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Background: Alternative splicing (AS) plays an essential role in tumorigenesis and
progression. This study aimed to develop a novel prognostic model based on the AS
events to obtain more accurate survival prediction and search for potential therapeutic
targets in oral squamous cell carcinoma (OSCC).

Methods: Seven types of AS events in 326 OSCC patients with RNA-seq were obtained
from the TCGA SpliceSeq tool and the TCGA database. Cox analysis, the least absolute
shrinkage and selection operator Cox regression and random forest were employed
to establish prognostic models. Genomics of Drug Sensitivity in Cancer (GDSC) was
adopted to estimate the possible drug sensiticity. Prognostic splicing factor (SF)-AS
network was constructed by Cytoscape.

Results: The final model included 12 AS events, showing satisfactory performance.
The area under the curve for 3- and 5-year survival in the training cohort was 0.83 and
0.82, respectively while that in internal validation was 0.83 and 0.82 accordingly. The
calibration curve also indicated a satisfactory agreement between the observation and
the predictive values. Low-risk patients stratified by the final model presented higher
sensitivity to three chemo drugs. Besides, the prognostic SF-AS regulatory network
contained five key SFs and 62 AS events.

Conclusions: We developed a powerful prognostic AS signature for OSCC and
deepened the understanding of SF-AS network regulatory mechanisms. Low-risk
patients tended to be more sensitive to the three chemo drugs while five key SFs
including CELF2, TIA1, HNRNPC, HNRNPK, and SRSF9 were identified as potential
prognostic biomarkers, which may offer new prospects for effective therapies of OSCC.

Keywords: oral squamous cell carcinoma, alternative splicing, splicing factor, prognosis, Bioinformatics

INTRODUCTION

Oral squamous cell carcinoma (OSCC), the most common type of head and neck squamous cell
carcinoma (HNSCC), exhibits local invasion, early lymph node metastasis and poor prognosis (1).
Despite significant advancements in treatment for OSCC, its 5-year overall survival (OS) remains
barely changed at approximately 50% (2). Therefore, there is a critical clinical need to understand
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the disease process, and to come up with more personalized
treatment plans to improve the clinical outcomes. Exploration
of diverse prognostic models may provide references for the
decision-making process of clinicians and there have been
emerging prognostic models to implement this idea. We also
developed a 3-mRNA signature to predict the survival of OSCC
and this published predictive signature outperformed most
existing models in prognostic values (3). Nevertheless, with the
updating unveiling of the unexploited mechanisms in OSCC,
there is still plenty of room for developing novel predictive
models based on different features with more comprehensive
functions and higher accuracy.

Alternative splicing (AS) is an important post-transcriptional
process that occurs in more than 95% of all human genes
(4). The specific types of AS include mutually exclusive exons
(ME), exon skipping (ES), retained intron (RI), alternative
terminator (AT), alternative promoter (AP), alternative acceptor
site (AA), and alternative donor site (AD), all of which can
result in mRNA isoforms translation and protein diversity with
distinct molecular functions. Accumulating evidence indicates
that dysregulation of AS is associated with cancer biology,
including cell proliferation, invasion, apoptosis and susceptibility
to different chemotherapeutic drugs (5). In practical terms, AS
signatures of several cancers did perform well as expected and
their area under the curve (AUC) were all more than 0.85 (6–
8). Thus, it prompts us to postulate that prognostic models
based on AS in OSCC might possess favorable prediction value
and could have the potential of identifying the sensitivity of
patients to chemo drugs.

Furthermore, AS events are intricately regulated by
limited splicing factors (SFs). Dysregulation of SFs may
result in global changes of cancer-specific AS events and
thereby affecting tumorigenesis, development as well
as the response to chemotherapy (9–11). Therefore, a
comprehensive analysis of the SF-AS network might promote
the unraveling of the underlying molecular mechanisms in
OSCC oncogenesis and progression. Moreover, it could also
facilitate the discovery of novel biomarkers and potential
therapeutic targets.

On these foundations, we constructed and validated a
prognostic model with satisfactory performances for 3- and 5-
year OS based on the AS events in OSCC collected from the
Cancer Genome Atlas (TCGA) database. This AS signature
stratified these OSCC patients into the high- and low-risk groups
while low risk patients tended to be more sensitive to the 3
chemo drugs. Besides, the prognostic SF-AS regulatory network
identified 5 key SFs and 62 AS events.

MATERIALS AND METHODS

Data Acquisition and Pre-processing
The TCGA SpliceSeq tool1 provides the seven types of AS
events mentioned before (ME, ES, RI, AT, AP, AA, and AD)
and also offered the quantification of AS events going from

1http://bioinformatics.mdanderson.org/TCGASpliceSeq/

zero to one using the percent spliced In (PSI) index (12).
The including criteria of AS events in this analysis were PSI
values >75% and standard deviation >0.01. A total of 31
normal controls and 326 OSCC patients were enrolled in the
AS events, while 32 normal samples and 328 OSCC samples
were included in the RNA-seq data set. After filtering out
OSCC patients followed for less than 30 days, we eventually
included 31 normal controls and 320 OSCC samples in
this analysis.

Cancer Specific AS Events in OSCC
To identify dysregulated AS events in OSCC, we compared
the PSI values between normal and OSCC samples
using the Wilcoxon rank sum test. False discovery rate
(FDR) based on the Benjamini–Hochberg procedure was
employed for multiple testing correction of the P-value
(13). FDR < 0.01 was considered to represent a statistically
significant difference. The coactions among the seven types
of AS were clearly demonstrated by the UpSet package of
R software.

Construction and Evaluation of AS
Prediction Model
The cancer specific AS events identified above were further
filtered by univariate Cox analysis which can estimate the
association between the PSI values and the OS of patients.
Subsequently, these initially selected prognostic AS events were
tested using the bootstrapping method to pick out those with
more robust prognostic value. To be specific, 70% patients were
randomly extracted from the training cohort to evaluate the
prognostic value of the initially selected AS events in 1000
iterations. Alternative splicing events with P < 0.05 for over
700 times were considered as robust prognostic AS events
(14). Given that 132 patients died in our OSCC cohort, it is
recommended that less than 13 AS events should be included in
the constructed model based on the “EPV (events per variable) 1
to 10 rule of thumb” (15, 16). Hence, the stepwise multivariate
Cox regression analysis was conducted to establish AS-derived
prognostic models for each type of AS based on the Akaike
information criterion (AIC). The least absolute shrinkage and
selection operator (LASSO) Cox method based on the 10-fold
cross-validations was performed prior to the above multivariate
Cox analysis to reduce variables if needed. Ultimately, a
prognostic model based on every single type of prognostic
AS event was constructed utilizing random forest analysis and
multivariate Cox analysis. Random forest was used to select
variables based on the “vh” method in the “randomForestSRC”
R package.

We also generated a nomogram to predict the individual’s OS
at 3-year and 5-year. To assess the performance of the predicted
model, we performed the time-dependent receiver operating
characteristics (ROC) curve based on “timeROC” R package and
obtained the calibration plot as well as Brier score based on the
“riskRegression” R package. Brier score calculated above from 0
to 1 was used to quantify the overall performance of the model,
and a lower score indicated better performance.

Frontiers in Oncology | www.frontiersin.org 2 August 2020 | Volume 10 | Article 1740

http://bioinformatics.mdanderson.org/TCGASpliceSeq/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01740 August 27, 2020 Time: 18:41 # 3

Cao et al. AS Prognostic Predictors for OSCC

Internal Validation of the AS Prediction
Model
The internal validation of the AS prediction model was
achieved by bootstrap resampling (n = 1000) recommended
in small sample data set (16). The prognostic model was
refitted in each resampling and tested on the original study
sample to calculate the difference between resampling
AUC/Brier score and original AUC/Brier score. The
average of all these calculated AUC/Brier score differences
presented the optimism in the apparent AUC/Brier score
of the prognostic model that was initially developed in
the original sample, and the optimism here indicated the
level of model overfitting (15, 17). In addition, another
method of internal validation (5-fold cross-validation of 1000
repetitions) was conducted.

The AS-Signature as an Independent
Prognostic Factor
Univariate and multivariate Cox proportional hazards models
were applied to estimate the hazard ratios (HRs) and 95%
confidence intervals (CIs) for the risk of OSCC mortality.
A stratified multivariate Cox regression analysis based on the risk
status was also performed.

Clinical Drug Response Prediction
The prediction of chemotherapeutic response for each patient
was made by the final AS model based on Genomics of Drug
Sensitivity in Cancer (GDSC)2 cell line data set using the R
package “pRRophetic”. This R package could evaluated the half-
maximal inhibitory concentration (IC50) of the included drugs
via ridge regression and the accuracy of the prediction was judged
via 10-fold cross-validation based on the GDSC training set (18,
19). FDR < 0.05 was considered statistically significant.

Splicing Factor Genes and the
Underlying Regulatory Network
Splicing factors can influence the selection of exon and splicing
site, which contributes to the regulation of AS events. Hence,
certain SFs may regulate prognosis-related AS events to some
extent. We extracted SFs from the SpliceAid 23 database and
collected level 3 RNA sequencing data of OSCC available at
TCGA data portal4. Univariate Cox regression analysis and
survival analysis were employed to identify survival-associated
SFs. Spearman correlation test was used to select potential
regulatory relationships between the survival-related SFs and the
survival-related AS events. FDR < 0.05 was considered as cut-off
criteria. Finally, we adopted Cytoscape to visualize the regulatory
network. Unless otherwise stated, P < 0.05 was considered
statistically significant. All statistical analyses were performed
using R (version: 3.6.2).

2https://www.cancerrxgene.org/
3www.introni.it/spliceaid.html
4https://tcga-data.nci.nih.gov/tcga/

RESULTS

Overview of AS Events in OSCC Cohort
Seven types of AS events, including ES, ME, RI, AP, AT, AD, and
AA, were illustrated in Figure 1A. Integrated AS events profiles
were analyzed in depth for 320 OSCC patients from the TCGA.
A total of 42,849 AS events were detected from 10,123 genes,
which suggested one gene could relate to nearly four AS events.
More concretely, we identified 16,572 ESs in 6439 genes, 2647 RIs
in 1783 genes, 8598 APs in 3469 genes, 8309 ATs in 3627 genes,
3049 ADs in 2148 genes, 3500 AAs in 2484 genes and 174 MEs
in 172 genes (Figure 1B). As can be seen, the most common type
belonged to ES with a proportion of more than one-third while
the minimum proportion went to ME.

Analysis of Cancer-Specific mRNA
Splice Variants
To screen out cancer-specific AS events, we compared the PSI
values between the OSCC patients and the normal controls.
A total of 5063 events in 2864 genes were dysregulated, including
1376 ESs in 1021 genes, 360 RIs in 302 genes, 1367 APs in 767
genes, 1447 ATs in 826 genes, 258 ADs in 238 genes, 241 AAs in
232 genes and 14 MEs in 14 genes (Supplementary Table S1).

Construction and Evaluation of the AS
Prediction Model
The univariate Cox analysis identified 388 survival-related
AS events within 301 genes in our OSCC cohort. After
the bootstrapping technique, we finally identified 69 robust
prognostic-related AS events within 58 genes. Because no ME
events related to survival were found, we did not build predictive
models based on MEs. To visualize the interactive sets between
six types of AS events, we generated the UpSet plot (Figure 2A).
Exon skipping events were selected based on LASSO Cox
analysis before multivariate Cox analysis. Figure 2B presented
the AS events used in the individual prediction model based
on six types of AS. The formulas of theses 6 models were
shown in Supplementary Table S2. A new model with more
accurate predictive value was established based on the robust
prognostic AS events utilizing the method of random forest
and multivariate Cox analysis. The total risk score was imputed
as follows: -16.42 × HAGHL-32975-ES + 7.597 × ECHDC1-
77462-ES + 2.954 × RPL28-52096-AT - 1.837 × ALG3-67856-
AD + 20.41 × LYRM2-77010-AT + 7.422 × TWF1-21276-
ES - 19.66 × IQGAP3-8282-RI + 1.923 × RPP38-10862-
AD - 4.1 × RHOT1-40176-ES + 3.307 × ENDOV-44054-
AT + 2.864 × SFMBT1-65290-AP-5.647 × CMTM7-63816-ES.
Survival analyses indicated that these prognostic models robustly
stratified OSCC patients with different prognosis (Figure 3).
Specifically, we observed significantly a shorter OS in high-risk
group in all models. Nomogram of 3- and 5-year OS in the OSCC
cohort was shown in Figure 4A. ROC analyses were applied
to assess the distinguishing ability of prediction models. Within
the six separated AS models, the AUC values ranged from 0.61
to 0.75 for 3-year OS and 0.62 to 0.79 for 5-year OS. It is
noteworthy that the final model integrating the all types of AS
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FIGURE 1 | Overview of AS events in TCGA OSCC dataset. (A) Illustrations of seven types of AS events, including exon skip (ES), retained intron (RI), alternate
promoter (AP), alternate terminator (AT), alternate donor site (AD), alternate acceptor site (AA), and mutually exclusive exons (ME). (B) Numbers of AS events and
corresponding genes for 320 OSCC patients.

events showed a higher AUC value for 3-year (0.83 [0.77, 0.88])
and 5-year (0.82 [0.72, 0.92]) survival (Figures 4B,D). To assess
the agreement between predictive risk and observation risk, we
performed the calibration curve. As shown in Figures 4C,E, the
final model showed gratifying agreement in the probabilities of
3- and 5-year OS. In addition, the Brier score was 0.17 (0.14,
0.19) for 3-year and 0.17 (0.13, 0.21) for 5-year, indicating a
good overall performance in our final model. Furthermore, we
also assessed the predictive value of the final model in disease-
specific survival (DSS) and relapse-free survival (RFS), which also
presented good performances. The AUC was 0.80 [0.73, 0.87] and
0.82 [0.73, 0.92] for 3- and 5-year DDS respectively while that
for 3- and 5-year RFS was 0.73 [0.64, 0.82] and 0.76 [0.64, 0.86].
Consistently, the final model showed satisfactory agreement in
the probabilities of 3- and 5-year DSS. Besides, when predicting
the risk of relapse, the predictive risk was lower than the observed
risk (Supplementary Figure S1).

Internal Validation and Performance
To validate our model, we employed internal validation using
bootstrap resampling method (n = 1000). Time-dependent AUCs
were 0.83 [0.77, 0.89] and 0.82 [0.72, 0.92] for 3- and 5-
year survival, respectively. We also observed satisfactory overall
performance indicated by Brier score for 3-year (0.17 [0.14, 0.19])
and 5-year (0.17 [0.13, 0.21]) survival. The results of 5-fold cross-
validation were similar to bootstrap resampling method (0.83
[0.81, 0.84] and 0.82 [0.76, 0.87] for 3-year and 5-year AUC;
0.17 [0.16, 0.17] and 0.17 [0.15, 0.19] for 3-year and 5-year Brier
score) (Table 1).

Risk Score of the AS Signature Was
Associated With OSCC Mortality
The results of the Cox analysis were shown in Table 2. When risk
score served as a continuous variable, it was closely correlated

with the incidence of mortality (2.70 [2.25, 3.25], P < 0.0001 in
model I; 2.68 [2.22, 3.24], P < 0.0001 in model II). Compared
with low risk patients, those with high risk had a significantly
higher mortality (6.16 [3.85, 9.84], P < 0.0001 in model I;
5.90 [3.66, 9.52], P < 0.0001 in model II). To verify the
robust relevance between risk score and mortality of OSCC, we
performed a stratified multivariate Cox analysis and the results
were shown in Table 3. The risk score was positively associated
with mortality of OSCC in each subgroup (age, sex, grade, and
stage) while no interactions were found.

More Sensitivity to Chemotherapies for
Group With Low-Risk
According to the results of the final AS model, the included
patients could be divided into two subtypes with high risk or
low risk. In light of the frequently use of chemotherapy in
the treatment of OSCC, we further explored the response of
patients with different risk to 138 kinds of chemotherapeutic
drugs. In detail, the R package “pRRophetic” and the GDSC
cell line data set were combined to facilitate the prediction of
IC50 of the selected drugs for every included patient from the
TCGA data set. A total of 3 drugs (MK.2206, EHT.1864 and
Nutlin.3a) demonstrated obviously lower IC50 in the low-risk
group (Figure 5).

Network Construction of
Survival-Associated AS Events
Among the 71 SFs, we identified 5 survival-related SFs
(Figure 6A). Low expression of CELF2 and TIA1 tended to a
poor prognosis, whereas high expression of HNRNPC, HNRNPK
and SRSF9 indicated a poor prognosis. As expected, we found
that the expression of SFs was significantly relevant to the PSI
values of 27 AS events with favorable prognosis (red dots) and
35 AS events with poor prognosis (green dots) (Figure 6B).
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FIGURE 2 | Survival-associated AS events. (A) Upset plot of interactions among the seven types of survival-associated AS events in OSCC. (B) Survival-associated
AS events for constructing survival prediction models.

FIGURE 3 | Kaplan–Meier curve of prognostic models in OSCC cohort.

Figure 6C illustrated the representative relationships between SFs
and survival-related AS events. For instance, the level of TIA1
increased as RI of SUPT7L or RI of PLAG1 raised but decreased
as AP of CCDC82 ascended.

DISCUSSION

Under the era of precision medicine, notable advances have
been made in constructing prognostic models that possess

high accurate and sensitivity, and these have facilitated the
design of a more individual treating program for patients. Not
surprisingly, many OSCC prognostic models were developed.
However, the performance of these models could still be
improved. In this study, we developed an AS-based model
with a moderate predictive ability (AUC = 0.83 and 0.82 for
3- and 5-year OS in the development model; AUC = 0.83
and 0.82 for 3- and 5-year in the bootstrap validation
model and 5-fold cross-validation model). Moreover, this
model showed good consistency between predicted risk and
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FIGURE 4 | Evaluation of prognostic models in OSCC training cohort. (A) The nomogram for predicting probabilities of patients 3-year and 5-year overall survival.
(B) The ROC curves of seven prognostic models for 3-year overall survival probability. (C) The calibration plot of final AS prognostic model for predicting patient
3-year overall survival. (D) The ROC curves of seven prognostic models for 5-year overall survival probability. (E) The calibration plot of final AS prognostic model for
predicting patient 5-year overall survival.
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TABLE 1 | Model performance in development model and internal validation.

Measure Final model in
development model

Final model in internal validation
(bootstrap resampling)

Final model in internal validation
(5 fold cross validation)

3-Year overall survival

AUC 0.83 [0.77, 0.88] 0.83 [0.77, 0.89] 0.83 [0.81, 0.84]

Brier score 0.17 [0.14, 0.19] 0.17 [0.14, 0.19] 0.17 [0.16, 0.17]

5-Year overall survival

AUC 0.82 [0.72, 0.92] 0.82 [0.72, 0.92] 0.82 [0.76, 0.87]

Brier score 0.17 [0.13, 0.21] 0.17 [0.13, 0.21] 0.17 [0.15, 0.19]

TABLE 2 | Relationship between risk score and overall survival of OSCC.

Outcome Crude Model Model I Model II

HR (95%) P-value HR (95%) P-value HR (95%) P-value

Risk score 2.72 (2.26, 3.27) <0.0001 2.70 (2.25, 3.25) <0.0001 2.68 (2.22, 3.24) <0.0001

Risk score

Low risk Reference Reference Reference

High risk 6.15 (3.85, 9.82) <0.0001 6.16 (3.85, 9.84) <0.0001 5.90 (3.66, 9.52) <0.0001

Model I adjusted for age and sex. Model II adjusted for age, sex, grade and stage.

TABLE 3 | Effect size of risk score and overall survival of OSCC in each subgroup.

Characteristic No. of
participants

HR (95%CI) P-value P for
interaction

Age (year) 0.49

<60 141 2.98 (2.05, 4.34) <0.0001

≥60 179 2.58 (2.04, 3.25) <0.0001

Sex 0.37

Male 220 2.84 (2.18, 3.71) <0.0001

Female 100 2.46 (1.84, 3.71) <0.0001

Grade 0.71

G1 + G2 245 2.59 (2.05, 3.27) <0.0001

G3 + G4 67 3.29 (2.08, 5.20) <0.0001

Stage 0.74

Stage I + Stage II 72 2.19 (1.45, 3.31) <0.0001

Stage III + Stage IV 219 2.85 (2.25, 3.61) <0.0001

Adjusted for age, sex, grade and stage except the subgroup variable.

observed risk, and it is a robust risk factor of OSCC
mortality.

A previous study also develops an AS-based prognostic
model with good performance (AUC = 0.891 and 0.70 for
training and validation cohort, respectively) (20). However,
the TCGA OSCC cohort is randomly and equally split into
the training and the validation cohort in this former analysis,
which is not recommended in the TROPORT statement (21).
For one thing, this approach could not develop models based
on all available data so that it is statistically inefficient. For
another thing, different random splits have different results,
which lead to the problem of “replication instability” (15).
In addition, this previously established model contains 17
AS based on 165 patients, which cannot meet the vital rule
of “EPV 1 to 10” explained above for developing reliable

prediction models. Besides, their study also lacks the analysis of
another indispensable indicator for model evaluation, namely the
calibration curve. Consequently, in view of the above problems,
here we adopted the bootstrapping technique since it is the
preferred method for internal validation. Moreover, we applied
random forest to reduce the number of variables for the purpose
of meeting the “EPV 1 to 10 rule of thumb”. Under such
methodology improvements, our final model demonstrated little
overfitting and satisfactory consistency in the probabilities of 3-
and 5-year OS. Yet further external validation of our model is
still necessary.

The essential roles of AS in driving tumorigenesis and
progression depend on the productions of functional specificity
as well as protein diversity and unbalances in AS involved tumor
growth, invasion, metabolism and immunity (5, 22, 23). In
addition, AS events are associated with the sensitivity of tumors
to chemo drugs. Therefore, we explored the sensitivity of patients
to 138 chemicals in high-risk and low-risk groups. As expected,
OSCC with low risk was more sensitive to three screened drugs.

AS could be regulated by key SFs, making key SFs become the
potential therapeutic targets with a good chance (24). To further
understand the mechanism of OSCC and identify potential
biomarkers as well as therapeutic targets, we also performed a
systematic analysis of AS and SFs in OSCC. We identified five
survival-related SFs (CELF2, TIA1, HNRNPC, HNRNPK, and
SRSF9) and visualized the relationship between the five SFs and
62 survival-related AS events.

CELF2 is an RNA-binding protein of the CELF family that
acts as a tumor suppressor and is positively correlated with
the prognosis of various tumors, such as non-small cell lung
carcinoma (25), gastric cancer (26), and pancreatic cancer (27).
The main biological functions of CELF2 are promoting apoptosis
as well as inhibiting proliferation and migration We found in
this analysis that patients with high expression of CELF2 had
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FIGURE 5 | The box plots of the estimated IC50 for 3 chemo drugs between high risk and low risk patients. ALL-L, low risk patients; ALL-H, high risk patients.

FIGURE 6 | Survival-associated SFs and splicing correlation network in OSCC. (A) Kaplan–Meier curve of SFs. (B) Splicing correlation network in OSCC; Five
survival-associated SFs (yellow dots) were positively (red lines) or negatively (green lines) correlated with AS genes, which predicted favorable (red dots) or adverse
(green dots) prognosis. (C) Representative dot plots of correlations between the expression of 5 SFs and PSI values of survival-associated AS events.
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a better prognosis, in line with those previous studies. TIA1,
T-cell intracellular antigen-1, is another SF with a favorable
prognosis we identified. However, its functions may depend
on tumor location. For example, TIA1 inhibits progression
of gastric cancer by suppressing tumor cell proliferation and
accelerating apoptosis (28), whereas it serves as an oncogene
in esophageal squamous cell carcinoma through promoting cell
proliferation (29).

We also identified three SFs (HNRNPC, HNRNPK, and
SRSF9) implying poor prognosis. HNRNPC, heterogeneous
nuclear ribonucleoprotein C1/C2, is a commonly expressed
RNA-binding protein with cancer-promoting function. Silencing
of HNRNPC can inhibit migratory and invasive activities of
glioblastoma (30), as well as cell proliferation and tumorigenesis
of breast cancer (31). HNRNPK, heterogeneous nuclear
ribonucleoprotein K, is frequently upregulated in several
kinds of tumors and associated with poor prognosis (32–
34). In addition, HNRNPK is bound up with the recurrence
of HNSCC (35). SRSF9, serine/arginine-rich SF, serves as an
oncogene involved in diverse biological processes, including
tumor cell proliferation, apoptosis, migration, and invasion
(36–38). On account of the previously studies, the five SFs
play important roles in the genesis and development of
tumor. Moreover, we found that the five SFs were associated
with prognosis-related AS events. Thus, it is reasonable to
speculate that dysregulated SFs will promote the occurrence
of survival-related AS events, thereby affecting the prognosis
of patients.

Within the limits of our study, we developed an AS-
based signature with satisfactory performance, identified five
key survival-related SFs, and build a prognosis-related SF-AS
network. However, further validation of this AS signature in
cohort study based on different populations is still needed.
Furthermore, the function of key SFs and related regulatory
network also requires more exploration and verification in vitro
and in vivo.

CONCLUSION

Taken together, a novel AS-based signature with satisfactory
performance in risk stratification for OSCC patients was
established and low-risk patients tended to be more sensitive
to the three chemo drugs. Besides, five key SFs might involve
in tumor initiation and progression through regulating the

corresponding AS events, offering new alternatives for potential
prognosis biomarkers and therapeutic targets.
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