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Abstract

Background

Telomere length is associated with risk for thyroid subsequent malignant neoplasm in survi-

vors of childhood cancer. Here, we investigated associations between thyroid subsequent

malignant neoplasm and inherited variation in telomere maintenance genes.

Methods

We used RegulomeDB to annotate the functional impact of variants mapping to 14 telomere

maintenance genes among 5,066 five-or-more year survivors who participate in the Child-

hood Cancer Survivor Study (CCSS) and who are longitudinally followed for incidence of

subsequent cancers. Hazard ratios for thyroid subsequent malignant neoplasm were calcu-

lated for 60 putatively functional variants with minor allele frequency�1% in or near telo-

mere maintenance genes. Functional impact was further assessed by measuring telomere

length in leukocyte subsets.

Results

The minor allele at Protection of Telomeres-1 (POT1) rs58722976 was associated with

increased risk for thyroid subsequent malignant neoplasm (adjusted HR = 6.1, 95% CI: 2.4,

15.5, P = 0.0001; Fisher’s exact P = 0.001). This imputed SNP was present in three out of

110 survivors who developed thyroid cancer vs. 14 out of 4,956 survivors who did not
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develop thyroid cancer. In a subset of 83 survivors with leukocyte telomere length data avail-

able, this variant was associated with longer telomeres in B lymphocytes (P = 0.004).

Conclusions

Using a functional variant approach, we identified and confirmed an association between a

low frequency intronic regulatory POT1 variant and thyroid subsequent malignant neoplasm

in survivors of childhood cancer. These results suggest that intronic variation in POT1 may

affect key protein binding interactions that impact telomere maintenance and genomic

integrity.

Introduction

Over 80% of individuals diagnosed and treated for cancer as children will survive five or more

years after completing cancer treatment. An increased risk for subsequent malignant neo-

plasms (SMN), including SMNs of the thyroid (thyroid SMN), is a known late effect of child-

hood cancer treatment.[1] Higher risk for thyroid SMN is observed among female survivors,

those diagnosed with primary cancer at a younger age, and those exposed to radiation and cer-

tain chemotherapeutic agents.[2] However, these clinical risk factors do not fully explain vari-

ability in thyroid SMN risk, suggesting a likely role for inherited genetic factors.

Telomeres are repetitive DNA-protein structures localized to chromosome ends, protecting

chromosome integrity and loss of proximal terminal coding regions during DNA replication.

Telomere length is determined by environmental and hereditary factors, shortens with age,

and is maintained by telomerase and associated proteins. The majority of population-based

studies have noted an inverse association between cancer risk over time and leukocyte telo-

mere length when measured directly through standard methodologies.[3, 4] However, data

from genome wide association studies suggest that longer telomere length may also confer risk

for a number of cancers.[5] This apparent paradox is hypothesized to result from multi-stage

mechanisms underlying malignant transformation: specifically, accumulation of random

mutational events during stem cell replication may lead to an increase in sporadic cancer risk

that occurs with physiologic aging, for which telomere shortening is a proxy. Longer telomeres

confer a greater capacity for cellular clonal expansion and proliferation, so that individuals

with very long telomeres may also be at especially high risk for carcinogenesis.[6]

Exposure to ionizing radiation induces DNA damage and may lead to telomere dysfunc-

tion,[7–10] providing rationale to suggest a relationship between telomere length and risk for

SMN among radiation-exposed cancer survivors. We previously reported an increased risk for

thyroid SMN in radiation-exposed survivors of childhood cancer with reduced leukocyte telo-

mere content.[11] We subsequently observed no association between genotypically-estimated

telomere length, determined from variation in nine common telomere length-associated

SNPs, and thyroid SMN.[12] These prior works prompted a functional variant approach to

further interrogate the relationship between variation in genes related to telomere mainte-

nance and thyroid SMN in the Childhood Cancer Survivor Study (CCSS).

Materials and methods

Subjects

The CCSS is a multi-center cohort of individuals diagnosed <21 years of age with childhood

cancer between 1970 and 1986, and who survived five or more years after completion of cancer
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treatment.[13] After enrollment to the CCSS, survivors are prospectively followed through

self-report questionnaires to ascertain late effects of cancer treatment. Thyroid SMN was

defined as any SMN of the thyroid gland occurring as the first subsequent neoplasm in a CCSS

participant, with a diagnosis and date of diagnosis that had been verified from the original

pathology report by a CCSS-designated pathologist. All subjects provided written consent to

participate in the CCSS, and each of the 26 participating institutions obtained approval to con-

duct this research through their institutional IRB. Diagnosis and treatment data were initially

abstracted from the medical record by the participating treating institution and submitted,

fully anonymized, to CCSS. The work described in this study utilized fully anonymized data.

The study was conducted in accordance with the Declarations of Helsinki.

Genetic data

This study leveraged genetic data from 5,066 CCSS participants with complete follow-up for

SMN. DNA was extracted using standard methods from blood, saliva (Oragene), or buccal

cells (mouthwash), collected at least five years from diagnosis and genotyped using the Illu-

mina HumanOmni5Exome array at the Cancer Genomics Research Laboratory of the

National Cancer Institute. All survivors were imputed to the 1000 Genomes reference haplo-

types.[14] We mapped 3,499 variants to a 100 bp region flanking genes implicated in a telo-

mere biology disorder: ACD, CTC1, DKC1, NAF1, NHP2, NOP10, PARN, POT1, RTEL1,

STN1, TERC, TERT, TINF2, WRAP53 (Table 1).[15–31] We restricted our analyses to include

only functional SNPs with minor allele frequency (MAF)� 1% in or near these 14 genes that

were considered most likely to affect transcriptional factor binding, defined by a RegulomeDB

score� 2, which signifies localization to transcriptional factor binding and motifs, DNase

footprints and peaks, or identification as a quantitative trait locus for gene expression (eQTL)

Table 1. Genes currently implicated in telomere biology disorders.

Gene name (HGNCa

Symbol)

Related telomere biology disorder(s)b Role in telomere maintenance

ACD HHS, AA, familial cancers Part of the shelterin complex

CTC1 DC, Coats Plus, cerebroretinal

microangiopathy

Part of the CST complex

DKC1 DC, HHS Part of the telomerase holoenzyme

NAF1 PF Part of the telomerase holoenzyme

NHP2 DC Part of the telomerase holoenzyme

NOP10 DC Part of the telomerase holoenzyme

PARN DC, PF, HHS Ribonuclease interacting with TERC

POT1 Coats Plus, familial cancers Part of the shelterin complex

RTEL1 DC, PF, HHS DNA helicase interacting with

shelterin

STN1 (OBFC1) Coats Plus Part of the CST complex

TERC DC, PF, MDS, HHS, AA Part of the telomerase holoenzyme

TERT DC, PF, AML, MDS, HHS, AA Part of the telomerase holoenzyme

TINF2 DC, HHS, RS, AA Part of the shelterin complex

WRAP53 DC Protein that binds to TERC

aHUGO Gene Nomenclature Committee
bHHS = Hoyeraal Hreidersson Syndrome, DC = dyskeratosis congenita, PF = pulmonary fibrosis,

MDS = myelodysplastic syndrome, AA = aplastic anemia, AML = acute myeloid leukemia, RS = Revesz Syndrome

https://doi.org/10.1371/journal.pone.0228887.t001
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across multiple tissues.[32] Genetic variants were coded as imputed genotype dosages and fil-

tered for imputation quality >0.7.

Statistical analysis

We conducted time-to-event Cox regression for thyroid SMN as a first SMN using the survival
package in R v3.5.2. The at-risk period began with the date of initial cancer diagnosis and

ended at the date of thyroid SMN diagnosis, or the earliest first report of other SMN, death,

and/or date of last follow up. Relative risk of thyroid SMN was estimated using hazard ratios

(HR), adjusted for demographic and clinical factors including sex, birth year before or after

1970, age at primary cancer diagnosis, primary cancer diagnosis, radiation exposure (yes/no),

neck radiation exposure (yes/no), alkylating agent exposure (yes/no), and thyroid nodules

(yes/no). Genetic ancestry proportions were estimated using three continental ancestries

(CEU, AFR, and ASN) in STRUCTURE.[33] We used an 80% threshold to define individuals

of a predominant ancestry and performed secondary analyses 1) in the total sample addition-

ally adjusted for estimated European and African proportions and 2) restricted to individuals

of European ancestry. Statistical significance for association with risk for thyroid SMN was

defined by the Bonferroni correction for the number of variants tested (α = 0.00083). For

lower frequency variants (MAF 1–5%) that were statistically significant in the Cox regression

model, we validated the regression model using a Fisher’s exact test to evaluate differences in

allele frequency between those with and without thyroid SMN.[34]

Measurement of telomere length in hematopoietic cells

Viably frozen leukocyte samples were available for 83 CCSS subjects included in this study.

Leukocyte telomere length was measured by flow cytometry fluorescence in situ hybridization

(flow FISH) following established procedures.[35] Briefly, leukocyte telomere length was

assessed against that of control bovine thymocytes after denaturation in formamide at 87˚C.

Quantitative hybridization with a fluorescein-conjugated (CCCTAA)3 peptide nucleic acid

(PNA) probe specific for telomere repeats (in-house synthesis) was then performed and coun-

terstained with LDS751 DNA dye (Exciton), followed by analysis with flow cytometry. Results

were transformed to age-adjusted percentiles based on the date of sample collection. For sig-

nificant functional variants, we compared the proportions of age-based relative telomere

length categories (very low, low, normal, high, or very high) by cell type between carriers and

non-carriers of the risk allele using Fisher’s exact test.

Results

We identified 110 CCSS participants who developed thyroid SMN five or more years after

completion of cancer treatment and 4,956 survivors without thyroid SMN. Survivors who

developed thyroid SMN were more likely to be female (thyroid SMN: 62.7%, non-cases:

51.6%) and to have thyroid nodules (thyroid SMN: 84.5%, non-cases: 10.0%). Thyroid SMN

also occurred more frequently for those with older age at childhood cancer diagnosis (thyroid

SMN cases: mean 9.0 years, non-cases: mean 7.9 years) and a primary diagnosis of Hodgkin

lymphoma (thyroid SMN cases: 32.7%, non-cases: 12.6%). Among primary cancer treatment

characteristics, radiation treatment to the neck and exposure to alkylating chemotherapy was

also more likely to have occurred among thyroid SMN cases than survivors without thyroid

SMN (Table 2).

There were 60 SNPs included in our analyses located in or near telomere candidate genes

that had both 1) a RegulomeDB score�2 signifying high likelihood for affecting transcrip-

tional regulation and 2) a general population MAF <1%. Only one imputed variant

POT1 variation and risk for thyroid second cancer in survivors of childhood cancer
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(imputation quality r2 = 0.95) in an intronic region of POT1 (Protection of Telomeres 1),

rs58722976, met Bonferroni criteria for statistical significance (adjusted HR = 6.1, 95% CI: 2.4,

15.5, P = 0.0001). The risk-associated G allele was present in three individuals with thyroid

SMN and 14 individuals without thyroid SMN (Table 3). Comparing the risk allele frequencies

between cases and non-cases also supported association of rs58722976 with thyroid SMN

(Fisher’s exact P = 0.001). Estimated allele frequency at rs58722976 in the Genome Aggrega-

tion Database (gnomAD) suggests variation at rs58722976 occurs at highest frequency in indi-

viduals of African ancestry (AFR f(G) = 4.8%). In secondary analyses, we identified a

consistent association of rs58722976 with thyroid SMN both when additionally adjusted for

ancestry proportions (ancestry-adjusted HR = 8.0, 95% CI: 2.3, 27.2, p = 0.0009) and when

restricted to European ancestry CCSS participants (CEU only HR = 18.9, 95% CI: 3.5, 101.7,

p = 0.0006; median CEU proportion = 95.7%).

Table 2. Characteristics of the Childhood Cancer Survivor Study participants by development of subsequent malignant neoplasm of the thyroid.

Thyroid SMN cases n = 110 Non-cases n = 4,956

n (%) n (%)

Age at first malignancy, years (mean ± SD) 9.0 ± 5.5 7.9 ± 5.9

Year of birth

Before 1970 68 61.8% 2,227 44.9%

After 1970 42 38.2% 2,729 55.1%

Sex

Male 41 37.3% 2,397 48.4%

Female 69 62.7% 2,559 51.6%

Type of first malignancy

Leukemia 30 27.3% 1,589 32.1%

Central nervous system 12 10.9% 591 11.9%

Hodgkin lymphoma 36 32.7% 623 12.6%

Non-Hodgkin lymphoma 5 4.5% 397 8.0%

Kidney/Wilms tumor 5 4.5% 486 9.8%

Neuroblastoma 5 4.5% 366 7.4%

Soft tissue sarcoma 6 5.5% 463 9.3%

Bone 11 10.0% 441 8.9%

Alkylating chemotherapy 69 62.7% 2,542 51.3%

Any radiation treatment 94 85.5% 3,144 63.4%

Radiation treatment to the neck 66 60.0% 1,041 21.0%

Thyroid nodules 93 84.5% 498 10.0%

https://doi.org/10.1371/journal.pone.0228887.t002

Table 3. Genotype frequencies and Cox regression estimates for POT1 rs58722976 and risk of subsequent malignant neoplasm of the thyroid in the Childhood Can-

cer Survivor Study.

Genotypes for thyroid SMN

cases

Genotypes for non-cases Cox regression estimates

SNP Population GG AG AA GG AG AA HR 95% CI P-value

rs58722976 total sample 1 2 107 0 14 4,942 6.1 (2.4, 15.5) 0.0001

AFR and CEU adjusted 1 2 107 0 14 4,942 8.0 (2.3, 27.2) 0.0009

CEU only 0 2 102 0 2 4,621 18.9 (3.5, 101.7) 0.0006

All models are adjusted for sex, age at primary cancer diagnosis, primary cancer diagnosis, decade of birth, and treatment exposures.

https://doi.org/10.1371/journal.pone.0228887.t003
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Lastly, telomere length was assessed in leukocyte populations in a subset of 83 survivors of

childhood cancer enrolled to the CCSS. Only two were heterozygous for the risk allele in our

top SNP. Telomere length was increased for the two heterozygous subjects across all leukocyte

subsets compared with the median telomere length for subjects without the risk allele, a differ-

ence that was statistically significant for B lymphocytes (Fig 1, P = 0.004).

Discussion

POT1 is a highly conserved gene encoding a key component of the shelterin complex, which

protects telomere ends against DNA damage recognition and facilitates telomerase-mediated

telomere maintenance. POT1 rs58722976 is an intronic variant identified by the ENCODE

Consortium as a strong enhancer and DNase I hypersensitive site in multiple tissues, including

the hematopoietic compartment, and may affect protein binding in components of the cohe-

sion complex that play key roles in cancer etiology and maintaining genomic integrity.[36]

Germline variants in POT1 have been described in association with various cancer types[37]

including familial glioma,[38] familial melanoma,[39–41] colorectal, ovarian, and lung cancer,

[42] chronic lymphocytic leukemia,[43] multiple myeloma,[44] and non-TP53 familial cancer

syndromes.[45] Similar to our analyses, many of these genetic association studies note longer

leukocyte telomere length among affected individuals compared with those who are unaf-

fected.[38, 40, 41, 45] Recent data suggest that mutation-induced disruptions in the

POT1-TPP1 complex, both components of shelterin, affect the ability of this complex to bind

Fig 1. Deviation from the age-based mean leukocyte telomere length measured by flow-FISH in survivors of

childhood cancer. Two of these survivors (one CEU and one YRI) were heterozygous for the high risk POT1
rs58722976-G allele (denoted by circles) and demonstrate telomere length that is above the median for all leukocyte

subsets and significantly longer among B lymphocytes than telomere length in survivors who lack this variant. Boxes

include values falling between the 25th and 75th percentile deviation in telomere length from the age-based mean.

https://doi.org/10.1371/journal.pone.0228887.g001

POT1 variation and risk for thyroid second cancer in survivors of childhood cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0228887 February 10, 2020 6 / 10

https://doi.org/10.1371/journal.pone.0228887.g001
https://doi.org/10.1371/journal.pone.0228887


to telomeric DNA, leading to longer and more fragile telomeres that may promote genomic

instability and cancer risk.[46]

This study was conducted within the CCSS, the largest genotyped population of survivors

of childhood cancer. However, the low frequency of this variant precludes assessment of gene-

environment interactions and adequately-sized genotyped survivor populations for replication

or stratification among non-white ancestries. For example, all risk allele carriers excluded

from CEU-only analysis were of primarily African ancestry (one homozygous individual with

thyroid SMN and 12 carriers without thyroid SMN). Although thyroid cancer incidence is

highest among individuals of European ancestry,[47] African ancestry confers a higher risk for

the follicular variant of papillary thyroid cancer,[48] which was the SMN subtype observed in

the survivor with thyroid SMN that was homozygous for the rs58722976 risk allele.

Using an approach that mapped functional variants to candidate genes, we identified an

association between a low frequency intronic regulatory variant in POT1 and risk for thyroid

SMN in survivors of childhood cancer. We provide evidence that genetic variation at this locus

may related to longer telomere length, in line with prior observations of longer leukocyte telo-

mere length in association with cancers characterized by germline mutations in POT1. Our

findings support a potential role for genetic variation in POT1 affecting telomere maintenance

and risk for thyroid SMN in survivors, suggesting the need for further study as larger geno-

typed survivor datasets emerge.
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