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Abstract 

Objective:  We aim to develop and validate a three-dimensional convolutional neural network (3D-CNN) model for 
automatic liver segment segmentation on MRI images.

Methods:  This retrospective study evaluated an automated method using a deep neural network that was trained, 
validated, and tested with 367, 157, and 158 portal venous phase MR images, respectively. The Dice similarity coeffi-
cient (DSC), mean surface distance (MSD), Hausdorff distance (HD), and volume ratio (RV) were used to quantitatively 
measure the accuracy of segmentation. The time consumed for model and manual segmentation was also compared. 
In addition, the model was applied to 100 consecutive cases from real clinical scenario for a qualitative evaluation and 
indirect evaluation.

Results:  In quantitative evaluation, the model achieved high accuracy for DSC, MSD, HD and RV (0.920, 3.34, 3.61 and 
1.01, respectively). Compared to manual segmentation, the automated method reduced the segmentation time from 
26 min to 8 s. In qualitative evaluation, the segmentation quality was rated as good in 79% of the cases, moderate in 
15% and poor in 6%. In indirect evaluation, 93.4% (99/106) of lesions could be assigned to the correct segment by 
only referring to the results from automated segmentation.

Conclusion:  The proposed model may serve as an effective tool for automated anatomical region annotation of the 
liver on MRI images.
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Key points

•	 3D-CNN exhibits satisfactory performance for seg-
mentation of liver-segment on MR images.

•	 It is robust across different MR scanners and variable 
liver backgrounds.

•	 It lays a foundation for computer-aided analyses of 
liver MR images.
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Introduction
Subdivision of the human liver into anatomical regions 
is part of the daily routine of radiologists, especially con-
sidering the need for precise preoperative localization 
of focal liver lesions. Currently, the type of hepatectomy 
chosen depends mainly on the segmental localization of 
the lesion [1]. In addition, the identification of liver seg-
ment is also crucial to reduce the risk of liver surgery [2]. 
Several quantitative parameters, such as liver fat fraction 
and R2* value, also need to be measured at a segment 
level due to the heterogeneous nature of some diseases 
in liver [3]. These tasks are usually performed by radiolo-
gists via visual interpretation or manual segmentation, 
which are labor-intensive, time-consuming, and prone to 
intra- and inter-observer variations. A practicable auto-
mated liver segment segmentation tool is therefore very 
desirable for clinical purposes.

In the past two decades, a lot of research work has been 
done in computer-assisted liver segment segmentation 
[4–21], most of them using traditional machine learn-
ing techniques [4, 7–21], which cannot meet the needs 
of clinical applications in terms of segmentation perfor-
mance and efficiency. The method proposed by Lebre 
et  al. [8] requires first segmentation of the hepatic ves-
sels using the skeletonization process, and then the main 
direction of the largest vessels was extracted to achieve 
separation of different liver segments. However, the 
whole process took more than 8 min, and good results 
are highly dependent on accurate vascular segmenta-
tion, which is difficult owing to the complex intertwined 
vascular anatomy in the liver. To tackle this problem, in 
a recently published paper, Wu et  al. [4] introduced a 
multiple feature-based method. Their method improved 
the accuracy of vessel separation and was subsequently 
expected to improve the segmentation of liver segments. 
However, the quantitative results of liver segments 
segmentation were not given in this paper and their 
method took an average of 20.8 s per case to obtain liver 
segments.

In recent years, the rapid development of deep learn-
ing, particularly the advent of convolutional neural net-
work (CNNs), has pushed medical image segmentation 
to a new level [22]. Tian et al. [5] used a 2.5-dimensional 
(2.5D) class-aware deep neural network with spatial 
adaptation to obtain Couinaud segmentation of the liver 
from CT images. They achieved an average dice score of 
0.882 and the entire running time was quite fast (~5 s). 
The results demonstrated the potential of deep learning 
to improve segmentation efficiency and accuracy over 
traditional methods. For MR images, Mojtahed et al. [6] 
recently reported a Couinaud segment volume meas-
urement tool based on deep learning, but this device is 
semi-automatic (needs human position eight landmark 

placement). To our knowledge, there is still lack of a deep 
learning-based fully automatic tool for liver segments 
segmentation on MR images. In this study, we would like 
to develop a 3D U-net based algorithm to automatically 
segment the liver into Couinaud regions on MR images.

Materials and methods
Dataset
This retrospective study was approved by the insti-
tutional review board of Beijing Friendship Hospital, 
and informed consent was waived. All abdominal MR 
scans were performed as part of routine clinical care for 
patients. For model development, we initially obtained 
744 multiphase contrast-enhanced MR scans by search-
ing picture archiving and communication system (PACS) 
randomly between January 2017 and February 2019. 
After excluding the following cases: (1) Those with appar-
ent liver deformation due to advanced cirrhosis or large 
tumors (n = 33). (2) Those with poor imaging quality or 
severe artifacts (n=8), and (3) those after partial hepatec-
tomy or liver transplantation (n = 21). A total of 682 MR 
scans were included in the final cohort (367, 157, 158 for 
training, validation and testing, respectively).

For clinical evaluation, a consecutive sample of 100 
patients who underwent abdominal enhanced MR in our 
hospital between April 1 and 24, 2021 was collected.

Image acquisition
One 1.5T and four 3.0T MR scanners (GE, GE Health 
care, Boston, USA; Siemens Medical Solutions, Forch-
heim, Germany, Siemens Medical Solutions, Forchheim, 
Germany; Philips Medical Systems, Best, the Nether-
lands) were used in this study. 3D T1-weighted breath-
hold sequences from our institutional standardized liver 
MR imaging protocols were used for contrast-enhanced 
imaging. Parameters varied across equipment and ranged 
from TR 3.4–4.1ms, TE 1.15–1.91ms, flip angle 10–15°, 
bandwidth 125 and 500 Hz, slice thickness 3–4.4 mm, 
image matrix 216 × 188 to 288 × 216 and field-of-view 
380 × 342 mm to 400 × 369 mm, acquisition time 10 
s. In this study, only portal venous phase (PVP) images 
acquired at ~60s postinjection were used. Anonymized 
MR images in DICOM format were exported from PACS.

Manual segmentation
Classification of liver segment was based on Couinaud’s 
description [23], as shown in Fig.  1. The ground-truth 
was generated by two radiologists (Z.Y.S. and Z.X.L.) with 
more than 5 years of experience in abdominal imaging 
using Mimics software (version 19.0; Materialise, Leuven, 
Belgium). All the images were divided into two groups 
and evenly distributed to each radiologist. To ensure the 
consistency of the segmentation results, two radiologists 
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went through a training session and segmented several 
cases together before formal segmentation.

Model development
We used 3D U-Net as the backbone, which is built with 
3D conv, ReLU, BN and pooling layers [24]. The network 
takes a 3D image as input, and produces the output with 
the same shape as the input image. The images were nor-
malized by spacing and cropped into a fixed shape (160 × 
160 × 160) in a sliding window approach before feeding 
into the model. As the variation in the gray distributions 
of MR scan images should not be ignored compared to 
CT scans, a grayscale normalization by subtracting the 
mean and divide by the standard deviation was applied 
after spacing normalization.

We introduced two branches in the output layer. As 
shown in Fig.  2, the upper segment produces the liver 
boundary and the other segment is the pixelwise segmen-
tation of the liver segments. The late output serves as the 
final output, while the previous output helps to produce a 

better boundary. The model is trained end-to-end using 
the SGD optimizer on the training dataset. The learn-
ing rate of the training is start at 1e−3 and decay by 0.1 
at every 50 epochs. We use Dice-Loss as the loss func-
tion, and batch size is set to 8. The training is end at 150 
epochs.

Evaluation
Quantitative evaluation
Quantitative results were derived on the internal test 
dataset (158 cases not used for training). The following 
four parameters were used:

The Dice similarity coefficient (DSC)  DSC is used to 
measure the voxel overlap between the prediction (X) and 
the ground truth (Y). The value of this metric ranges from 
0 to 1, with minimum and maximum values indicating no 
overlap and fully overlap, respectively.

Fig. 1  Method of Couinaud’s classification on axial MRI images. Five planes (three vertical planes along the main stem of hepatic veins and two 
horizontal planes through the primary branches of the portal vein) are used to divide the liver. In axial MR images, the line from the midpoint of 
the IVC to the MHV or vertex of the gallbladder fossa divides the right and left lobes (a and b). The RHV further divides the right lobe into anterior 
and posterior segments (d and e). The LHV (in the upper part of the liver) and the left longitudinal fissure (in the lower part of the liver) divide the 
left lobe into a medial and a lateral segment. (g and h). Each segment of right and left lateral lobes is further divided into a superior segment and 
an inferior segment by the main stem of the right portal vein and the sagittal part of the left portal vein (f and i). The caudate lobe is separated 
from the other segments by the natural curve from the venous ligament fissure to the right wall of the IVC (c). IVC, inferior vena cava; MHV, middle 
hepatic vein; RHV, right hepatic vein; LHV, left hepatic vein.
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The mean surface distance (MSD) and Hausdorff distance 
(HD)  MSD and HD are designed to quantify surface-
based difference between X and Y. MSD calculates the 
mean distance between the two surfaces, whereas HD 
measures the maximum distance between them.

The volume ratio (RV)  RV computes the volume ratio of 
the liver segments from two segmentations, defined as RV 
(X, Y) = VX/VY, where VX and VY represent the volume of 
model and manual segmentations, respectively.

The value of DSC, MSD, HD and RV for each liver seg-
ment and the average of eight segments were calculate. 
All of these quantitative parameters by different MRI 
manufacturers were also calculated. In addition, time 
consumed for AI-based segmentation and manual seg-
mentation was compared.
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Clinical evaluation
Our model was applied to a total of 100 consecu-
tive patients who received upper abdominal contrast-
enhanced MR examinations in our hospital from April 1 
to 24, 2021. The clinical evaluation consists of the follow-
ing two parts:

Qualitative evaluation  The segmentations generated by 
the model were evaluated independently by two radiolo-

gists (X.H. and Y.D.W.) with more than 15 years’ experi-
ence. Segmentation quality of each patient was classified 
as either good, moderate, or poor based on the following 
two main elements: a. The accuracy of separation planes 
placement; b. whether inter-segment segmentation fault 
occurs. Accuracy of separation planes placement was 
determined by how much they shifted off center. For the 
three vertical planes along the hepatic veins, a shift ≤ 5 
mm was defined as slight, 5–10 mm as moderate and 
≥ 10 mm as severe. For the two horizontal planes along 
the portal veins, a shift ≤  2 slices was defined as slight, 
2–5 slices as moderate and ≥  5 slices as severe. Inter-
segment segmentation faults are the errors that cannot 
be explained by misplacement of the separation planes 
and are usually irregular shaped. Finally, segmentations 
with two or less slight shifts and no other errors, or with 
only one moderate shift and no other errors were classi-
fied as good; Those with more than two slight shifts or 
more than one moderate shifts, but no severe plane shifts 
and no inter-segment segmentation faults, were classified 
as moderate. Once the segmentation had a severe shift or 

Fig. 2  Network structure of the liver segment segmentation model.
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inter-segment segmentation fault, it was classified as poor 
segmentation. Differences were rerated by an abdominal 
subspecialty radiologist (Y.Z.H.) with more than 30 years 
of experience.

Indirect evaluation  The accuracy of segmentation was 
assessed indirectly based on the localization of lesions 
in the liver. The steps were as follows: first, cases with 
uncountable lesions or no lesions were excluded. Then, 
for each of the remaining cases, all the focal abnormal 
findings (larger than 5 mm) that could be seen in PVP 
were identified. If a liver had more than five lesions, only 
the five largest lesions were selected. Finally, for each eli-
gible lesion, the specific liver segment that it resides (by 
only referring to the automated segmentation results) was 
recorded and judged by radiologists. Detection, screen-
ing, and localization judgment of lesions were performed 
by two radiologists (X.H. and Y.D.W.) in consensus. One 
radiologist (Y.Z.H.) arbitrated in case of disagreement. 
Fig.  3 illustrates the indirect evaluation with two exam-
ples.

Statistical analysis
Continuous variables were expressed as mean ± standard 
deviation (SD) or as the median and interquartile range 
depending on the normality of the data. Categorical 

variables were summarized as frequencies and per-
centages. Reader agreement was tested by the linearly 
weighted kappa coefficient. All statistical analyses were 
conducted using SPSS software version 25.0 (IBM, 
Armonk, New York). Significance was set at p < 0.05.

Results
Patients and image characteristics
A total of 782 patients who underwent multiphase con-
trast-enhanced MR scans at our hospitals were included 
in this study. The mean age was 59 ± 15 years, and there 
were slightly more males (404; 51.7%). The demographic 
and MR scan profiles that were employed for each data-
set are summarized in Table 1.

Quantitative results
Experimental results show that our method is capa-
ble of accurately subdividing the input liver MR images 
into eight anatomical regions, with an average DSC of 
90.20%. The good value of other metrics including HSD, 
MSD, and RV further confirmed the accuracy of the pro-
posed method. Tables  2 and 3 summarize all four met-
rics (DSC, MSD, HD, and RV) on the whole dataset and 
on the data by different MR manufacturers, respectively. 
As shown in Table  3, there were no significantly differ-
ence of the quantitative evaluation results determined 

Fig. 3  Examples of indirect evaluation. a A liver abscess that resided in S4 and S8 was assigned to the correct segments by AI. b Shows a large 
tumor, located in S4 with slight pushing of the margin of S8. However, if we only refer to the AI segmentation result, it will be assigned to S4 and 
8. The red boxes in the source image and bright red volumes in VR images indicate the lesions. AI, artificial intelligence; S, segment; VR, volume 
rendering.
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by this segmentation model on the data from different 
manufacturers.

The average running time using the developed model 
on an GPU-accelerated computing platform with 
Xeon(R) Silver 4210R (CPU) and GeForce RTX 2070 
(GPU) was 8.2 ± 2.4 s. This takes much less time than 
manual segmentation, which took 26 min on average for 
a set of liver MR images.

Clinical evaluation results
Qualitative evaluation
The concordance between the two raters was satisfac-
tory (kappa = 0.858). 6% (6/100) of the cases were rated 
as poor, meaning they had more serious segmentation 
errors that needed to be manually corrected. Among the 
six cases with poor segmentation, five cases were found 
for the patients with cirrhosis, and 1 case had diffuse 

Table 1  Basic characteristics of the enrolled subjects for model development and clinical evaluation set.

Parameters Model development Clinical evaluation

Training Validation Test

Number of patients 367 157 158 100

Male/female 189/178 81/76 83/75 51/49

Age (year) 60 ± 16 58 ± 15 60 ± 14 59 ± 13

Different manufactures (GE/Siemens/
Philips)

203/107/57 94/32/31 105/28/25 48/52/0

Table 2  Quantitative evaluation for automated liver segment segmentation.

S segment, AVG average, DSC dice similarity coefficient, MSD mean surface distance, HD Hausdorff distance, RV volume ratio.

Metrics S1 S2 S3 S4 S5 S6 S7 S8 AVG

DSC (%) 93.15 92.24 91.03 92.18 88.07 87.53 89.28 88.11 90.20

MSD (mm) 1.21 3.31 2.98 2.44 4.21 4.52 3.99 4.03 3.34

HD (mm) 1.39 3.82 3.25 2.89 4.33 4.67 4.21 4.32 3.61

RV 1.08 1.06 0.96 0.93 1.18 0.89 0.91 1.09 1.01

Table 3  Quantitative evaluation results by different MR manufacturers.

S segment, AVG average, DSC dice similarity coefficient, HD hausdorff distance, MSD mean surface distance, RV volume ratio.

Metrics S1 S2 S3 S4 S5 S6 S7 S8 AVG

GE

 DSC (%) 93.33 92.01 90.93 92.43 89.02 87.36 88.97 88.42 90.31

 MSD (mm) 1.18 3.33 3.01 2.38 3.71 4.62 4.11 3.93 3.28

 HD (mm) 1.34 3.86 3.33 2.79 4.02 4.76 4.32 4.22 3.58

 RV 1.02 1.04 1.02 0.98 1.11 0.93 0.95 0.95 1.00

Siemens

 DSC (%) 93.25 92.11 91.20 92.24 88.33 87.50 89.06 88.41 90.26

 MSD (mm) 1.17 3.29 2.97 2.38 4.17 4.53 4.10 3.97 3.32

 HD (mm) 1.35 3.81 3.20 2.87 4.28 4.69 4.42 4.22 3.61

 RV 1.05 1.07 0.97 0.92 1.14 0.90 0.90 1.05 1.00

Philips

 DSC (%) 92.28 93.35 91.26 91.06 83.79 88.28 90.83 86.47 89.67

 MSD (mm) 1.38 3.24 2.86 2.75 6.35 4.08 3.36 4.51 3.61

 HD (mm) 1.64 3.66 2.96 3.33 5.68 4.26 3.51 4.85 3.73

 RV 1.36 1.13 0.69 0.73 1.51 0.71 0.75 1.72 1.06
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metastases in the liver. Severe changes in liver shape and 
vascular anomalies caused by liver diseases appeared 
to be the main reason for the poor segmentation. Some 
examples of AI segmentations from different liver condi-
tions are presented in Figs. 4 and 5.

Indirect evaluation
After excluding 46 cases with no or uncountable lesions, 
a total of 106 lesions from 54 patients were used to 
evaluate the accuracy of AI segmentation. The maximal 
diameters of all lesions ranged from 0.6 to 6.0 cm (mean 
+/− SD, 1.6 cm +/− 0.8 cm) on MRI. According to the 
results, 93.4% (99/106) of the lesions were assigned to the 
segments where they were actually located. Moreover, 
the proposed method not only accurately located small 
lesions in a single segment but was also effective for mas-
sive lesions across segments. Seven of 106 lesions in total 
failed to be accurately located, of which two were due to 
the severe segmentation errors. Of the other errors, four 
lesions were on the boundary between two segments, 
and one lesion was on the edge of the liver and was not 
included in the segmentation.

Discussion
In this study, we proposed and validated a deep learning 
model for fully-automated Couinaud segmentation of the 
liver based on PVP MRI images. Current experimental 
results reveal that our model can accurately subdivide the 
input liver MR images into eight anatomical regions and 
is robust across different MR scanners. The effectiveness 
of the proposed method was also validated in clinical 
scenarios and it would be a promising tool for assisting 
lesion localization automatically.

Subdivision of the liver into anatomical regions is criti-
cal because it is a fundamental step in potential com-
puter-aided diagnosis in liver imaging. Most researchers 
who work on liver segment segmentation present their 
results on CT. Although CT is more widely used, MRI 
has several very definite advantages and can be used 
as a crucial complement to CT to screen for and diag-
nose liver disease [25, 26]. Lebre et  al. [8] introduced a 
method for liver segment segmentation that is applicable 
to MR images. However, it requires liver segmentation 
and extraction of the vascular network before the Cou-
inaud classification can finally be obtained. The time cost 
of the whole process is more than 8 min. Furthermore, 

Fig. 4  Examples of successful segmentations from AI in the clinical evaluation set. a A good liver background with several hepatic cysts in separate 
segments. b A case of a large solitary liver abscess occupying 2 segments of the liver (S5 and S6). c Liver cirrhosis. d Liver metastases (multiple 
masses and nodules in the liver). The top row shows the original images. The middle row shows the upper part of the liver with segmentation 
masks from AI, and the last row shows the lower part of the liver. AI, artificial intelligence; S, segment.
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their model performance was inadequately validated on 
a very small dataset (4 cases) and no quantitative results 
were given. Zhang et al. [9] proposed a method for parti-
tioning the liver on 4D dynamic contrast-enhanced MR 
(DCE-MR) imaging. They obtained a mean DSC value 
of 88.43%. The accuracy is acceptable considering that it 
is produced on DCE-MR images with low spatial reso-
lution. However, their method is not fully automated as 
manual feature extraction is needed in the process. In this 
work, our fully-automated approach received a quantita-
tive assessment on a larger testing dataset, and the results 
confirmed that it is efficient, accurate and robust on three 
heavyweight MR manufacturers. We believe this is a step 
forward toward achieving intelligent diagnosis for liver 
MR images.

Previously, the evaluation of liver segment segmenta-
tion was mostly performed by visual inspection [7] and 
volumetric validation [16–18, 20, 21], or a combination 
of both [10, 19]. It is a major challenge because it imposes 
to have actual segment specimens. Several recent stud-
ies have adopted new approaches, including quantita-
tive assessment, qualitative assessment, and indirect 

assessment [4, 5, 8, 9]. However, they all have a small 
sample size problem. In this study, we made a thorough 
evaluation of the model by using three different methods. 
Quantitative evaluation provides exact results and allows 
comparison between different studies. A common met-
ric used for this purpose is DSC. To date, the accuracy 
of liver segment segmentation produced by prior meth-
ods does not exceed a DSC of 88.2% [5]. In this work, our 
model yielded a mean DSC of 90.2%. Good results were 
also obtained in HD, MSD and RV, metrics that have 
not yet been reported in similar research but have been 
widely used for segmentation evaluation. As a part of our 
experiment, the model was applied to real clinical sce-
narios for evaluation. As expected, our model generated 
good segmentation images in most cases, covering a wide 
range of liver appearances from normal to abnormal. It 
is worth mentioning that some cases with advanced liver 
cirrhosis or multiple liver metastases were also accurately 
segmented by our model and some of the large across-
segment tumors did not affect the detection of boundary 
lines. Poor segmentation occurred mainly in cases with 
severe vascular problems, including abnormal vascular 

Fig. 5  Examples of erroneous segmentations from AI in the clinical evaluation set. a A case of liver cirrhosis. Obvious intersegment misidentification 
occurred in the liver right lobe. Morphological changes in the liver and poor visualization of the hepatic veins can be observed in the corresponding 
source image. b A case of liver metastases. Oversegmentation errors occurred in the whole liver. Intrahepatic vasculature was diffusely invaded 
by metastases. c A case of gallbladder in ectopic locations. The gallbladder lies in the hepatic longitudinal fissure instead of the gallbladder fossa. 
Most likely for this reason, S4 was assigned to the left lobe by AI segmentation. d A case with hepatic vein variation. AI might mistake the large right 
posterior hepatic marginal vein for the right hepatic vein, which causes a rightward shift of the border line between the right anterior lobe and right 
posterior lobe. AI, artificial intelligence; S, segment.
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routes or vessels that were badly invaded by tumors. This 
problem may be solved by collecting this kind of case 
and retraining the model. Additionally, our approach has 
shown promising results in assisting lesion localization. 
As shown, 93.4% of the lesions were localized in the right 
segments simply by referring to the segmentation results 
without using any medical experience. This is meaning-
ful considering the important role of automated lesion 
localization for future liver computer-aided diagnosis 
systems. Further investigating the mislocalized lesions, 
we found that most of them were at the edge of segment 
and pushed the borderline between two adjacent seg-
ments (Fig.3b). They were often mistaken for a cross-
segmental lesion according to automated segmentation 
results. Only a few mislocalizations were caused by the 
real severe segmentation errors of liver segments.

Although the results are promising, our study still 
have several limitations. First, this is a retrospective sin-
gle-institution study. Although the evaluation dataset 
maximally simulated real clinical scenario, more image 
data that collected prospectively from multiple cent-
ers are still necessary to assess the model performance. 
Second, manual segmentation of the qualitative evalua-
tion dataset was produced by radiology residents rather 
than experienced specialists. Nonetheless, it has certain 
rationality because residents are often the ones who do 
segmentation work in clinical practice. Third, the perfor-
mance of the model segmentation was validated only on 
PVP MR images. Future work should include extending 
the method to more sequences and modalities. Fourth, 
although the acceptable level of liver deformities by our 
method is good, it is still limited in cases in which the 
liver vasculature is severely deformed or has poor visibil-
ity. We will conduct future work on this problem.

In conclusion, we designed a 3D U-Net model by jointly 
adopting the pixelwise losses and boundary loss for liver 
segment segmentation on MRI images. A thorough 
evaluation from three respects was conducted, showing 
promising segmentation performance. We anticipate that 
this practical tool will assist in planning surgical strate-
gies and enhancing computer-aided quantitative analyses 
of liver MR images in the future.
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