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The Tousled-like kinases (TLKs) function in processes of chromatin assembly, including replication, transcription, repair, and
chromosome segregation. TLKs interact specifically (and phosphorylate) with the chromatin assembly factor Asfl, a histone
H3-H4 chaperone, histone H3 itself at Serl0, and also Rad9, a key protein involved in DNA repair and cell cycle signaling
following DNA damage. These interactions are believed to be responsible for the action of TLKs in double-stranded break repair
and radioprotection and also in the propagation of the DNA damage response. Hence, I propose that TLKs play key roles in
maintenance of genome integrity in many organisms of both kingdoms. In this paper, I highlight key issues of the known roles
of these proteins, particularly in the context of DNA repair (IR and UV), their possible relevance to genome integrity and cancer

development, and as possible targets for intervention in cancer management.

1. General Information on
Tousled-Like Kinases

The Tousled locus was originally identified in A. thaliana and
Antirrhinum majus during a study of mutations leading to
defects in meristem expansion. Mutations of Tousled produce
a complex phenotype characterized by specific defects in
development of leaf and floral organs [1]. This was proposed
to be linked to a replicative defect during organogenesis, but
it may also result from failure to protect the genome from
DNA damage [2, 3], resulting in developmental aberrations
[4, 5]. Highly related Tousled-like genes can be found in
many organisms in both kingdoms, several of which encode
multiple transcripts resulting in different protein isoforms
[6]. It was originally proposed that Tousled (TSL) may be
a component in a signal transduction pathway controlling
cell proliferation and DNA synthesis during organogenesis,
and this immediately prompted a search for its substrates.
However, unlike most kinases that usually display a propen-
sity to phosphorylate numerous substrates, after many years
of study, only a few direct “interacting” substrates of TLKs
have been identified, namely, the histone chaperone Asfl
[7], histone H3-S10 [8], Aurora B [5], and more recently
Rad9 [9]. This suggested a function for TLKs in chromatin

assembly [9, 10], during transcription [2, 11], DNA repair
[3, 9, 12], and condensation of chromosomes at mitosis
[4, 5]. The latter function, which was found critical for
proper chromosome segregation, prompted a search for
additional “indirect” substrates and functions and resulted in
the identification of an activity on myosin II in mammalian
cells [13] and on the chromosome passenger complex in
trypanosomes [14]. The search for TLKs functions at mitosis
and meiosis is currently a very active pursuit in several labs in
more genetically tractable organisms like Drosophila [15] and
C. elegans (Jill Schumacher, personal communication). In
addition, whereas only nuclear functions were initially pro-
posed for these proteins, some splice variants localize also to
the cytoplasm [8], perhaps due to their reported interaction
with 14-3-3 proteins [16] with their shuttling function and
hence could play additional roles in potential cytoplasmic
substrates, one of which was identified as the DEAD-box p68
RNA helicase [17]. More emphasis is presented next for three
of the most important substrates of TLKs: Asfl, Rad9, and
histone H3.

1.1. The Chromatin Assembly Factor Asfl. Asfl is a histone
H3-H4 chaperone [18] that is essential in mammals [19] and
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other organisms [20, 21] but not in S. cerevisiae, although
such cells deleted for Asfl are sensitive to genotoxins [22].
A recent review on Asfl and other histone chaperones can
be found in [23] and its critical importance for epigenome
maintenance in [24]. Asfl, in conjunction with another
chaperone called CAF1, promotes the assembly of nucleo-
somes onto newly replicated DNA, but it can also promote
nucleosome eviction at activated promoters [25-27]. Thus,
Asfl is generally involved in chromatin remodeling, which
also entails DNA repair [22, 28]. The crystal structure of
Asfl in complex with H3-H4 was solved at high resolution
[29], and Asfl was found to cover the dorsal side of
the H3-H4 dimer, thereby sterically preventing formation
of the core tetramer. This is thought to be important
for disrupting nucleosomes during transcription [30] or
remodeling of chromatin in damaged DNA [3, 9], and the
role of TLK1B in radioprotection was initially attributed to
its effect on Asfl, presumed to be via its phosphorylation
[12]. More recently, however, I showed that TLK1B can
stimulate chromatin assembly in vitro in conjunction with
Asfl regardless of its phosphorylation [31]. This suggested
that TLK1/1B act as chaperones in chromatin assembly, in
addition to their kinase function. Hence, an important role
of TLKs via Asfl is to promote nucleosomes eviction at
DSBs and access of the repair machinery to unencumbered
DNA.

1.2. Rad9. Rad9, Radl, and Husl form a trimeric complex
(termed 9-1-1) that is structurally similar [32, 33] to the
PCNA “sliding-clamp,” which encircles the DNA conferring
processivity to polymerases [34-36]. 9-1-1 assembles in a
complex at sites of damage [37], and it is the genotoxin-
activated RFC-Rad17 “clamp loader” that locks 9-1-1 onto
DNA [37]. The 9-1-1 may then serve as a scaffold for
assembly of DNA repair proteins, Flap endonuclease [38, 39],
DNA polymerase 3 [40], DNA ligase 1 [41], and DNA
glycosylase MutY [42], in addition to aiding processing of
the DNA ends by its own exonucleolytic activity [43—45]. We
showed that TLK1B phosphorylates Rad9 at $328 and that
this appears to play a key role in resumption of the cell cycle
arrested after IR. However, TLK1B also had a function as a
chaperone for Rad9 assembly at DSBs that was independent
of its kinase function [9]. A possibility is that the regulated
binding of 9-1-1 and TLK1B to DSBs recruits repair enzymes
and a chromatin disassembly apparatus to facilitate access to
unencumbered DNA and promote efficient DSB repair [9],
and only subsequently in the DNA damage response (DDR)
disengagement and deactivation of the checkpoint [46].
Rad?9 participates in additional functions of the DDR and in
repair and also in restart of stalled replication forks, along
with numerous other proteins, like RHINO and TopBP1
[47] or WRN [48]. Although the Rad9 C-terminal tail (119
aa) shares no homology with PCNA and is thought to be
nonessential for the formation of the 9-1-1 complex [35],
this region is multiply phosphorylated, constitutively and
inducibly in response to genotoxic stress [49, 50]. Rad9 is
normally phosphorylated independently of the cell cycle at
S277, 328, S336, T355, and S387 [49]. Cell-cycle-dependent
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phosphorylation of Rad9 at Thr 292 occurs during mitosis in
a Cdc2-dependent manner [49]. Moreover, Rad9 is intensely
phosphorylated in response to DNA damage. Although
damage-dependent phosphorylation of Rad9 was initially
believed to modulate the stability of the 9-1-1 complex [51],
it is now believed that neither constitutive nor damage-
induced phosphorylation influences the interaction of Rad9
with its partners Radl and Husl [37, 49]. Most studies
point to the role of damage-activated Rad9 phosphorylation
in downstream cell signaling via activation of Chkl, and it
was reported that phosphorylation of Rad9 influences cell
viability after UV and hydroxyurea cell-cycle stalling [50].
Substitutions at all carboxy-terminal 8 phosphorylation sites
compromised Rad9 interaction with TopBP1 and impaired
the cellular response to DNA damage [49]. Collectively, these
results suggest that Rad9 phosphorylation regulates protein
interactions and downstream cell signaling from DNA
damage. TLKs are the only known kinases that specifically
phosphorylate Rad9-5328. Phosphorylation at S328 was
determined as a prerequisite for additional phosphorylation
of Rad9 [52]. Our studies with reconstituted Rad9—/— cells
indicated that S328 phosphorylation is not essential for
Rad9 interaction with Husl and Radl [9], consistent with
previous studies [37]. However, phosphorylation at S328
appeared to be important for exiting cell-cycle arrest after
production of DSBs and resulting in a smaller fraction of
apoptotic cells and better clonogenic survival [9]. Some
studies have implicated stress-activated Rad9 phosphoryla-
tion to activation of Chkl [50, 53], which mediates the cell
cycle checkpoint. Indeed, current research in our lab has
shown that inhibiting TLKs with specific chemical inhibitors
results in incapacity to exit the cell cycle checkpoint and
high rates of apoptosis when combined with DSB-inducing
agents (to be published elsewhere). We observed similar
results by overexpression of a TLK kinase-dead (KD) and
observed a delay in the release of the Rad17-clamp-loader
and Rad9 from a single genomic DSB introduced with the
HO nuclease transiently expressed from Adenovirus [46].
The most logical conclusion arising from these results, and
from the specific pattern of activity of TLKs (see below), is
that the S328 phosphorylation of Rad9 by TLKs is critical
for deactivation of the DDR checkpoint following DNA
repair.

1.3. Histone H3. Phosphorylation of histone H3 at Ser10 was
recognized as the first substrate of TLK1B [8], as demon-
strated both biochemically and by direct mass-spec measure-
ments; this was further confirmed by genetic complemen-
tation of a yeast strain defective in Ipll (Aurora kinase of
S. cerevisiae) that is the main H3-S10 kinase in this organ-
ism [8]. The significance of this phosphorylation remains
unclear. Tousled (TSL) could phosphorylate histone H3 in
vitro, just like mammalian TLK1B, but the recombinant C.
elegans TLK was not effective at phosphorylating directly
H3 but was highly stimulatory in conjunction with Air-1
(Aurora Kinase) [5], which was found to be an interacting
target of the single TLK protein in C. elegans [5]. Phospho-
rylation of H3 by Aurora kinase is a hallmark of mitosis, and
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that specific phosphorylation is proposed to be critical for
chromosome condensation at mitosis [54]. In that context, it
is not clear if the role of TLK-mediated phosphorylation of
H3 is central to mitosis, although the phosphorylation of H3-
§10 is reduced in nonsynchronized cells expressing the KD,
and the condensation of chromosomes and phosphorylation
of H3 is reduced at mitosis [4]. But this of course could
be also an indirect effect on Aurora kinase activity [5, 55].
More importantly, however, inhibition of TLK activity by
genotoxic stress (see below) by either IR or UV results
in reduced levels of H3-S10 in unsynchronized cells [3,
8]. Since mitotic cells represent only a small minority of
cycling cells, even the large ~5-fold increase in H3P(S10)
seen during mitosis would account for only a very small
amount of the H3P from the total population. Hence, it
would seem logical to assume that TLK-mediated H3P
phosphorylation probably accounts for some other function
in chromatin maintenance. If for example TLK1/1B is the
main H3 kinase involved in a “chromosomal response” to
DNA damage, then ATM-mediated inhibition of TLK1 (see
below) is expected to result in a loss of H3 phosphorylation
by endogenous phosphatases and in altered kinetics of
chromatin assembly during replication and/or repair. It is
possible that physiologically the increased TLK1B synthesis
following IR [56] can help offset the loss of TLK activity
resulting from IR and restore appropriate levels of H3P later
on during the recovery. The reduction of H3P following
genotoxic stress (IR) was previously reported also by another
group [57]. In any case, there are other situations where
H3-510 phosphorylation is induced beside mitosis, and a
clear case is that of the “nucleosomal response” at the
early-response genes following mitogenic stimulation. Gene
disruption in murine embryonic stem cells, and genetic
evidence from Coffin-Lowry syndrome, has implicated Rsk-
2 as the kinase directly responsible for phosphorylating H3
following mitogenic stimulation [58]. On the other hand,
another kinase (MSK1) was reported to phosphorylate H3
more efficiently and be sensitive to the kinase inhibitor H89,
which impairs the nucleosomal response, whereas Rsk-2 was
insensitive to this inhibitor [59]. However, it now seems clear
that several families of H3-S10 kinases exist (e.g., Ipl1/Aurora
and NIMA) and may be involved in different or partially
overlapping functions [60, 61]. We have clearly shown that
recombinant TLK1B phosphorylates H3 at S10 and could
complement a temperature-sensitive mutant of Ipll in yeast
and restore H3P in those cells at the nonpermissive tem-
perature. Furthermore, it could do so with high specificity
in a mix of core histones, and in cells overexpressing
TLK1B we found increased levels of H3 phosphorylation
[8]. These findings, as well as the genetic complementation
data, strongly suggest the inclusion of the Tousled family
of kinases to the list of H3-S10 kinases, even though their
precise role during the cell cycle or perturbations of it
(inhibitory or stimulatory) has not been fully elucidated.
The use of newly identified specific chemical inhibitors
of TLKs could perhaps shed light on the role of TLK-
mediated phosphorylation of H3-S10 and its significance in
chromatin assembly during normal division or after DNA
damage.

2. TLKSs in Man, as Guardians of
Genome Stability, and Their
Possible Involvement in Cancer

The first human TLK cDNA to be cloned, what we later
referred to as the TLK1B splice variant (KIAA0137), was
first identified during the random cloning of novel cDNAs
from the human myeloid cell line KG-1 [62]. The cDNAs
for TLK1 (Chr 2) and TLK2 (Chr 17) were later cloned
during a PCR-based search for human kinases [63] and
independently from an expression library screened on the
basis of autophosphorylation activity ([64]; named PKUpS
and PKUw« by these authors). Instead, we have independently
cloned the TLK1B splice variant with a completely different
screen, based upon polysomal redistribution of weakly
translated transcripts that become preferentially recruited
upon overexpression of eIF4E [8]. We subsequently found
that TLKIB is synthesized efficiently in several cell lines
overexpressing the translation factor/oncogene eIF4E, and
we then presented several lines of evidence to confirm its
translational regulation, particularly after genotoxic stress
[56]. The significance of this translational regulation is
discussed later when I emphasize the role of TLKs in DNA
repair and protection from genotoxic agents, including IR
and UV. Below, we propose that an important role for TLKs
is as guardian of the genome, and we implicate a function in
cancer development and progression. This derivation seems
obvious given their role both in basic aspects of chromatin
assembly, transcription, replication, and repair and also for
their distinct role in chromosome segregation into daughter
cells.

A high percentage of human tumors, including cancer
of the prostate (CaP) and breast (BCA), show mutations
in DNA repair genes and checkpoint functions that make
them overly dependent on alternative pathways for survival.
Unfortunately, this can result in carcinomas that are highly
resistant to radiation therapy (XRT) or radiomimetic ther-
apy (RMT) from failsafe repair mechanisms also designed
to contain excessive genomic instability. Targeting those
mechanisms can result in highly specific and effective
therapies. We propose that the addition of inhibitors of
TLKs to enhance response to radiochemotherapy will greatly
benefit CaP and BCA patients’ therapy management. In fact,
ameliorating the effects of standard therapy, and possibly
reducing its doses while maintaining specific killing, still
seems to be the one of most promising course of action for
the near future. Certainly, the success of PARP inhibitors
for triple negative BCA seem to point in that direction
[65].

To recapitulate some basic information before addressing
TLKs in humans, the TLKs are involved in chromatin assem-
bly, DNA repair, transcription, and chromosome segregation
([9] and references therein). Two TLK genes (TLKI and
TLK2) with several splice variants have been identified
in humans [63]. TLK1/1B interacts specifically with the
chromatin assembly factor Asfl and Rad9 [9, 46], and we
have presented evidence that TLK1B promotes repair by
processing of the double-strand break (DSB) ends and disas-



sembly of chromatin near the DSB to facilitate recruitment
of repair proteins [9]. Since Rad9 is a critical mediator of
the response to DNA damage, DDR checkpoint, and in
repair (specifically of DSBs), it seemed that the TLK1-Rad9
interaction would be very important in implementing the
mechanism of TLK1B-mediated radioprotection. The past
few years have witnessed significant advances in understand-
ing the roles of TLKs in the DDR [66] and in direct repair
of DSBs [9], as well as their clinical relevance. In BCA,
elevated expression of the TLKIB splice form is found in
~30% of the patients [67] and often corresponds to poor
response to XRT [68] and doxorubicin [67], presumably
due to efficient repair of DSBs in the tumor cells. We
postulated that its expression could serve as a marker for
prognosis as well as a target for therapeutic intervention.
In addition, there are BCA cases where TLK1/1B is not
elevated, but it is TLK2, which lies in a region of Chr
17923 nearby the BRCALI locus, that is amplified and/or
overexpressed in a significant number of BCA specimens
[69, 70]. Thus, for a large proportion of sporadic BCA,
specific TLK inhibitors should be extremely beneficial as
radio-chemosensitizers. The fact that TLKs are overexpressed
likely renders tumor cells more dependent on these kinases
than normal tissues and, hence, their preferential TLK-
targeted killing. In contrast to BCA, in the most common
human CaP cell lines, only one or the other TLK gene
is expressed [71], although typically at high level—we do
not have the story yet for the analysis of patient samples.
The significance of the TLK/Rad9 axis is perhaps even
greater for prostate cancer for which several studies have
implicated the critical role of Rad9 in disease progression
and prognosis. In one study, Rad9 was associated with tumor
stage and was reported to regulate tumor growth in mice
[72]. In another, the investigators found that Rad9 contains
androgen-responsive elements and that its expression is
also androgen regulated [73]. In a third study, Rad9 acted
as a corepressor of AR transactivation [74]—all of which
suggest that Rad9 expression may be a significant part of the
“androgen switch” that leads to cancer cell survival and that
Rad9 has functions beyond DNA repair that make it clinically
relevant as a biomarker or in tumor growth control [72].
Additional implications for the role of Rad9 in CaP and other
common cancers are reviewed in [75, 76]. Correspondingly,
elevated expression of TLKs (along with Rad9) may be a
significant marker of radioresistance in CaP cell lines and
likely in cancerous samples and hence represents a hallmark
of poor prognosis.

In contrast to Rad9, there is no report for the direct in-
volvement of either of the two human Asfl genes in cancer
development, perhaps due to the critical importance of these
histone H3/H4 chaperones for all mammalian cells (normal
and cancer). Nonetheless, a recent report correlated the ex-
pression of Asflb in prediction of BCA relapse, perhaps due
to its higher importance for cell proliferation and chromo-
somes duplication [77].

It is noteworthy that translocations/amplifications in-
volving 17q23 that include the TLK2 gene are not unique to
BCA but are also found neuroblastomas [78] and glioblasto-
mas multiforme [79].
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3. TLKs in DNA Repair and as Possible Targets
for Gene/Molecular Therapy

The fact that overexpression of TLKs (or more specifically the
TLK1B splice variant) conferred a high degree of protection
against IR in mouse cells was one of the first effects
reported for these proteins [8]. It was soon found that the
protection involved increased and more efficient repair of
DSBs in living cells [9, 12], and then more precisely with
in vitro plasmid repair assays with defined components and
recombinant proteins [46]. In such reactions, the assembly of
nucleosomes on the plasmid was simultaneously monitored
as a decrease in the linking number via formation of high-
mobility topoisomers in conjunction with repair of a DSB
[46] or of excision of UV-induced pyrimidine dimers [3].
Hence, the specific contribution of Asfl to repair of DSBs
or UV damage could be studied in those conditions. For
repair of the DSB, depletion of Asfl had some effect on
supercoiling, but it had only modest effect on religation of
the ends. Quantitative analysis showed that conversion of
the linear form to circular/relaxed and then supercoiled was
complete after 20 min in control extract, but not until 40 min
in Asfl-depleted. Hence, Asfl albeit likely involved, was
not essential for these repair reactions nor for supercoiling
[46], at least for the case of cohesive-ends repair. Similarly,
repair of UV-damaged plasmids did not absolutely depend
on Asf1, although the kinetics of repair were strongly delayed
[3], consistent with a previous report that looked at the
contribution of Asf1/CAF1, and even TLKs, in repair of UV-
damaged plasmids [80]. The identification of Asfl [7] and
later Rad9 [9] as two main targets of TLKs immediately
suggested some plausible mechanisms for their role in DNA
repair. We believe that the binding of 9-1-1 and TLKIB
to DSBs recruits repair enzymes in conjunction with the
chromatin remodeling machinery to create limited repair
regions of DNA that is not encumbered by chromatin [9],
similar to what has been reported in yeast for the repair of
the single DSB at MAT during mating-type switching [81].
We should, however, stress that in such capacity, the role of
TLKs as kinases has not been fully elucidated, since for some
of these repair functions, expression of the TLK1B-KD was
capable of producing effects similar to the catalytically active
protein, and in specific reactions of nucleosome assembly,
even in the absence of ATP [9, 31, 82]. On the other
hand, it seems now clear that the kinase activity of TLKs is
very significant in DDR signaling, and most likely during
deactivation of the checkpoint. This is the last topic of this
paper and is described below.

While studying the gene expression regulatory activities
of the translation factor eIF4E, we had originally identified
an elF4E-regulated transcript encoding a protein kinase
(TLK1B) that when overexpressed increases radioresistance
in mammalian cells [8]. TLK1B is translationally upregulated
in response to the presence of DSBs via a mechanism
that involves activation of mTOR following that of a PI3K
member, likely ATM, which ultimately results in eIF4E
stimulation [56]. A rapid response to DNA damage at the
translation level is a novel mechanism for cellular survival
that has opened new areas of investigation in DSB repair and
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FIGURE 1: A DNA repair model involving the 9-1-1 complex, Sunavala-Dossabhoy and De Benedetti [9]. Tousled homolog, TLK1, binds and
phosphorylates RAD9 and acts as a molecular chaperone in DNA repair. DNA Repair 8(1):87-102.

in damage signaling. Indeed, while transcriptional responses
to DNA damage are well known [83], there is no question
that the induction of a repair protein (TLK1B) at the
translation level would be a far faster response to the injury,
and this mechanism of translational activation is now being
much more appreciated [84]. While it seemed clear that an
increase in TLK1B expression could play some advantageous
role during DNA repair, other investigators soon discovered
that the kinase activity of TLKs is actually rapidly inhibited
during genotoxic stress [85, 86], which initially seemed
at odds with our observations for the obvious need for
increased levels of TLK1B. Why making more protein kinase
if at the same time it is going to be inactive for phospho-
rylation? Of course this would not include the chaperone
function of these proteins [9, 31, 82]. Hence, evidence exists
for a strong link between TLKs (both level and activity)
and a DNA damage relay [66]. This is inferred by the
observation that the kinase activity of TLK1 is inhibited by
IR and genotoxins [66]. The inhibition is mediated by ATM
via Chk1 by direct phosphorylation of TLK1 at S695 [86].
These findings identified a functional cooperation between
ATM and Chkl in propagation of a checkpoint response
mediated by transient inhibition of TLK1, which may
regulate processes involved in chromatin remodeling after
damage [66]. We believe that the main reason for the cycle
of inactivation and then hyperactivation of TLKs, due to the
obvious increase in TLK1B expression following genotoxic
stress, is to fine-tune chromatin disassembly/reassembly (via
Asfl and/or other histone chaperones) and to mediate the
cell cycle checkpoint (particularly its deactivation) via 9-1-1.
A model for this was presented in [46] and is repeated here.

Asfl is known to interact with RFC (subunits 2-5) tethered
to PCNA, and it is recruited to the replication forks [87]. We
propose that after DNA damage, Asfl is similarly recruited
to the lesions to prepare for repair. Here, Asfl may be instead
recruited by the Rad17-RFC clamp-loader, just as Rad9 is,
in association with TLK1/1B. After dissociation from RFC
[87], the recruited Asfl is positioned to disrupt the H3/H4
tetramer resulting in nucleosome eviction. As repair pro-
gresses, newly synthesized TLK1B induced by DNA damage
could lead to dissociation of the Asfl/H3/H4 heterotrimer
and promote reformation of the H3-H4 tetramer [82]. Many
details remain to be filled in—for instance the role that ATM
plays in modulating the two separate activities of TLK1/1B
(kinase or chaperone). The association of TLK1B with Asfl
is regulated by its phosphorylation [82]. A possible outcome
for the role of ATM-mediated inhibition of TLK1/1B is
that the reduction of Asfl phosphorylation would lead to
a more stable association of TLK1/1B-Asfl, instead of a
kinetic association involving the ratio of unphosphorylated
to phosphorylated Asfl. This could lead to dissociation of
the Asfl1/H3/H4 trimer. Another question is how the Rad9-
mediated checkpoint activation of ATM and ATR may affect
the entire pathway and its own association with TLK1/1B
and Radl7 [46]. Once TLK1/1B activity is restored after
repair, Rad9 may then be rephosphorylated, which could be
an important mark for release of the clamp complex and
signaling completion of repair and resumption of the cell
cycle [46]. Indeed, at least 3 lines of evidence indicate that the
TLK kinase activity plays a role in checkpoint establishment
and/or its deactivation: (1) the Rad9—/— cells complemented
with TLK-KD show a defect in reentering the cell cycle



after G2 arrest induced by IR [9]. (2) MM3MG-HO cells
expressing the TLK-KD can repair the DSB induced with
HO but 10-15% of cells die of apoptosis two days later,
which may indicate a defect in deactivating the checkpoint,
as supported by the fact that Rad9(S238) phosphorylation
is impaired [46]. (3) Mammalian cells treated with a TLK
inhibitor + doxorubicin (or IR) arrest preferentially in S
phase and die of apoptosis (unpublished results). Hence,
we strongly believe that the Rad9-S328 phosphorylation by
TLK1 is a key in checkpoint deactivation and suppression
of the ATM/ATR-Chk1 signal that is propagated via the
clamp/clamp loader and TopBPl—see [53, 88] for two
possible models. This would likely involve most types of
DNA damage and genotoxic stress and also restart of stalled
replication forks—hence the great importance of TLKs for
DNA repair and genome integrity.

It would seem obvious that finding inhibitors of TLKs
could greatly improve current radio- and chemotherapeutic
approaches to cancer treatment. And in fact, silencing
TLK1 was highly effective in sensitizing cholangiocarcinoma
(a rather incurable disease) cell lines to cisplatin-induced
apoptosis [89]. On the other hand, one could envision that
exploiting the functions of TLKs in DNA repair could actu-
ally produce beneficial effects for normal tissues and organs
exposed to the same genotoxic regimens: XRT, radiomimetic
chemotherapy, or even daily skin exposure to UV damage.
Indeed such cases are being contemplated in our labs, and
both gene therapy approaches aimed at sparing salivary
glands from the damaging effects of XRT to treat head and
neck cancer [90], as well as direct TAT-TLK1 protein delivery
to salivary glands [91], have been recently explored with a
human clinical trial in sight. Perhaps additional modes of
delivery of these proteins, such as a topical skin delivery
in a liposomal complex (of either the protein itself or via
viral or plasmid gene delivery vehicle), will become feasible
in the near future. A model for the participation of TLK
in chromatin-remodeling linked to DNA repair is shown in
Figure 1.
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