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In MR elastography (MRE), zeroth moment balanced motion‐encoding gradients

(MEGs) are incorporated into MRI sequences to induce a phase shift proportional

to the local displacement caused by external actuation. To maximize the signal‐to‐

noise ratio (SNR), fractional encoding is employed, i.e., the MEG duration is reduced

below the wave period. Here, gradients encode primarily the velocity of the

motion‐reducing encoding efficiency. Thus, in GRE‐MRE, T2* decay and motion sen-

sitivity have to be balanced, imposing a lower limit on repetition times (TRs).

We propose to use a single trapezoidal gradient, a “unipolar gradient”, to directly

encode spin displacement. Such gradients cannot be used in conventional sequences

as they exhibit a large zeroth moment and dephase magnetization. By time‐reversing

a spoiled SSFP sequence, the spoiling gradient becomes an efficient unipolar MEG.

The proposed “unipolar MRE” technique benefits from this approach in three ways:

first, displacement encoding is split over multiple TRs increasing motion sensitivity;

second, spoiler and MEG coincide, allowing a reduction inTR; third, motion sensitivity

of a typical unipolar lobe is of an order of magnitude higher than a bipolar MEG of

equal duration.

In this work, motion encoding using unipolar MRE is analyzed using the extended

phase graph (EPG) formalism with a periodic motion propagator. As an approximation,

the two‐transverse TR approximation for diffusion‐weighted SSFP is extended to

incorporate cyclic motion. A complex encoding efficiency metric is introduced to
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compare the displacement fields of unipolar and conventional GRE‐MRE sequences

in both magnitude and phase. The derived theoretical encoding equations are used

to characterize the proposed sequence using an extensive parameter study. Unipolar

MRE is validated against conventional GRE‐MRE in a phantom study showing excel-

lent agreement between measured displacement fields. In addition, unipolar MRE

yields significantly increased octahedral shear strain‐SNR relative to conventional

GRE‐MRE and allows for the recovery of high stiffness inclusions, where conven-

tional GRE‐MRE fails.

KEYWORDS

diffusion‐weighted imaging, MR elastography, sampling strategies
1 | INTRODUCTION

Magnetic resonance elastography (MRE) allows the in vivo determination of the local tissue shear stiffness by time‐resolved measurement of

the 3D displacement field induced by an external actuator.1 MRE utilizes the principle of phase contrast to encode the cyclic spin motion in

the image phase.2 Here, zeroth moment balanced gradients, ie, motion‐encoding gradients (MEGs), are introduced before the readout to sen-

sitize the image phase to displacements of the magnetization occurring while the gradient is switched on. Most MRE experiments currently

rely on either spin echo (SE) or gradient‐recalled echo (GRE) sequences.1,3,4 Here, SE‐based MRE benefits from the long echo time (TE) that

allows maximization of the accumulated phase through matching of the MEG period to the wave period. Optimal motion sensitization with

multiple gradient lobes and placement of MEGs before and after the echo pulse is possible.4 However, fast readout strategies including

echo‐planar imaging (EPI) or spiral imaging need to be employed at the cost of T2* or frequency offset‐related spatial blurring, eddy cur-

rent‐induced ghosting, or B0‐inhomogeniety‐induced geometric distortions.5 In GRE‐based MRE, a short Cartesian readout can be used due

to the much shorter repetition time (TR). However, the need for a shorter MEG and reduced SNR loss due to T2* decay has to be addressed,

which leads to the use of fractional encoding, where the duration of the MEG is shorter than the wave period.6-8 In addition, the loss of lon-

gitudinal magnetization due to the short TR as well as the use of RF‐spoiling to reduce spin‐history effects leads to additional reduction in

SNR.9,10 Recent developments in MRE have been driven by the shortcomings of the SE‐ and GRE‐based sequence concepts and have focused

on new transducers,11 sequence timing,7,12 encoding schemes,13 encoding approaches,14-17 as well as excitation and readout schemes.15,18-20

Instead of spoiling magnetization after the readout, refocusing gradients can be used to effectively reuse transverse magnetization in sub-

sequent repetition periods. This balanced steady‐state free precession (bSSFP) approach has been exploited for MRE, which greatly benefits

from its high SNR.6,21,22 However, the continuous refocusing of transverse magnetization in bSSFP is dependent on phase accrual during

the TR interval, which leads to the typical banding artifacts in the presence of off‐resonance. In the context of MRE, the interference of

motion phase and inhomogeneity leads to nonlinearity in the encoding of the vibratory motion, rendering bSSFP‐based MRE difficult for

in vivo applications.6,21,22 Nonetheless, bSSFP‐based MRE has been reported for hepatic and cardiac MRE.6,23

In addition to spoiled and balanced SSFP sequences, a generalized type of GRE sequence has recently regained interest for rapid

relaxometry and diffusion‐weighted SSFP (DW‐SSFP) imaging.24-27 These methods exploit additional refocusing gradients with integer multi-

ples of the spoiling area before the readout of a conventional GRE sequence with consecutive balancing after the readout to refocus previ-

ously spoiled magnetization states while keeping the total spoiling area constant. These spoiling states, termed “configuration states”, are

carried over to the next TR period, where the subsequent RF pulse then partly flips the magnetization back to the longitudinal axis (storage),

leaves it unaffected (dephasing configuration), or inverts it (rephasing configuration).28 This leads to a plethora of discrete dephasing and

rephasing configuration states, which can be refocused by a gradient that counteracts their accumulated spoiling.

This work proposes a new MRE sequence, which is based on the readout of the SSFP SE using a time‐reversed spoiled SSFP sequence.29 Here,

the spoiling gradient acts as a highly efficient MEG, which allows considerable reduction in TRs as well as encoding fractions. In addition, 3D slab

encoding leads to increased SNR compared with conventional consecutive or interleaved multi‐slice (MS) acquisitions.30 In contrast to conven-

tional GRE‐ or SE‐based MRE sequences, which can be solely understood on the basis of phase contrast, the proposed technique depends on spin

history effects and necessitates the analysis of echo pathways and their motion sensitivities. The objective of this work is 5‐fold: first, a qualitative

theoretical understanding of echo formation and motion encoding in unipolar MRE is provided; second, a periodic motion propagator in the pres-

ence of gradient fields is derived for the extended phase graph (EPG) formalism, which allows for the numerical, quantitative analysis of the motion

encoding in unipolar MRE using EPGs; third, a complex encoding efficiency is proposed, which takes phase differences in encoding into account
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and hence allows direct comparison of the complex displacement field in both magnitude and phase of conventional and unipolar MRE despite

their vast difference in encoding concept and sequence timing; fourth, a simplification of the full EPG‐based simulation is attempted through adap-

tation of the two‐transverse TR approximation, which was originally derived for DW‐SSFP, allowing for fast encoding efficiency estimation27,31;

and fifth, a comprehensive phantom study comparing unipolar MRE and conventional GRE‐MRE is provided in order to demonstrate the feasibility

of unipolar MRE and to validate theoretical findings.
2 | THEORY

In GRE‐based MRE, a spoiling gradient is played after the readout of the free induction decay (FID) to dephase transverse magnetization (Fig-

ure 1A,C). We propose to read out the F−1 configuration state (SSFP‐echo) instead, which is refocused by time‐reversing the spoiled GRE

sequence (Figure 1B), typically referred to as contrast‐enhanced‐FAST (CE‐FAST), PSIF (Siemens; reversed FISP) or T2‐CE‐FFE (Philips).34,35
FIGURE 1 Depiction of echo formation in (A) spoiled (GRE) and (B) time‐reversed spoiled SSFP. While the readout in spoiled GRE sequences is
dominated by the FID, the first readout in time‐reversed SSFP does not acquire any signal as the gradient spoils the signal of the FID. The second
RF pulse splits the magnetization into a rephasing and a dephasing contribution. The former is refocused by the spoiling gradient and leads to the
formation of the SSFP‐echo (figure adapted from Scheffler, Ref. 32). Comparison of (C) conventional GRE‐MRE with fractional bipolar motion‐
encoding gradients (MEGs) and (D) the proposed unipolar MRE sequence that uses the spoiling gradient as the MEG and reads out the SSFP‐echo
instead. The gray‐shaded gradients are zeroth‐moment balanced over one TR period. In (E), the global sequence timing of unipolar MRE is shown,
which follows the 3D Ristretto scheme.12,33 The innermost squares denote acquisitions according to (D), which are wave‐phase interleaved (NP =
5, ND = 1). After a set of dummy shots to reach steady‐state, successive k‐lines are acquired in both slice‐ and phase‐encoding direction (3D, slab
excitation). After the full volume is acquired, the encoding direction is changed according to the Hadamard encoding scheme. A combination of
TTL triggers and a correct choice of TR is used to ensure synchronization of the external wave generator and the unipolar MRE sequence



4 of 23 GUENTHNER ET AL.
Contrary to conventional GRE sequences, the readout in the first TR period does not acquire any signal, as the spoiling gradient fully dephases the

transverse magnetization. The second RF pulse partly leaves the transverse magnetization unaffected (0° component, dephasing configuration)

and partly inverts it (180° component, rephasing configuration). The latter is refocused by the spoiling gradient and forms the SSFP‐echo.32 Since

the spoiling gradient is played before the readout, the sequence becomes highly motion‐sensitive, which is typically regarded as a drawback of

time‐reversed spoiled SSFP.24,25,27,36-40 Here, this increased motion sensitivity is used for highly efficient elastography acquisitions. Since the

bipolar MEG is replaced by a single gradient lobe, we will refer to the sequence as unipolar MRE.

In order to acquire NP wave‐phase offsets (with NP≥2) to extract amplitude and phase of the displacement field, the sequence timing follows

the Ristretto MRE scheme33 for 3D encoding (Figure 1E). Contrary to conventional 3D GRE‐MRE schemes,41 Ristretto interleaves the wave‐phase

acquisition allowing minimization of theTR. The wave phases are acquired in an interleaved fashion in the innermost sequence loop. The repetition

time is constant and given by

TR ¼ ND

fNP
; (1)

with ND being a co‐prime of NP ( gcd ND;NPð Þ ¼ 1). Each successive repetition is thus offset relative to the transistor‐transistor logic (TTL) trigger

played every NP repetitions, where the wave phase offsets amount to

ϕn ¼ n
2πND

NP
; with n ¼ 0…NP−1: (2)

Since RF pulse and net dephasing from imaging gradients is equal in each TR and the underlying motion is periodic in NPTR, a steady‐state of NP

distinct echoes forms.42

In the proposed sequence, the unipolar gradients for spoiling and motion sensitization coincide, necessitating the switching of the spoiling

direction during sequence acquisition. To correct for phase contributions from imaging gradients, which are independent of the encoding direction,

a reference phase image without motion sensitization is typically acquired in GRE‐MRE.7,8 However, since motion sensitization and spoiling is

facilitated with the same gradient, an encoding scheme that encodes with equal total gradient moment for all encoding directions needs to be

employed to ensure equal image contrast as well as sufficient spoiling. To this end, Hadamard encoding is incorporated, which encodes along

the four diagonals of a regular cube.8,43 The gradient direction matrix is given by

̂E ¼
þ1 þ1 −1 −1

þ1 −1 þ1 −1

þ1 −1 −1 þ1

2
64

3
75; (3)

where the rows correspond to the three orthogonal gradient axes, while the columns denote successive encoding directions. Since the Hadamard

scheme exhibits identical gradient moments in each of the three orthogonal gradient axes, isotropic image resolution is required to fulfill the gra-

dient spoiling condition30 (p. 353)

Δk ¼ 2π
Δx

n; with n ∈ ℕþ (4)

for each spatial dimension separately. To ensure proper spoiling of the SSFP signal, the spoiling direction is changed only after the full k‐space for

all wave phase offsets has been acquired and additional dummy shots are played for each encoding direction separately to reestablish the steady‐

state (see Figure 1E).

2.1 | Lowest order encoding efficiency of unipolar MRE: SSFP spin‐echo contribution

In phase contrast‐based MRE, the phase accrual φ in each voxel due to the periodic motion is proportional to the time‐varying displacement field

r
→

tð Þ ¼ Im d
→

eiωt
� �

: (5)

Here, d
→ ¼ r

→
0e

iϕ is the complex displacement amplitude, Im ⋅f g the imaginary part, and ω ¼ 2πf the angular wave frequency. The proportionality

factor is denoted by the encoding efficiency ϵ of the gradient waveform, which is given by3

ϵ ¼ γ ∫
∞

−∞
dτG τð Þeiωτ; (6)

where γ is the gyromagnetic ratio and G τð Þ denotes the gradient waveform. While the phase of the complex encoding efficiency can often be

neglected in conventional MRE, we specifically account for it to allow for absolute displacement field comparisons of conventional and

unipolar MRE.
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The sampling of the NP equidistant phase offsets along the m‐th direction can be stated as

φn;m ¼ Im ϵ Ê
T

•;m d
→

ei2π=NPn

� �
þ φ0;n; (7)

where φ0;n accounts for the phase accumulated by imaging gradients and the notation ̂E•;m denotes the mth gradient direction. Thus the projec-

tion of the estimated displacement d
→

including imaging gradient bias along the mth encoding direction is obtained by inverse discrete Fourier

transformation

Ê
T

•;md
→ ¼ ϵ−1

2i
NP

∑
NP−1

n¼0
φn;me

−i2π=NPn; (8)

which can then be solved for the unbiased d
→

using the pseudo‐inverse of the encoding matrix.8

2.1.1 | Bipolar MEG

The complex encoding efficiency for a bipolar MEG (Figure 2A), with duration T ¼ f−1MEG, gradient strengthG, and slope time td played at T0 relative

to the TTL‐trigger is given by

ϵBipolar ¼ −
8iγGeiω T=2þT0ð Þ

tdω2
sin

tdω
2

� �
sin

Tω
4

� �
sin

T−2tdð Þω
4

� �
: (9)
FIGURE 2 Timing graphs for (A) conventional GRE‐MRE, (B) unipolar MRE, as well as the equivalent phase‐contrast sequences (C)‐(E) of unipolar
MRE, where the first unipolar MEG is flipped to account for the complex conjugation of the echo signal through the second RF pulse. The phase‐
contrast model is equivalent to the lowest order echo pathway contributing to the unipolar MRE signal, which we term the “SSFP‐SE” here. For
comparability of the acquired displacement fields, absolute timing of the MEGs needs to be taken into account, where T0 is the time offset
between MEG and transistor‐transistor logic (TTL) trigger, T is the total duration of the MEG, td is the gradient slope time and TR is the repetition
time. The reference time‐point to which the displacement field is calculated is set to coincide with the second RF pulse for unipolar MRE and the
RF‐pulse in conventional MRE, respectively. Approximations in (D) finite slew and (E) infinitesimal gradients are included in the analysis for better
understanding of the encoding principle of unipolar MRE
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2.1.2 | Infinite‐slew unipolar MRE

The encoding efficiency of a single unipolar lobe (Figure 2D) with constant gradient strengthG, infinite slew, and finite duration T can be obtained

by solving Equation 6 and can be written as

ϵsingle lobe ¼ Δk sinc qð ÞeiπqþiωT0 ; (10)

where q ¼ Tf denotes the encoding fraction,6 Δk ¼ γGT is the gradient area of the unipolar lobe, and sinc xð Þ ¼ sin πxð Þ=πx is the sinc‐function.

The primary contribution to the SSFP‐echo is given by the spin echo (SSFP‐SE) of two successive TR periods, which is sensitized to motion

twice (Figure 2B). The part of transverse magnetization, which is refocused, is complex conjugated at the time of the second RF pulse (Figure 2B).

Thus, the motion sensitization of the first unipolar gradient is effectively inverted (Figure 2C). To obtain the correct encoding phase, the reference

time with respect to theTTL trigger is set to be equal to the second RF pulse, thus the initial magnetization is excited at time−TR. The lowest order

approximation to the encoding efficiency of unipolar MRE assuming infinite slew is then given by

ϵ ¼ ϵsingle lobe⋅ ‐e‐iωTR|fflfflfflfflffl{zfflfflfflfflffl}
Previous TR

þ 1|fflfflfflffl{zfflfflfflffl}
Current TR

0
@

1
A ¼ 2i Δk sinc qð Þ sin π

ND

NP

� �
eiπ q−NDN

−1
Pð ÞþiωT0 ; (11)

where the timing of the Ristretto scheme as specified in Equation 1 is implied. In the limit of an infinitesimal encoding gradient with finite moment

Δk (Figure 2E), the encoding efficiency does not vanish but approaches

lim
q→0

ϵ ¼ 2iΔk sin π
ND

NP

� �
e‐iπNDN

−1
P þiωT0 : (12)

2.1.3 | Finite‐slew unipolar MRE

Generalization of the previous infinite‐slew model to the real situation of a trapezoidal gradient lobe with finite slope time td (Figure 2C) leads to

ϵUnipolar ¼ 2iΔk⋅ sinc qdð Þ sinc q−qdð Þ sin π
ND

NP

� �
eiπ q−NDN

−1
Pð ÞþiωT0 ; (13)

where qd ¼ tdf is the fraction of the wave period that is lost to the gradient slewing. Taking the limit td→0, the infinite‐slew encoding efficiency

Equation 11 is directly recovered. By replacingT→T=2 andTR→T=2 as well as temporal shifting byT0→T=2, the encoding efficiency of the bipolar

MEG with finite slew is obtained.

The above encoding efficiency Equation 13 is only valid under the assumption that each received signal is solely given by the SSFP‐SE contri-

bution, which is excited and refocused by the current and previous RF pulses. However, since no recovery period is included in time‐reversed

spoiled SSFP sequences compared with conventional SE sequences and the sequenceTR is usually much shorter thanT2, spin history effects need

to be taken into account. These will affect the encoding efficiency by constructive and destructive interference.

2.2 | EPG formalism for unipolar MRE

In order to describe dephased magnetization states, EPG formalism is used. A comprehensive introduction to EPGs is given in the review article by

Weigel,28 which we follow here in terms of notation and conventions; and which should be consulted for explicit mathematical expressions of the

operators. EPGs describe spoiled magnetization as a superposition of complex configuration states FÆand Z. There, the central assumption is uni-

formity of space so that spatial dependencies in the magnetization distribution are solely arising due to gradient fields. Each configuration state

corresponds to a Fourier component k
→

of the transverse MÆ¼ Mx ð r→Þ;þiMyð r→Þ
� �

and longitudinal Mzð r→Þ magnetization distribution. The formal

definitions are

F±ðk
→Þ ¼ ∫d3r Mxð r→Þ±iMyð r→Þ

� �
e−i k

→⋅ r→ ; and (14)

Zðk→Þ ¼ ∫d3r Mzð r→Þe−i k→⋅ r→ : (15)

RF pulses, gradient fields, motion and relaxation are described in terms of operators acting on these configuration states. RF pulses Tϕ αð Þ distrib-

ute magnetization between transverse and longitudinal configuration states independent of the spatial frequency k
→
, where α denotes the flip angle
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and ϕ the pulse phase. Relaxation ET1 ;T2 leads to attenuation of transverse and longitudinal states and the recovery of longitudinal magnetization

in the k ¼ 0 configuration state only. Gradients S Δ k
→

� �
shift the population of transverse configuration states by the respective Δ k

→
‐value of the

gradient. Finally, motion and diffusion can be incorporated via motion propagators J, which are typically k‐value dependent. Bulk motion leads to

phase accrual (Fourier shift theorem) and random motion to attenuation (phase dispersion). A pulse sequence is described as a concatenation of

these operators.

In Figure 3, EPGs for unipolar MRE in the presence and absence of periodic motion are shown. Since the spoiling area is constant for all imag-

ing shots, the y‐axis counts the spatial frequencies in units of the spoiling area Δk in the direction of the spoiling gradient. The unipolar spoiling

gradient, which is played before the readout in the time‐reversed spoiled SSFP sequence, leads to dephasing of configuration states with k > 0 and

to respective rephasing of configurations with k < 0. Due to the presence of periodic motion, the configuration states accumulate a phase depend-

ing on their k‐value. This is depicted by the bending of the configuration states, which is proportional to the relative phase accrual with respect to

the previous RF pulse. This should not be confused by an actual change in spatial frequency of the respective states.

In addition to periodic motion, diffusion attenuates configuration states with high spatial frequency.28 This is illustrated 2‐fold: first, by reduced

line thickness and opacity in the EPG with increasing ∣k∣ and, second, by the diffusion attenuation plot to the right. At the bottom of the graph,

the unipolar MRE sequence is denoted together with its simplified operator notation.

In the present work, two EPG‐based analyses are proposed: (i) the EPG representation of unipolar MRE can be used for full numerical encoding

efficiency calculations by driving a forward calculation according to the operator sequence denoted in Figure 3 to steady‐state; and (ii) a reverse

analysis of the echo signal contributions can be conducted, describing the lowest order perturbation theory solution of the EPG in terms of T2‐

decay. This approach is commonly known as the two‐transverseTR‐approximation, which has been proposed before for the understanding of dif-

fusion contrast in DW‐SSFP sequences, and which is extended here to incorporate periodic motion.31,44
FIGURE 3 (A) Pictorial description of the extended phase graph in steady‐state for the case of three encoded wave phases (NP = 3) and a delay of
one (ND = 1). Solid lines denote transverse magnetization states, whereas broken lines depict longitudinal magnetization. The overlaid thin solid and
dashed lines as well as the graph in (B) denote the EPG in the absence of motion. The unipolar MRE sequence is shown in abbreviated form
in (D). The change in configuration state phase in the presence of periodic motion is depicted by the bending of the EPG. Here, the change in phase
is depicted relative to the time of the RF pulse. Motion sensitivity of the configuration states increases linearly with|k|resulting in nonlinear
encoding of displacements if configuration states are mixed. The bending of the EPG is for visualization purposes only and should not be confused
with a change in k. In (C), diffusion attenuation is shown, which attenuates high spatial frequency states. This is also depicted in the EPG by the
lighter color of the graph. Diffusion and T2‐decay limit the mixing of different configuration states reducing overall sensitivity to relaxation and
sequence parameters. (E) shows the shortened EPG propagator ordering, which can be used to simulate the steady‐state magnetization
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2.3 | Motion propagator for unipolar MRE

The motion propagator for coherent bulk motion r
→

tð Þ subject to an arbitrary k‐space trajectory k
→

tð Þ is given by28

J k
→

tð Þ; r
→

tð Þ; t
� �

¼ exp −i∫
t

0dτ k
→

τð Þ⋅d r
→

τð Þ
dτ

( )
; (16)

with the usual definition of k

k
→

tð Þ ¼ γ∫
t

0dτG
→

τð Þ þ k
→

0: (17)

Here, k
→

0 is the initial wave vector of the configuration state. Assuming periodic motion (Equation 5), the general motion propagator for a single

constant gradient lobe with infinite slew and finite duration T is given by

J ¼ exp −i
r
→
0⋅Δk→

2πfT
2πfT sin 2πfT þ ϕð Þ þ cos 2πfT þ ϕð Þ− cos ϕð Þð Þ

( )
J0 (18)

and

J0 ¼ exp −i r
→
0⋅k

→

0 sinð2πfT þ ϕÞ− sin ϕð Þð Þ
� �

; (19)

where Δk
→ ¼ γG

→

T is again the area of the gradient lobe. The propagator for longitudinal magnetization as well as transverse magnetization in the

absence of a gradient field can be found by setting Δk
→
to zero and is thus given by J0 only. Since a unipolar lobe causes a change in configuration

state population, the full unipolar propagator is given by a concatenation of motion sensitization and subsequent shifting of the configuration state

population according to the gradient operator S. The motion propagator for the general case of a trapezoidal lobe with finite slew is stated in

Appendix A (see the supporting information).

In addition to motion sensitization, the dephased magnetization states are subject to diffusion attenuation.28 The 1D diffusion attenuation

operator is given by

D1D k tð Þ; D; tð Þ ¼ exp −btDð Þ; with bt≔∫
t

0dτ k
→

τð Þ
				

				2: (20)

Thus, for transverse magnetization in the case of an infinite‐slew gradient lobe, the operator becomes

D ¼ exp −DTΔk k0 þ Δk=3ð Þf gD0; (21)

with

D0 ¼ exp −DTk20

n o
: (22)

Again, D0 is the propagator in the absence of the gradient as well as the corresponding propagator for longitudinal magnetization states. The dif-

fusion attenuation can be incorporated in the general motion propagator for unipolar MRE by applying the replacement J→ JD and J0→J0D0,

respectively.

Diffusion attenuation is an important factor in unipolar MRE, as it leads to attenuation of high spatial frequency states since the exponential

scales proportional to k2. This ultimately reduces the sensitivity of the sequence toT1 and T2 relaxation, flip angle, as well as leading to the reduc-

tion of the nonlinearity of motion encoding.

2.4 | Extending the two‐transverse TR approximation in the presence of periodic motion

The two‐transverse TR approximation is an approximate solution to the problem of diffusion weighting in SSFP‐based sequences.31,44 It deter-

mines the signal based on the assumption that only echoes with no more than two transverse TR‐periods contribute to the signal amplitude of

the SSFP‐echo. This corresponds to the lowest order Taylor series expansion of the analytical solution in E2 ¼ exp −TR=T2f g.
In Figure 4, the EPG is drawn in reverse, ie, starting from an echo and tracing back the signal contributions in lowest order perturbation theory

in E2. This leads to the graphical depiction of the three distinct echo pathways of the two‐transverseTR approximation. Solid paths are transverse



FIGURE 4 Pictorial description of the two‐transverse TR approximation for NP = 5 and ND = 1 tracing back the origin of the echo. Equilibrium
magnetization undergoes an infinite series of longitudinal storage periods before the first flip into the transverse plane. In the stimulated echo
case, m > 0 longitudinal storage periods are assumed before flipping the magnetization back into the transverse plane, where it refocuses to form
an echo. For m = 0, no longitudinal storage is found and the magnetization is directly flipped into its conjugate state forming the spin‐echo of the
spoiled SSFP sequence. The unipolar MRE sequence is depicted in the last row, where the arrows denote RF pulses, trapezoids represent the
spoiling gradients and circles denote echo time‐points
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magnetization states, whereas dotted lines denote longitudinal magnetization. Each path is preceded by infinitely many longitudinal magnetiza-

tion‐only paths to account for the equilibrium magnetization. Thus, every pathway can be characterized by the number m of longitudinal storage

periods. Transverse magnetization is subject to motion sensitization according to the transverse motion propagators JT mþ 1ð ÞTRð Þ and JT0. JT0

corresponds to the motion sensitization of the refocusing pathway before readout, while JT mþ 1ð ÞTRð Þ determines motion sensitization after

excitation. Longitudinal storage in elevated configuration states (here, only Z1 contributes) are modulated according to JL mTRð Þ, respectively.
The definition of the motion propagators follows from careful evaluation of Equation 18 under consideration of the number and timing of the

transverse and longitudinal echo pathways. The respective terms are given in Appendix B (see the supporting information).

Under consideration of the periodicity of the motion propagators

JT mþ NPð ÞTRð Þ ¼ JT mTRð Þ and JL mþ NPð ÞTRð Þ ¼ JL mTRð Þ (23)

the derivation of the two‐transverse TR approximation can be carried out by following the derivation of McNab and Miller,44 which is laid out

explicitly in Appendix C (see the supporting information). In conclusion, the echo signal is given by

S ¼ SEþ STE1 þ ∑
∞

m¼2
STEm; (24)

where the SE and STE contributions are found to be

SE ¼ −
M0 1−E1ð ÞE2 sin2 α=2ð Þ sin αð Þ

1−E1 cos αð Þ ⋅J�T TRð ÞJT0; (25)

STE1 ¼ −
M0 1−E1ð ÞE1E2 sin3 αð Þ

2 1−E1 cos αð Þð Þ ⋅J�T 2TRð ÞJ�L TRð ÞJT0; and (26)

∑
∞

m¼2
STEm ¼ −

M0 1−E1ð ÞE2
1E2 sin3 αð Þ cos αð Þ

2 1−E1 cos αð Þð Þ
κ NPð ÞJT0

1− E1 cos αð Þð ÞNP
; (27)

with E1=2 ¼ exp −TR=T1=2


 �
and

κ NPð Þ ¼ ∑
NP−1

n¼0
E1 cos αð Þð Þn⋅J�T nþ 3ð ÞTRð ÞJ�L nþ 2ð ÞTRð Þ: (28)

The final step, determination of the motion phase accumulated in steady‐state, is performed by Fourier transformation of the argument of the
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complex steady‐state signal (Equation 24) according to

ϵf ¼ r−10 F arg Sð Þð Þ ¼ i

πr0
∫
2π
0 dϕ arg Sð Þe−iϕ: (29)

Here, the integration is normalized such that the Fourier transformation reproduces amplitude and phase of a sinusoidal oscillation according to

F a sin ϕþ bð Þð Þ ¼ aeib: (30)

To the knowledge of the authors, no closed‐form solution of Equation 29 exists. Hence, the final solution is obtained numerically using MATLAB.
3 | METHODS

3.1 | EPG simulations

The EPG simulations were based on the Stanford EDU MATLAB implementation45 and run in MATLAB 2018a (MathWorks, Natick, Massachu-

setts). The unipolar motion propagator was implemented according to Equation 16 including diffusion attenuation and using the full trapezoidal

gradient waveform. The steady‐state signal behavior was simulated by repeated application of the EPG formalism to drive an initial equilibrium

magnetization configuration to steady‐state. The propagator ordering is given in abbreviated form in Figure 3 and was evaluated using the appro-

priate timing constraints given by the Ristretto MRE scheme (Equation 1). The analytical two‐transverseTR approximation model was numerically

solved using MATLAB as well.

In order to determine the encoding efficiency in the steady‐state, the unwrapped signal phase was obtained for the last NP elements, which

was then reordered according to Equation 2 and subsequently Fourier‐transformed. The first Fourier component—corresponding to the actuation

frequency—was divided by the input wave amplitude yielding the encoding efficiency. If not stated otherwise, all calculations were performed with

the following set of parameters to be compliant with the phantom experiment: T1/T2 = 2400/190 ms, diffusion coefficient D = 1.7 x 10−3 mm2/s,

number of wave phases NP = 5, Ristretto delay parameter ND = 1, wave frequency f = 35 Hz, gradient durationT = 2 ms (encoding fraction q = 7%),

gradient strength G = 20.9 mT/m, gradient slope time td = 0.13 ms, displacement amplitude d = 10 μm and flip angle = 20°, resulting in a sequence

TR of 5.71 ms. EPG simulations were run with a fixed number of 700 EPG states to account for spin history and were iterated to steady‐state with

500 iterations of the phase loop corresponding to 500 x NP = 2500 TR periods.

3.2 | Phantom comparison

Unipolar MRE as well as conventional GRE‐MRE were performed on a gel phantom with four cylindrical inclusions (CIRS Inc., Norfolk, Virginia)

using a 3 T Philips Ingenia system (Philips Healthcare, Best, the Netherlands). The signal was received using a 15‐channel head coil, and 35 Hz

electromagnetic actuation was employed.4 The phantom was positioned upright in the head coil with the actuator placed on top with primary

actuation being in the top‐down direction. Slice selection direction was chosen anterior–posterior (see also Figure 8). In the following, scan param-

eters are stated in pairs of “conventional/unipolar MRE”; 20/10 repeat measurements were acquired to investigate the dependence of the shear

stiffness estimates with increasing SNR. All measurements were performed using fractional encoding6 with encoding fractions of 17.5%/7%, 11.9/

20.9 mT/m bipolar/unipolar MEGs (duty cycle limitation in conventional MRE) resulting in an encoding efficiency of 4.01/10.8 rad/mm, 3 mm3

isotropic resolution and 64 × 48 matrix size acquired using a 30°/20° flip angle, Cartesian readout, and third/first in‐phase water‐fat echo‐time

(TE 6.9/2.3 ms). Conventional GRE‐MRE was performed as a MS acquisition of 12 interleaved slices resulting in a TR per slice of 110.7 ms, while

unipolar MRE was performed using slab‐excitation and phase encoding of 36 slices with aTR of 5.71 ms. The increased FOV in slice direction was

chosen to eliminate fold‐over artifacts due to production impurities with strong susceptibility mismatch in the bottom of the phantom. The con-

ventional GRE‐MRE sequence was accelerated using the Ristretto MRE12,33 scheme acquiring eight wave‐phase offsets in reverse order (ND = 7)

and excitation and readout of the 12 slices for one wave‐phase offset within NW = 3 wave periods. Only five wave‐phase offsets were acquired

with unipolar MRE to conform with sequence‐timing constraints. The spoiling gradient was chosen to result in 5 × 2π/Δx phase accumulation

along each spatial direction, separately. The acquisition of all wave‐phase offsets and encoding directions for a single slice took 14.3/7.0 seconds,

respectively. Synchronization to the external wave generator was achieved using aTTL trigger signal. In order to achieve a magnetization and wave

steady‐state, 62 dummy shots were used for unipolar MRE, totaling to 1.8 seconds per encoding direction (conventional MRE: 10 dummies,

1.1 seconds/encoding direction).

A second set of phantom scans was performed at 70 Hz actuation frequency. Unipolar MRE with five wave‐phase offsets was acquired with

ND = 2 (36 slices), while conventional MRE was acquired with NW = 7 and ND = 3 (12 slices). Due to the shorter wavelength and thus better con-

ditioned inversion at 70 Hz, 10 averages were acquired for both techniques. Remaining scan parameters were equivalent to the 35 Hz acquisition,

leading to an encoding fraction of 35%/14%, an encoding efficiency of 7.5/10.2 rad/mm, and a scan duration of 13.6/7.0 seconds per slice and

average, for conventional/unipolar MRE, respectively.
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In addition to the acquisition of the MRE datasets, quantitative parameter mapping was performed to obtain local estimates for T1, T2, the

apparent diffusion coefficient (ADC) and the fractional anisotropy (FA) of the phantom in one representative slice in order to calculate the local,

complex encoding efficiency for the unipolar MRE acquisition. T1 and T2 estimates were obtained on the same 3 T Philips Ingenia system using a

spoiled GRE‐based MR fingerprinting (FISP‐MRF)46 sequence with a constant TR of 16 ms, fully sampled multi‐shot spiral acquisition with 15

interleaves, a repetition delay of six seconds to ensure relaxation to equilibrium, and 1000 variable excitations after adiabatic inversion resulting

in a total scan duration of 5.5 minutes. The flip angle train is given in Figure S1. Dictionary‐based matching was performed to determineT1 and T2

locally using MATLAB 2018a (MathWorks). The dictionary was created based on the Stanford EDU MATLAB EPG implementation.45 The dictio-

nary resolution is given in Table S1.

SE‐based diffusion tensor imaging (DTI) with unipolar encoding gradients, six encoding directions and five b‐values (linearly interpolated, 0 to

1000 ms/mm2) was performed to obtain an estimate of the ADC and FA in a single slice.47,48 The scan was performed on a 1.5 T Philips Achieva

system (Philips Healthcare). The signal was received using an eight‐channel head coil. Sequence parameters were 3 x 3 mm2 in‐plane resolution,

8 mm slice thickness, 10 averages, single‐shot EPI readout, matrix size 64 x 45, FOV 196 x 136, flip angle 90°/180°, 60 ms echo time, and aTR of

1000 ms, resulting in 4 minutes 11 seconds scan duration.

For comparability, the FOV of the unipolar MRE scan was cropped to the 12 central slices to match the conventional MRE scan prior to

postprocessing. The image phase was spatially unwrapped using the statistical cost, network‐flow algorithm for phase unwrapping

(SNAPHU),49-52 temporally aligned, and decoded using the pseudo‐inverse of the encoding matrix.8 Cumulative averaging of the decoded wave

phase images was performed prior to Fourier‐transformation. The complex displacement fields were estimated from the first Fourier component

and corrected for the encoding efficiency of the conventional and unipolar MRE scans. The phase of the complex displacement field of the con-

ventional MRE scans was corrected for inter‐slice phase shifts according to the Ristretto MRE scheme.12,33 The encoding efficiency of the unipolar

MRE acquisitions was determined using the two‐transverse TR approximation assuming homogenous relaxation and diffusion (T1 = 2.4 s,

T2 = 190 ms and D = 1.7 x 10−3 mm2/s). The complex displacement fields were then further processed without smoothing using a FEM‐based

reconstruction algorithm53 to obtain the complex shear stiffness, where we report the averaged magnitude over the innermost six slices. In addi-

tion, the wave‐phase images were used to estimate the displacement noise in each voxel, allowing for the determination of the octahedral shear

strain‐SNR (OSS‐SNR).54 OSS‐SNR values are reported for the inclusions and for the background as ROI‐averaged values.
4 | RESULTS
4.1 | EPG simulations

In Figure 5, the encoding efficiency of unipolar MRE is shown as a function of tissue parameters T1, T2, and the diffusion coefficient D within the

phase‐contrast approximation (red, SSFP‐SE contribution), the two‐transverse TR approximation (yellow), and the full EPG simulation (violet). If

applicable, full EPG simulations neglecting diffusion attenuation are shown in dotted violet. Sequence parameters were held constant at the values

displayed by the vertical dashed lines. In Figure 5A, the encoding efficiency is shown as a function of the diffusion coefficient. The phase‐contrast

model is independent of diffusion by construction. For typical diffusion coefficients in vivo (D = ~2 x 10−3 mm2/s), the encoding efficiency

obtained from full EPG simulations is within 3% of the two‐transverseTR approximation and converges for strong diffusion. Neglecting diffusion,

the encoding efficiency obtained from full EPG simulations deviates by ~20%.

In Figure 5B‐D, the encoding efficiency is shown as a function of T1 and T2 under the assumption of finite diffusion (D = 1.7 x 10−3 mm2/s).

Figure 5B shows the case of long T2 relaxation (190 ms), where full EPG and the two‐transverse TR approximation show little dependency on T1

with variations below 3%. Figure 5D shows the case of short T2 relaxation (30 ms). For long T1 (>1000 ms), full EPG with and without diffusion as

well as the two‐transverseTR approximation become equivalent. At very short T1 (<100 ms), maximal deviations of up to 5% are found. Contrary

to the long T2 case, diffusion only plays a minor role, as shown by the near equivalence of full EPG with and without diffusion. This can also be

appreciated in Figure 5C, which shows the T2 dependency for the case of long T1 (2400 ms). Below 50 ms, the two‐transverse TR approximation

and the full EPG with and without diffusion are closely aligned (<1% deviation). For increasing T2, full EPG simulations, especially without diffusion

attenuation, show decreasing encoding efficiency compared with the two‐transverse TR approximation. Again, the encoding efficiency of both

phase‐contrast and the two‐transverseTR approximation are independent of T2 by design. The dependency of the encoding efficiency phase angle

on the same set of parameters is shown in Figure S3.

In Figure 6, the encoding efficiency of unipolar MRE is compared for different sequence parameters. Figure 6A shows the encoding effi-

ciency as a function of encoding fraction q and compares the different unipolar MRE approximations against conventional phase‐contrast MRE

with bipolar MEGs (blue). The red line indicates the encoding fraction limit imposed by the sequence timing (here NP = 5, ND = 1), which limits

the duration of the encoding gradient. In the small q regime (<10%), the encoding efficiency of unipolar MRE is proportional to q, whereas

conventional bipolar MRE is proportional to q2. In Figure 6B, the dependency on the sequence‐timing parameters NP and ND is shown. The

SSFP‐SE contribution shows its maximal encoding efficiency at NP = 2, where the phase contributions from two consecutive TRs interfere



FIGURE 5 Encoding efficiency comparison of unipolar MRE in the simplified phase‐contrast approximation (red), the two‐transverse TR
approximation (yellow), and the full EPG simulation (violet). The dashed line denotes the default parameter assumed in all simulations, ie,
f = 35 Hz, NP = 5, ND = 1 (TR = 5.71 ms), q = 7% and G = 20 mT/m, if not otherwise stated. Dependencies are plotted as a function of (A) diffusion
coefficient, (B) T1 relaxation for long T2 (190 ms), (C) T2 relaxation for long T1 (2400 ms) and (D) T1 relaxation for short T2 (30 ms). In (A), the
approach of the full EPG simulation towards the two‐transverse TR approximation for strong diffusion can be appreciated. For (B)‐(D), full EPG
simulations for unipolar MRE neglecting diffusion (dotted violet) are shown to demonstrate deviation of the encoding efficiency due to
interference of high order, motion‐sensitive configuration states. Compared with full EPG simulations, the two‐transverse TR approximation can

account for more than 90% of the encoding efficiency in the presence of diffusion

12 of 23 GUENTHNER ET AL.
constructively. For increasing ratios, the SSFP‐SE contribution shows declining encoding efficiency. The two‐transverse TR approximation pre-

dicts approximately constant behavior, whereas the full EPG simulation shows increasing encoding efficiency with increasing NP/ND ratio

above two. The behavior of the encoding efficiency is reversed if NP/ND ratios below five are considered. Figure 6C investigates the depen-

dency of the magnitude of the complex encoding efficiency as a function of wave displacement. Both the spin echo and the two‐transverse TR

approximation show constant encoding efficiency, thus displacements are encoded linearly in the signal phase. The full EPG simulation shows

nonlinear behavior, especially for displacements above 15 μm. The inset depicts the maximal signal phase ∣ϵd∣ for the same range of displace-

ments from 0 to 100 μm, again showing the linearity of encoding in the SSFP‐SE and two‐transverse TR approximation. The full EPG solution

is nonlinear but monotonously increasing with displacement. Finally, the dependency of the encoding efficiency of unipolar MRE as a function

of the flip angle is investigated in Figure 6D. With increasing flip angle, both full EPG and the two‐transverse TR approximation show an

increase in encoding efficiency, while the SSFP‐SE contribution remains constant. The dependency of the encoding efficiency phase angle

on the imaging parameters is shown in Figure S4.

4.2 | Phantom results

In Figure 7, the results of the quantitative parameter mapping for (A) T1 and T2, and (B) ADC and FA are displayed. T1 is found to be approx-

imately constant over the whole phantom (2425 ± 33 ms), while T2 differs significantly between background (193 ± 25 ms) and inclusions

(632 ± 33 ms). The ADC is found to be approximately constant over the whole phantom ([1.68 ± 0.31] x 10−3 mm2/s). FA is close to zero,

consistent with the assumption of isotropic diffusion. ROI average and standard deviation for the inclusions, background and the whole phan-

tom are given in Table S2. In Figure 7C, the magnitude and phase of the local encoding efficiency are shown based on the determined T1 and

T2 map; however, diffusion effects are neglected. Substantial encoding efficiency differences between background (|ε| = 8.77 ± 0.30 rad/mm,

∠ε = 0.192 ± 0.008 rad) and inclusions (|ε| = 5.76 ± 0.13 rad/mm, ∠ε = 0.276 ± 0.009 rad) of ~52% can be observed. Figure 7D shows the

encoding efficiency taking a constant diffusion coefficient of 1.7 x 10−3 mm2/s into account. Here, the encoding efficiency of the background



FIGURE 6 Encoding efficiency comparison of unipolar MRE in the simplified phase‐contrast approximation (red), the two‐transverse TR
approximation (yellow) and the full EPG simulation (violet). The dashed line denotes the default parameter assumed in all simulations, ie,
T1 = 2.4 s, T2 = 190 ms, D = 1.7 x 10−3 mm2/s, f = 35 Hz and G = 20 mT/m. dependencies are plotted for (A) encoding fraction, (B) number phase
offsets and delay, (C) displacement and (D) flip angle. In (a), conventional MRE with bipolar MEGs is shown in blue as well as the full EPG
simulation neglecting diffusion (dotted violet). Unipolar MRE shows a linear dependency on the encoding efficiency as displacements are directly
encoded, whereas bipolar MEGs encode the velocity and respectively scale proportional to q2. The refocusing of higher order configuration states
leads to pronounced interference, which results in the dependency on (B) sequence timing as well as nonlinear displacement encoding (C). The
inset in (C) shows the magnitude of the product of displacement and encoding efficiency. Deviations from the two‐transverse TR approximation
are minor in the small displacement domain (<20 μm) showing that encoding is dominated by refocused 1st order contributions
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(|ε| = 10.605 ± 0.024 rad/mm, ∠ε = 0.006 ± 0.013 rad) and inclusions (|ε| = 10.412 ± 0.007 rad/mm, ∠ε = −0.095 ± 0.005 rad) deviates by

less than 2%, allowing treatment of the encoding efficiency as homogenous over the phantom. ROI average and standard deviation of mag-

nitude and phase of the encoding efficiency, including diffusion effects for the inclusions, background and the whole phantom, are given in

Table S2.

In Figure 8, (A) signal magnitude and (B) the real‐part of the complex displacement field for one representative slice and through‐plane direc-

tion are shown for both unipolar and conventional MRE at 35 and 70 Hz actuation frequency. The top row corresponds to the magnitude images

obtained from a single phase‐offset, slice and encoding direction without averaging. Pronounced intra‐voxel phase dispersion‐based signal drop

can be observed in the unipolar MRE scan due to the high encoding efficiency compared with conventional GRE‐MRE. In addition, a reduction

in signal magnitude can be observed at the boundaries of the phantom due to transmit field inhomogeneity and the strong flip angle dependency

of the time‐reversed SSFP sequence. The central row corresponds to single scans, whereas the bottom row denotes averaged displacement fields

for increased SNR. Both conventional and unipolar MRE show qualitatively equivalent wave patterns. The SNR of the conventional MS MRE scan

is considerably lower than unipolar MRE, as can be directly appreciated from the graininess of the displacement field of the single scan, which is

strongly reduced in the case of 20‐fold averaging. The averaged magnitude of the ratio of unipolar to conventional displacement fields is 94.4% at

35 Hz, showing good quantitative agreement. At 70 Hz actuation, displacement fields reconstructed from unipolar MRE are slightly lower, with an

average ratio of 84.0%.

In Figure 9, the magnitude of the complex shear stiffness obtained through a FEM‐based inversion algorithm is shown at 35 and 70 Hz actu-

ation frequency for conventional and unipolar MRE in the case of single and averaged scans. Generally, background as well as the soft inclusions

(left inclusions) are well recovered, independent of the technique and the number of averages acquired. Conventional MRE, however, fails to

obtain reasonable stiffness values at 35 Hz for the two stiffest inclusions (right inclusions), while unipolar MRE already predicts their high stiffness

with only a single scan. In the 20‐fold averaged conventional MRE scan, the increased stiffness of the two right inclusions is well observed. At

70 Hz, both techniques are in good agreement, with only slight underestimation of the shear stiffness of the stiffest inclusion (bottom right) in

the case of the single average, conventional MRE scan.



FIGURE 7 Quantitative parameter maps for (A) T1 and T2, (B) ADC and FA. T1 and ADC are approximately constant over the phantom and
are 2425 ± 33 ms and (1.68 ± 0.31) x 10−3 mm2/s, respectively. FA is 0.042 ± 0.022 over the whole phantom, which is consistent with the
assumption of isotropic diffusion. T2 of inclusions is elevated (632 ± 33 ms) compared with the background (193 ± 25 ms). In (C), magnitude and
phase of the encoding efficiency is shown as a map neglecting diffusion but takingT1/T2 from (A) into account. In (D), the encoding efficiency
incorporating constant diffusion (1.7 x 10−3 mm2/s) is shown. Compared with (C), differences in encoding efficiency including diffusion effects are
below 2%
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In Figure 10, the ROI‐averaged magnitudes of the complex shear stiffness are displayed, against the OSS‐SNR determined over the same

ROI. Conventional MRE is denoted by open circles, while unipolar MRE is shown as squares. Values for single and averaged scans are given in

Table S3. For 35 Hz, the OSS‐SNR of unipolar MRE without averaging is higher than the OSS‐SNR of the 20‐fold averaged conventional scan

for all regions. At 70 Hz, the single average unipolar MRE acquisition is comparable with an 8‐ to 10‐fold averaged conventional MRE scan.

Stiffness of inclusions 1 and 2 as well as the background are well recovered independent of the number of averages and technique. Conven-

tional MRE qualitatively fails to predict the stiffness of inclusions 3 and 4, showing higher stiffness for the softer, third inclusion. Through

averaging, the stiffness of inclusions 3 and 4 determined by conventional MRE increases significantly by 54% (inclusion 3) and 179% (inclusion

4) at 35 Hz and by 3.8% and 10.3% at 70 Hz, respectively. In conventional MRE and at 35 Hz, the stiffness of inclusion 3 reaches a plateau

after 11 averages, while the stiffness of inclusion 4 increases even after 20 averages. With unipolar MRE, the change in stiffness is below 0.3%

for the first three inclusions as well as the background. Change in stiffness for inclusion 4 is 6.2% at 35 Hz and 1.9% at 70 Hz, and reaches a

plateau after five averages in both cases.

5 | DISCUSSION

In this work, we have proposed a novel MR elastography sequence based on time‐reversed spoiled SSFP, which utilizes the spoiling gradients as

highly efficient unipolar MEGs. We have motivated the fundamental encoding principle of unipolar MRE through analogies to phase‐contrast MRI

and have described an extension of the two‐transverse TR approximation developed for DW‐SSFP to account for lowest order spin‐history

effects.

The theoretical predictions of the proposed approximations have been compared with full EPG simulations in a comprehensive parameter

study. It was found that longer T1 and T2 values as well as lower diffusion generally leads to a reduction in encoding efficiency. We attribute this

finding to the destructive interference of an increasing number of refocused echo pathways. Contrary to conventional MRE, unipolar MRE

encodes displacements d nonlinearly into the signal phase, as echo pathways with different motion sensitivities are mixed. However, we have

identified a linear encoding domain, which is approximately given by Δk∣d∣≲10%. Since the contributions of the different echo pathways are

dependent on relaxation and sequence parameters, it is safe to assume that the displacement range that is mapped linearly to the signal phase

will be dependent on these parameters as well. This can also be appreciated in Figure S2, which is the short T1/T2 equivalent of Figure 6

(T1 = 300 ms, T2 = 30 ms). There, the linear encoding domain is approximately twice as large and given by Δk∣d∣≲20%. Since encoding efficiency

was found to be monotonically decreasing, unipolar MRE shows heightened sensitivity to low displacement amplitudes.



FIGURE 8 (A) Comparison of the magnitude images of conventional GRE‐ and unipolar MRE at 35 and 70 Hz frequency for one phase‐offset,
encoding direction and slice. Compared with conventional GRE‐MRE, pronounced intra‐voxel phase‐dispersion and Bþ

1 ‐dependent contrast is
visible. (B) Comparison of the real part of the complex shear displacement field in through‐plane direction with and without averaging. The
displacement fields are qualitatively and quantitatively in good agreement. At 70 Hz, unipolar MRE shows slightly reduced wave displacements
throughout the phantom compared with conventional MRE. Conventional MRE shows considerable displacement noise in the single scan
compared with both unipolar MRE and averaged conventional MRE, respectively. The top center sketch depicts the phantom from a side view
including the alignment of the imaging plane as well as the actuator placement
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In the case of conventional GRE‐MRE, the encoding efficiency decreases as the duration of the encoding gradient is reduced, even if a finite

moment for each of the two lobes is assumed. By contrast, unipolar MRE shows a finite encoding efficiency in the case of the infinitesimal model

given by Equation 12. This demonstrates the uniqueness of unipolar MRE, which, unlike conventional GRE‐MRE, splits encoding over two (and

more) TR periods, thus effectively storing spin positions in the phase of the MR signal during the first TR and subtracting the updated position

with the second TR. Analogous to SE sequences with single gradient lobes47 or displacement encoding with stimulated echoes (DENSE),55 it is

precisely the mixing time between the two encoding steps that leads to the high motion sensitivity of the unipolar MRE sequence, and time‐

reversed SSFP sequences in general. This relationship also manifests itself in the comparison of encoding efficiencies as a function of encoding

fractions q in Figure 6A, where unipolar MRE shows a linear increase in encoding efficiency as a function of the MEG duration, whereas conven-

tional bipolar MEGs follow a quadratic behavior in the small q domain.

Note that the quadratic behavior is reminiscent of the encoding of displacement velocities, while the linear relationship arises from the direct

encoding of displacement.3 Since the gradient strength G is kept constant in the plot, the moment Δk vanishes for unipolar MRE with q → 0 and

thus also its encoding efficiency.

A direct consequence of encoding displacements in unipolar MRE (as opposed to encoding displacement velocities with conventional MRE) is

the dependency of the encoding efficiency on sequence timing rather than encoding fraction (assuming Δk is kept constant). The SSFP‐SE con-

tribution to unipolar MRE is shown to decrease with increasing NP=ND ratio, as displacements between successive encoding/decoding steps

become more and more similar. The full EPG simulations, on the other hand, show increasing encoding efficiency with increasing NP=ND ratio.

We speculate that the interference of echo pathways is reduced as successive TR periods accumulate more and more similar motion phases.

The parameter study also revealed an increase in encoding efficiency with increasing flip angle. Since an increase in flip angle leads to a reduction

of the population of high‐spatial frequency states, this finding is in general accordance with the dependency onT1, T2 and diffusion. Furthermore,

it supports the hypothesis of destructive interference of motion encoding due to differences in motion sensitivity of echo pathways. Contrary to

bSSFP‐based MRE,6,21,22 the encoding efficiency of unipolar MRE is independent of off‐resonance, as dephasing and refocusing configuration

states experience opposite phase accrual. Thus, each echo pathway shows the same dependency on off‐resonance Δω, which is given by



FIGURE 9 Comparison of the magnitude of the shear stiffness for conventional GRE‐MRE and the proposed unipolar MRE scheme for 35 and
70 Hz actuation frequency with and without averaging. The reported maps are average stiffness values over the six innermost slices. While
conventional MRE fails to predict the stiffness of the stiffest inclusions (right inclusions) in the single scan, the increased SNR in unipolar MRE
allows recovery of these inclusions without additional averaging

FIGURE 10 Comparison of the region of interest (ROI)‐averaged shear stiffness (bars denote the standard deviation over the ROI) obtained
with conventional GRE‐MRE (solid line, circles) and the proposed unipolar MRE (dashed line, squares) at 35 and 70 Hz actuation frequency.
The x‐axis denotes the average octahedral shear strain‐SNR (OSS‐SNR) for each ROI. Sample averaging was performed to increase the SNR in
both unipolar and conventional MRE to demonstrate the influence of SNR on the reconstructed shear stiffness. Here, the left‐most data‐points
in each series correspond to the single‐scan case, where each successive point increases the number of sample averages up to NAvg = 20.
While the stiffness of soft inclusions (numbers 1 and 2) and the background are found to be independent of the OSS‐SNR, stiff inclusions
(numbers 3 and 4) depend on the number of sample averages for conventional MRE at 35 Hz. Due to the increased OSS‐SNR of unipolar MRE,
even without averaging, unipolar MRE can directly capture the stiffness of these inclusions
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exp iΔω TE−TRð Þf g. Thus, in equivalence to conventional spoiled GRE‐MRE, off‐resonance leads to an image phase offset, which is independent of

the wave‐phase offset and is removed once the Fourier transformation over wave phases is performed.

Since unipolar MRE uses the spoiling gradients as MEGs, the sequenceTR can be considerably reduced compared with conventional GRE‐MRE.

Given that time‐reversed spoiled SSFP sequences cannot be used with interleaved MS acquisitions, the sequence TR is generally much shorter

than typical T2 values. A Taylor series expansion of the echo signal in exp −TR=T2f g is at first sight not feasible. Nonetheless, the two‐transverse

TR approximation proves to be valuable in describing the encoding efficiency of the unipolar MRE acquisition, especially within the linear encoding

regime. This can be appreciated from the closeness of predicted encoding efficiency of the two‐transverseTR approximation and the full EPG sim-

ulations in Figures 5 and 6, as well as the close coincidence of the displacement fields in the phantom experiments depicted in Figure 8. While

differences between the full EPG and the two‐transverse TR approximation certainly persist in theory, we believe that the attenuation of config-

uration states is not only due to diffusion and transverse relaxation but is complemented by intra‐voxel phase dispersion (see below) additionally

driving the sequence closer to the two‐transverse TR solution.

The propagator definition in Equation 16 assumes periodic bulk motion. From conventional MRE it is known that the variation of the displace-

ment field within one voxel leads to intra‐voxel phase dispersion (IVPD) and thus signal attenuation.56,57 In the 1D case of a propagating plane‐

wave with wavelength λ, signal attenuation by IVPD in the conventional MRE case can be estimated to be

S≈S0 sinc π
Δx
λ
ϵ r0

� �����
����; (31)

where S0 denotes the expected signal without IVPD and S the attenuated signal.8,57 In the case of unipolar MRE, intra‐voxel variations of the

displacement field can be treated using the spatially resolved EPG, which assumes each spatial position as independent EPG simulations.58 The

echo signal can then be approximately expressed as the average of sub‐voxel signals, each being a superposition of refocused echo pathways.

Since summation over echo pathways and spatial averaging can be exchanged, IVPD in unipolar MRE can not only be discussed as a total effect

of signal attenuation, it can also be studied for each echo pathway separately. As the motion sensitivity of configuration states increases propor-

tionally to their spatial frequency, each echo pathway accumulates a different motion‐dependent phase. From Equation 31 it becomes clear that

echo pathways involving higher order configuration states will exhibit stronger attenuation due to their increased phase dispersion. Thus, similar to

diffusion, the presence of IVPD is expected to reduce the contributions of higher order configuration states to the steady‐state signal and there-

fore reduces the influence of tissue, experiment and sequence properties on the encoding efficiency.

In the derivation and analysis of unipolar MRE, the assumption of isotropic diffusion was made. While the DTI measurements support this

assumption in the phantom used, a discussion of anisotropic diffusion is necessary when unipolar MRE is employed in vivo. McNab and Miller

extended the two‐transverse TR approximation for anisotropic DW‐SSFP by replacing the exponent of the diffusion propagator by its respective

anisotropic form.44 Weigel et al later introduced anisotropic diffusion in the context of the EPG formalism.59 Both approaches can be equally used

here. Since the encoding direction and thus diffusion sensitization is held constant in successive TRs, the diffusion coefficient D that enters into

the 1D diffusion propagator (Equation 20) can be simply replaced by the projection of the diffusion tensor D̂ on the encoding direction e
→

D ¼ e
→T

D̂ e
→
: (32)

Thus, in the presence of anisotropic diffusion, encoding direction‐dependent attenuation of configuration states, and with these direction‐depen-

dent encoding efficiencies, are expected to occur.

In the nonlinear regime (here Δk dj j > 10%), full EPG simulations show a monotonous decline in encoding efficiency, which leads to systematic

underestimation of large displacements (Figure 6C). Since the dependency on the displacement amplitude is found to be monotonous within the

relevant displacement domain, a bidirectional relationship is likely to exist. With exact knowledge of the Bþ
1 field as well as tissue parameters

within the ROI, full EPG simulations with different displacement amplitudes can be performed to correct the displacement fields, eg, via a look‐

up‐table approach. This also holds for the variation in phase angle (as observed in Figure S4).

The sequence has been validated in a phantom study against a conventional GRE‐MRE sequence at two driving frequencies, where displace-

ment fields were found to be in excellent agreement. We attribute the remaining differences to differences in the slice profile of MS and 3D acqui-

sitions as well as to residual differences in encoding efficiency due to local relaxation parameter variations. Especially at low driving frequency, the

displacement noise is visually higher in the conventional MRE scan than in unipolar MRE, which is also confirmed by the OSS‐SNR calculations.

The low SNR of the conventional MRE scan leads to underestimation of the stiffness of the two stiffest inclusions. Here, conventional MRE with-

out averaging even fails to qualitatively predict the elevated stiffness of inclusion 4 compared with inclusion 3 (Figure 9). The stiffness of inclu-

sions 1 and 2 as well as the phantom background were found to be in excellent agreement between unipolar and conventional MRE.

Through averaging, the SNR of the conventional MRE scan could be successfully increased to the point of close agreement of recovered stiff-

ness values with unipolar MRE. At 35 Hz, however, even 20‐fold averaging of the conventional MRE scan did not provide sufficient SNR to allow

estimation of the stiffness of the two stiffest inclusions. Minor differences in the order of 0.2 kPa persist, however, for inclusion 3 at 35 Hz, and
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also the two stiffest inclusions at 70 Hz. We believe these differences to be again attributable to slice profile differences, since the high stiffness of

the inclusions leads to very low spatial derivatives and thus renders the inversion especially sensitive to geometrical mismatches.

In this study, conventional MRE was performed with fewer slices compared with unipolar MRE (12 vs. 36 slices) to keep scan durations within

acceptable ranges. Since unipolar MRE uses slab excitation of the whole phantom and phase encoding in the slice‐encoding direction, SNR of 3D

unipolar MRE is
ffiffiffiffiffiffi
NS

p
‐fold higher than a respective 2D scan with equal TR, where NS denotes the number of phase‐encoding steps in the slice

direction. Accordingly, the SNR of the unipolar MRE scan was √3 higher, equaling 3‐fold averaging. An OSS‐SNR efficiency adjusted for the slice

acquisition technique can be defined, which relates the OSS‐SNR to the total acquisition duration TTot and accounts for the number of averages

NAvg and slices NS. For conventional MRE, where MS acquisition is performed, the OSS‐SNR efficiency can be defined as

oss‐snrMS ¼ OSS‐SNR
ffiffiffiffiffiffiffiffiffiffi
NAvg

p
NS

TTot

: (33)

The use of slab excitation (3D) in unipolar MRE leads to

oss‐snr3D ¼ OSS‐SNR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NAvgNS

p
TTot

: (34)

At 35 Hz, this results in an OSS‐SNR efficiency of 120 min−1 for conventional MRE and 226 min−1 for unipolar MRE for a single slice and average

(at 70 161 min−1 and 1355 min−1, respectively). The OSS‐SNR was determined over the whole phantom for a single scan. Hence, for the acqui-

sition of a single slice and average, unipolar MRE is approximately twice as effective at 35 Hz than conventional GRE‐MRE, and more than 8‐fold

at 70 Hz.

Reconstructed stiffness in unipolar MRE converges after 5‐fold averaging compared with at least 20‐fold averaging with conventional MRE.

This corresponds to a per‐slice speed‐up of at least 8‐fold in the case of 35 Hz, and 4‐fold in the case of 70 Hz, when taking the acquisition

speed‐up of factor 2 per slice into account. Based on the OSS‐SNR, single‐average unipolar MRE corresponds to more than 40‐fold acceleration,

as it shows considerably higher OSS‐SNR at 35 Hz than the 20‐fold averaged conventional MRE scan. At 70 Hz, unipolar MRE would be up to 18‐

fold faster when compared with conventional MRE.

In the phantom study, the actuation strength was specifically chosen to remain within the linear encoding regime. While in conventional MRE

the encoding efficiency can be reduced by gradient scaling or lowering the encoding fraction,6 in unipolar MRE spoiling and motion sensitivity are

coupled. Thus, a reduction of encoding efficiency to remain within the linear encoding regime is not feasible. Changes to the duration of the

encoding gradient at constant zeroth moment only leads to minor reductions in encoding efficiency. Thus, if linear encoding is intended, displace-

ment amplitudes must be chosen accordingly.

The motion propagator in Equation 18 cannot only be used for the simulation of unipolar MRE, but for sequences with periodic motion in gen-

eral. Since the propagator describes motion sensitivity of configuration states subject to a generalized trapezoidal gradient, concatenation of the

propagator allows performing EPG simulations with bipolar or flow‐compensated gradients. Hence, it can be employed to study spin‐history

effects in conventional 3D GRE‐MRE with short TRs or the influence of RF spoiling and its efficiency in canceling higher order echo pathways.

Previous work by Scheffler et al has described an encoding concept similar to unipolar MRE to induce an “oscillating steady‐state” in a spoiled

SSFP sequence with readout of the F‐2, F‐1, F0 and F1 configuration states.60 Contrary to our objective to encode and extract the full 3D shear

displacement field, Scheffler et al's concept aimed at studying the effect of alternating RF‐phases on the signal amplitude of SSFP‐based

sequences. While unipolar MRE can be seen to directly build on their encoding concept, it differs from the work by Scheffler et al in the following

important aspects: (i) unipolar MRE is designed to readout the F−1 state only in order to reduce the TR and accelerate MRE acquisition to the

fullest extent possible. A dual‐echo approach as employed in Scheffler et al's work for aforementioned purposes could possibly be employed to

(a) reduce relaxation time dependencies with combined displacement estimation using the high motion sensitivity of the F−1 state and the relax-

ation parameter insensitive F0 state, and (b) to combine the technique with double‐echo‐steady‐state (DESS) relaxometry.26 (ii) The work by

Scheffler et al is based on the description of a steady‐state that oscillates between two TRs. Our steady‐state is composed of NP distinct signals,

which is closer to the description of pseudo‐steady states by Assländer et al and Amthor et al.61,62 (iii) Spoiling and readout gradients are

uncoupled to allow for the sensitization of the sequence to the different motion components of the shear wave field. (iv) Our formulation of

steady states is based on the EPG formalism. The two‐transverse TR approximation describes the signal to the second order in exp −TR=T2f g
and thus makes assumptions on the contributing echo pathways. On the other hand, Scheffler et al developed a signal model for small per-

turbations of the accumulated phase during a TR period without making assumptions on relaxation properties. Transferring their approach

to unipolar MRE, it becomes a model to describe motion encoding for small displacements in the case of NP = 2. An extension of their work

to more than two states is beyond the scope of this work; however, it would provide a valuable addition to the understanding of encoding in

unipolar MRE in the absence of diffusion or IVPD.

In the present work, Hadamard encoding has been used to allow for the extraction of the 3D volumetric displacement field. It should be noted

that unipolar MRE is not restricted to Hadamard encoding alone—all encoding schemes lacking a separate reference scan without motion
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sensitization can be used. Clinically, MR elastography is often performed on a small set of discontinuous 2D slices with only through‐plane motion

sensitization.63,64 In unipolar MRE, slab excitation and phase encoding in the slice direction can be replaced by single slice excitation. Interleaved

MS acquisitions cannot be paired with unipolar MRE as it is described here, as spoiling gradients in consecutive TR periods will accumulate and

change the overall spoiling area as well as the motion sensitization scheme.

While the present work has focused on the theoretical foundations and phantom validation of unipolar MRE, future work is required to assess

the utility of the method in vivo. The high intended motion sensitivity of unipolar MRE requires careful consideration and provisions depending on

the target anatomy, in particular if physiological and patient motion is present. Accordingly, unipolar MRE is expected to require breath‐holding in

the case of thoracic and abdominal applications. To address cardiac‐related motion, artifact reduction techniques such as averaging or gating may

need to be incorporated.65 In brain and spine, the pulsatile CSF flow is expected to be encoded by unipolar MRE, potentially interfering with dis-

placement encoding.36,42,66 However, since SNR is much higher in unipolar MRE than in a comparable conventional GRE‐MRE sequence, a com-

bination of compressed sensing and self‐gating techniques is envisaged.13,65,67,68 Overall, the influence of physiological and patient motion on the

steady‐state signal and resulting changes in encoding efficiency remains to be understood. In addition, in vivo parametric mapping of T1, T2 and

ADC would be required for the tissue of interest to estimate their impact on the local encoding efficiency. While the phantom results and theo-

retical considerations suggest that relaxation effects are not critical, these results need to be confirmed in vivo.

Given the considerations above, a first application of unipolar MRE could focus on brain, where mechanical attenuation by the skull results in

low displacement amplitudes necessitating high encoding efficiency and SNR.

In the future, unipolar MRE might prove valuable for multi‐frequency MRE, when different actuation frequencies are acquired consecutively.

This is especially the case for low driver frequencies as the SNR is significantly increased with unipolar MRE compared with conventional MRE

with fractional encoding. At high frequencies, however, unipolar MRE loses its advantage over conventional MRE as encoding fractions typically

become much larger and acceleration is limited by the combined duration of RF pulse and readout, not by the MEG duration.
6 | CONCLUSION

We have proposed a novel MR elastography sequence termed “unipolar MRE”, which utilizes the spoiling gradients of a time‐reversed SSFP

sequence to acquire the full 3D shear displacement field. Compared with conventional GRE‐MRE, unipolar MRE offers significantly reduced

TRs with comparable or even increased displacement encoding efficiency. Accordingly, 4‐ to 8‐fold faster acquisitions at equal or higher OSS‐

SNR can be achieved.
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APPENDIX A

General MRE Propagator for a Trapezoidal Gradient Lobe

The motion propagator for a trapezoidal gradient with finite slope time td, duration T, and gradient area Δk is given by

J ¼ exp
−i r

→
0⋅Δ k→

ω2td T−tdð Þ sin ϕð Þ þ 1þ ω2td T−tdð Þ� �
sin ωTþ ϕð Þ− sin ϕþ ωtdð Þ− sin ϕþ ω T−tdð Þð Þ� �( )

J0

The propagator in the absence of the gradient is equivalent to J0 in Eq. 19.

APPENDIX B

Definition of Motion Propagators for the Two‐Transverse TR Approximation

To evaluate the two‐transverse TR approximation, the motion propagators for storage and transverse magnetization periods need to be defined.

The propagator directly preceeding readout is given by

JT0 ¼ Jj→k0→−Δ→k :

Here, the notation •jrule should be interpreted as a replacement rule, which is applied to the expression on its left.

The motion propagator directly following initial RF excitation is given by

JT mTRð Þ ¼ Jj
k
→

0→0; ϕ→ϕ−ωTR mþ1ð Þ
� �

⋅ J0jk→0→Δ k
→
; T→TR−T; ϕ→ϕ−ωTR mþ1ð ÞþωT

� �
:

The first term denotes initial sensitization through the unipolar MEG, while the second term accounts for phase accrual due to magnetization

being spoiled.

Configuration states in longitudinal storage experience motion sensitization over the duration of the storage period mTR. The motion propa-

gator is thus given by

JL mTRð Þ ¼ J0j
k
!

0→Δ k→ ; T→mTR ; ϕ→ϕ−ωTRm

� �

APPENDIX C

Derivation of the Two‐Transverse TR Approximation in the Presence of Bulk Periodic Motion

For the derivation of the two‐transverseTR approximation in the presence of periodic bulk motion, we follow McNab and Miller, Ref. 44 except for

the respective additions for unipolar MRE. Each echo pathway is preceded by infinitely many longitudinal storage states, which have to be taken

into account to capture T1 recovery. These contributions are given by the factor

M0 1−E1ð Þ ∑
∞

n¼0
E1 cos αð Þð Þn ¼ M0

1−E1

1−E1 cos αð Þ; (35)

where M0 is the equilibrium magnetization. The solution of the infinite series is given by the geometric series identity69

∑
∞

n¼0
rm ¼ 1

1−r
; with ∣r∣ < 1: (36)

Since k ¼ 0 holds for these states, they are not subject to motion sensitization. Taking the remaining transverse periods and the RF pulses into

account, the spin‐echo contribution can be stated as

SE ¼ −
M0 1−E1ð ÞE2 sin2 α=2ð Þ sin αð Þ

1−E1 cos αð Þ ⋅J�T TRð ÞJT0: (37)

The stimulated echo (STE) contributions are given by two distinct terms. The STE contributions are given by (STE1: one storage period)
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STE1 ¼ −
M0 1−E1ð ÞE1E2 sin3 αð Þ

2 1−E1 cos αð Þð Þ ⋅J�T 2TRð ÞJ�L TRð ÞJT0: (38)

and (m>1 longitudinal storage periods)

STEm>1 ¼ −
M0 1−E1ð ÞE2 sin3 αð Þ
2 cos αð Þ 1−E1 cos αð Þð Þ E1 cos αð Þð Þm⋅J�T mþ 1ð ÞTRð ÞJ�L mTRð ÞJT0: (39)

The steady‐state echo is given by a superposition of these terms, yielding

S ¼ SEþ STE1 þ ∑
∞

m¼2
STEm: (40)

Insertion of the STE definition into the infinite sum leads to

∑
∞

m¼2
STEm ¼ −

M0 1−E1ð ÞE2 sin3 αð Þ
2 cos αð Þ 1−E1 cos αð Þð ÞJT0 ∑

∞

m¼2
E1 cos αð Þð Þm⋅J�T mþ 1ð ÞTRð ÞJ�L mTRð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕A

: (41)

An auxiliary term A can be identified by collecting all terms dependent on m. Shifting the summation index m→m−2, we arrive at

A ¼ E1 cos αð Þð Þ2 ∑
∞

m¼0
E1 cos αð Þð Þm⋅J�T mþ 3ð ÞTRð ÞJ�L mþ 2ð ÞTRð Þ: (42)

Splitting the infinite sum into two

A ¼ E1 cos αð Þð Þ2 ∑
∞

m¼0
∑

NP−1

n¼0
E1 cos αð Þð ÞmNPþn⋅J�T mNP þ nþ 3ð ÞTRð ÞJ�L mNP þ nþ 2ð ÞTRð Þ

allows to make use of the periodicity of the motion propagators implied by the Ristretto sequence timing, i.e.

JT mþ NPð ÞTRð Þ ¼ JT mTRð Þ:

JL mþ NPð ÞTRð Þ ¼ JL mTRð Þ:

simplifying the STE contributions to

A ¼ ∑
∞

m¼0
E1 cos αð Þð Þ2þmNP

� �
∑

NP−1

n¼0
E1 cos αð Þð Þn⋅J�T nþ 3ð ÞTRð ÞJ�L nþ 2ð ÞTRð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕κ NPð Þ

: (43)

The summation over m can again be performed, leading to

A ¼ E1 cos αð Þð Þ2
1− E1 cos αð Þð ÞNP

κ NPð Þ: (44)

Hence, the STE contributions with m > 1 are given by

∑
∞

m¼2
STEm ¼ −

M0 1−E1ð ÞE2
1E2 sin3 αð Þ cos αð Þ

2 1−E1 cos αð Þð Þ
κ NPð ÞJT0

1− E1 cos αð Þð ÞNP
: (45)
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