the subchondral bone area
closest to the cartilage-bone interface, the characteristics of
deeper bone areas are also altered in osteoarthritis.

The number of studies using radiomic approach for assess-
ment of bone and osteoarthritis is limited, but texture variables
have been previously extracted from knee MRI to assess os-
teoarthritic changes in bone [16, 17, 19]. One study predicted
progression of knee osteoarthritis over 36 months (defined

using joint space narrowing on plain radiographs) using bone
texture on MRI and reported ROC AUCs between 0.58 and
0.68 depending on the model [15]. Radiography-based bone
texture has been used to predict progression or development
of osteoarthritis (ROC AUCs between 0.65 and 0.85) [42–44]
and to distinguish between knees without and with osteoar-
thritis (ROC AUCs between 0.81 and 0.85) [45, 46]. The
advantage of assessing bone on MRI is that other tissues in-
volved in osteoarthritis can be assessed simultaneously.
Furthermore, a two-dimensional plain radiograph is a projec-
tion of a three-dimensional structure, whereas MRI can pro-
duce three-dimensional data from the target structure.

When looking at the variables related to the geometrical
shape of the bone, the compactness variable was included in
all best performing models for classifying each of the used
outcomes. The compactness variable describes how compact
the bone shape on the sagittal slice is compared to a circle [14,
47]. By inspecting the direction of the coefficients in the final
Elastic Net regression models, our results indicate that lower
compactness is associated with tibiofemoral osteoarthritis.

Although many texture features contributed to the final
models, Gabor and GLSZM were present in many models.
Gabor filters respond to the edges (changes in the voxel inten-
sities) in an image and give information about the texture in
certain directions [14, 48, 49]. GLSZM quantifies gray level

Table 4 Area under the receiver operating characteristic curve (ROC
AUC) and area under the precision-recall curve (PR AUC) values to
distinguish between knees without and with medial tibial osteophytes

with the models using only covariates (age and body mass index), image
features, and combined covariates and image features model for different
volumes of interests (VOIs)

VOI Covariates Image features Covariates + image features

ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC

All medial 0.64 (0.56–0.72) 0.28 (0.18–0.37) 0.80 (0.73–0.86) 0.45 (0.34–0.57) 0.80 (0.73–0.86) 0.45 (0.34–0.57)

SBM 0.64 (0.56–0.72) 0.28 (0.18–0.37) 0.76 (0.69–0.83) 0.41 (0.29–0.53) 0.77 (0.69–0.84) 0.43 (0.31–0.55)

MidM 0.64 (0.56–0.72) 0.28 (0.18–0.37) 0.79 (0.73–0.86) 0.45 (0.33–0.56) 0.79 (0.73–0.89) 0.44 (0.33–0.56)

TBM 0.64 (0.56–0.72) 0.28 (0.18–0.37) 0.73 (0.66–0.80) 0.34 (0.24–0.44) 0.73 (0.65–0.80) 0.37 (0.26–0.48)

All medial, all medial VOIs in the same model; SBM, medial subchondral bone VOI; MidM, medial mid-part VOI; TBM, medial trabecular bone VOI

Table 5 Area under the receiver operating characteristic curve (ROC
AUC) and area under the precision-recall curve (PR AUC) values to
distinguish between knees without and with medial tibial bone marrow

lesions with the models using only covariates (age and body mass index),
image features, and combined covariates and image features model for
different volumes of interests (VOIs)

VOI Covariates Image features Covariates + image features

ROC AUC PR AUC ROC AUC PR AUC ROC AUC PR AUC

All medial 0.63 (0.54–0.72) 0.24 (0.14–0.34) 0.68 (0.59–0.76) 0.23 (0.15–0.32) 0.68 (0.60–0.77) 0.25 (0.16–0.35)

SBM 0.63 (0.54–0.72) 0.24 (0.14–0.34) 0.65 (0.57–0.73) 0.21 (0.13–0.29) 0.67 (0.59–0.75) 0.25 (0.15–0.34)

MidM 0.63 (0.54–0.72) 0.24 (0.14–0.34) 0.67 (0.59–0.76) 0.25 (0.15–0.34) 0.69 (0.60–0.77) 0.28 (0.17–0.38)

TBM 0.63 (0.54–0.72) 0.24 (0.14–0.34) 0.57 (0.48–0.66) 0.19 (0.11–0.27) 0.58 (0.49–0.68) 0.21 (0.12–0.30)

All medial, all medial VOIs in the same model; SBM, medial subchondral bone VOI; MidM, medial mid-part VOI; TBM, medial trabecular bone VOI
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zones (i.e., the number of connected voxels that share the
same gray level intensity) in an image [14]. The direction of
the coefficients in the Elastic Net models indicate that more
homogeneous bone texture is associated with osteoarthritis.
One explanation for this is that the subjects with osteoarthritis
may have thickened subchondral bone which can lead to more
homogeneous texture.

One strength of this study was the application of an auto-
matic multi-atlas and appearance model-based algorithm for
the segmentation of tibias. Although different MRI sequences
and data were used, the performance of our segmentation
method was comparable to the previously reported method
for the segmentation of tibial bone [50]. It should be men-
tioned that our method was not fully automatic because 13%
of the segmentations needed manual adjustment.

This study has limitations that need to be addressed.
First, the radiomic features were extracted only from the
tibia. In future studies, features could be extracted from
other bones as well. Second, the link between biological
processes and individual radiomic features is not always
clear. However, MRI-based bone texture has been shown
to correlate with the actual three-dimensional microstruc-
ture of subchondral bone [19]. Third, only basic risk fac-
tors of osteoarthritis were used as covariates in the
models. In future studies, models with more risk factors
should be used and the additional value of radiomic fea-
tures on the diagnosis and prognosis of osteoarthritis
should be studied.

In conclusion, our results show that radiomic features of
tibial bone are different between knees without and with os-
teoarthritis and could be used as quantitative imaging bio-
markers in future studies. As MRI enables assessment of mul-
tiple tissues in a joint, extraction of quantitative imaging bio-
markers from bone would be beneficial in order to get a com-
prehensive view of the tissue changes associated with
osteoarthritis.
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