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We have developed a novel multisample detection system by employing a technology combining a tag
insertion primer and an electrochemical DNA chip. In the first application, Helicobacter species-infected
mouse samples were detected. The primers that insert a different tag sequence in each sample were
prepared, and loop-mediated isothermal amplification (LAMP) reaction was carried out. Then amplifica-
tion products in which a part of the sequence was different in each sample could be obtained. The target
sample in which these amplification products were mixed was injected into a cassette that included the
DNA chip with immobilized probes. After the cassette was set in the DNA detection system, Genelyzer,
the processes of hybridization, washing, and detection were performed by the system automatically.
The positive and negative concordance rates of the existing nested polymerase chain reaction (PCR)
method and this method were 100% (40/40 samples) and 97.3% (117/120 samples), respectively. This
is a simple high-throughput method. Moreover, the cost per sample can be drastically lowered. Therefore,
it is expected to contribute to the diagnosis of infectious agents in humans and animals.

Crown Copyright � 2011 Published by Elsevier Inc. All rights reserved.
Diagnosis of human infectious diseases, such as human papillo-
mavirus (HPV), human immunodeficiency virus (HIV), hepatitis B
virus (HBV), hepatitis C virus (HCV), cytomegalovirus (CMV), influ-
enza, tubercle bacillus, clamydia, and gonococcus, is important for
determining appropriate diagnosis and providing effective treat-
ment. Diagnosis of farm animals and laboratory animals is useful
for early isolation of the infected individuals and prevention of
the spread of infection. Immune-based tests have long been the
principal means of diagnosis of these infectious diseases. On the
other hand, the demand for genetic diagnosis has risen because
of its high sensitivity, specificity, and reproducibility [1–3]. Genetic
analysis methods include real-time polymerase chain reaction
(PCR),1 PCR sequence, TaqMan PCR, invader assay, PCR restriction
fragment-length polymorphism (RFLP), allele-specific primer (ASP)
PCR, single-strand conformation polymorphism (SSCP), and DNA
chip-based technology.
011 Published by Elsevier Inc. All r
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A DNA chip is a powerful tool allowing simultaneous detection
of numerous nucleic acid targets in a sample [4,5]. This technology
can be used for gene expression monitoring, mutation, polymor-
phism, and phenotypic analysis and has become an indispensable
tool in biology, biotechnology, and drug discovery [6]. However,
because general fluorescence-based DNA chip methods require
expensive devices and involve complicated operations, their use
is largely limited to research. With regard to infectious diseases,
the ability to test many samples for several genes would be advan-
tageous. As for a general DNA chip, because one chip corresponds
to one sample, it is unsuitable for multisample processing. To
analyze multiple samples simultaneously, a DNA chip that physi-
cally separates a reactive part has been reported [7,8]. But there
are disadvantages in that large-scale device remodeling is neces-
sary and the chip becomes more expensive owing to its larger size.

We have been developing an electrochemical DNA chip using an
electrochemically active intercalator and DNA probe immobilized
on a gold electrode [9,10]. The principle of the electrochemical
DNA chip has been described previously [11]. This method is
simple and inexpensive because it requires no labeling step and
large and expensive equipment is unnecessary. Therefore, it is
suitable for genetic diagnostics. Moreover, in exploiting an advan-
tage of this method, namely that it is easy to develop an automatic
system, we have developed a miniature system, Genelyzer, that
can be used at the bedside and for on-the-spot examination [12].
ights reserved.
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In this study, a multisample detection system that combines
this electrochemical DNA chip and tag insertion primer was devel-
oped mainly for diagnosis of infectious diseases. A feature of this
method is the use of a tag for sample identification. In the first
application, a screening chip for the detection of Helicobacter
species that are the most common contaminants in laboratory ro-
dents was developed [11].
Materials and methods

DNA samples

Standard plasmids inserted into the 16S ribosomal RNA (rRNA)
gene sequences of Helicobacter species, Helicobacter hepaticus (Hh),
Helicobacter bilis (Hb), Helicobacter typhlonius (Ht), Helicobacter
pylori (Hp), and Helicobacter muridarum (Hm), were obtained as
custom synthesis products from Invitrogen Japan (Tokyo, Japan).
The standard plasmids were used for determination of the detect-
ing condition of this method. Genomic DNAs were extracted from
150 cecal samples of mice. The method for DNA extraction from
the cecum by phenol/chloroform and isoamylic alcohol (Nakalai
Tesque, Kyoto, Japan) consisted of the addition to each sample of
1 ml of lysis buffer (100 mM Tris–HCl [pH 7.5], 150 mM NaCl,
12.5 mM ethylenediaminetetraacetic acid [EDTA], 65 lg proteinase
K/ml, and 1% sodium dodecyl sulfate), followed by incubation in a
water bath at 50 �C overnight. Subsequently, the lysate was
washed with a mixture of phenol/chloroform and isoamylic alcohol
(25:24:1), and the supernatant aqueous phase was recovered by a
final washing using chloroform (Nakalai Tesque). Absolute ethanol
(Junsei Chemical, Tokyo, Japan) was added to the solution, which
was then centrifuged for 5 min at 13,000g. The precipitated DNA
was washed with 75% ethanol, and DNA was resuspended in
300 ll of TE buffer (Wako Pure Chemicals, Osaka, Japan). To con-
firm the accuracy of the DNA chip, these 150 genomic DNAs were
also detected by nested PCR analysis.

Nested PCR

The first PCR primer sequences were 50-CTATGACGGG-
TATCCGGC-30 (F1) and 50-CTCACGACACGAGCTGAC-30 (R1), and
the second PCR primer sequences were 50-AGGGAATATTGCT
CAATGGG-30 (F2) and 50-TCGCCTTCGCAATGAGTATT-30 (R2). The
first PCR was carried out in a total volume of 50 ll containing
10� Pyrobest buffer, 0.2 mM each deoxynucleoside triphosphate
(dNTP), 0.1 lM each primer (F1 and R1), 1.25 U of Pyrobest (Takara
Bio, Shiga, Japan), distilled water, and 1 ll of extracted DNA. The
second PCR was subsequently performed using 1 ll of the first
PCR product in a total volume of 50 ll containing 10� Pyrobest
buffer, 0.2 mM each dNTP, 0.1 lM each primer (F2 and R2),
1.25 U of Pyrobest, and distilled water. Amplification was
performed with the same conditions for both the first and second
PCRs after preheating at 94 �C for 3 min, followed by 25 cycles of
94 �C for 1 min, 55 �C for 1 min, 72 �C for 1 min, and final extension
at 70 �C for 7 min. Secondary PCR products were analyzed by elec-
trophoresis on a 4% agarose gel stained with ethidium bromide and
examined under ultraviolet (UV) light.

LAMP reaction

The primers used for amplification are listed in Table 1. To cor-
respond to the diversity between Helicobacter species, two kinds of
FIP primer (FIP-1 and FIP-2) and LPb primer (LPb-1 and LPb-2)
were designed and mixed in the same quantity. Loop-mediated
isothermal amplification (LAMP) was carried out in 25 ll of reac-
tion mixture containing 3.2 lM each FIP-1, FIP-2, and BIP, 0.4 lM
each F3 and B3, 1.6 lM each LPb-1 and LPb-2, 1.4 mM each dNTP,
0.8 M betaine, 20 mM Tris–HCl (pH 8.8), 10 mM KCl, 10 mM
(NH4)2SO4, 8 mM MgSO4, 0.1% Tween 20, 16 U of Bst DNA polymer-
ase (New England Biolabs, Beverly, MA, USA), and 10, 100, or 1000
copies of standard plasmid or 5 ll of extracted DNA [13]. The
mixture was incubated at 63 �C for 60 min and was heated at
95 �C for 5 min to terminate the reaction. The same reaction
mixture without a template DNA was used as negative control.
The reaction was carried out using a GeneAmp PCR System (model
9700, Applied Biosystems, Foster City, CA, USA). Amplification was
confirmed by the presence of the white precipitate of magnesium
pyrophosphate in the amplification solution [14].

Preparation of DNA chip

The DNA chip substrates used in this study were prepared as
described previously [10]. Oligonucleotide probes with a thiol
group at the 30 end were obtained as custom synthesis products
from Invitrogen Japan. The sequences of the probes are listed in
Table 2. Five negative control probes whose sequences are irrele-
vant to Helicobacter 16S rRNA sequences were also prepared. Each
working electrode was spotted with 0.1 ll of the probe solution
containing the 3 lM oligonucleotide probe, 100 mM sodium chlo-
ride, 100 lM 6-mercapto-1-hexanol (Sigma–Aldrich, St. Louis, MO,
USA), and 20 mM Pipes buffer by using a spotter. The negative con-
trol probes were mixed evenly so that the final concentration be-
came 3 lM. Then the chip was washed with distilled water and
stored at �20 �C. For each probe, four electrodes were assigned.

Hybridization reaction, washing, and electrochemical detection by
Genelyzer

DNA chip sample (50 ll) containing the LAMP products from
each of five suspected samples and 2� SSC (saline–sodium citrate)
was injected into a cassette that included the DNA chip with
immobilized probes. After setting the cassette in the Genelyzer
system, hybridization reaction, washing, and electrochemical
detection are performed automatically. The procedure from
hybridization to electrochemical detection has been described pre-
viously [15]. The hybridization reaction was carried out at 64 �C for
10 min, and washing was carried out at 44 �C for 3 min. Anodic
peak current (Ipa) values were measured from the voltammogram
of Hoechst 33258 (Wako Pure Chemicals), and increased current
(DIpa) values show the values in the case that the Ipa values on
the probes for Helicobacter detection were subtracted from those
on the negative control probe. The DIpa values exactly indicate
the signals corresponding to the hybridization. An average of DIpa

from four electrodes (DIpa) was adopted for analysis [15].
Results and discussion

Examination of tag insertion position and tag number

The principle of the multisample detection DNA chip is shown
in Fig. 1. This figure assumes the case where the target nucleic acid,
such as bacteria and the virus to be detected, exists in sample 1 and
3 but does not exist in sample 2. First, the primers that insert a dif-
ferent tag sequence in each sample are prepared. Second, the
amplification reactions are performed independently in each sam-
ple using these primers. In samples 1 and 3, when the tag insertion
primer binds to the target nucleic acid, the tag part causes the loop
out and the amplification reaction can proceed. Then amplification
products in which a part of the sequence is different in each sample
can be obtained. The F2 region, between the F2 and F1 regions
(F2–F1), the B2 region, and between the B2 and B1 regions (B2–



Table 1
LAMP primer and amplification results.

Number Name Tag position
(distance
from 30 end)

Tag number Sequence (50 to 30) Amplification resulta

Hh Hp

1 FIP-1b – – AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGCATTTG s s

2 FIP-2b – – AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGCATTTG
3 BIPc – – AAGAGGAATACTCATTGCGA-CTGTTTGCTCCCCACG –
4 F3c – – TACTCGGAATCACTGGGC –
5 B3c – – GGCGTGGACTACCAGGGT –
6 LPb-1c – – GGAACATTACTGACGCTGAT –
7 LPb-2c – – GGAACATTACTGACGCTCAT –
8 FIP-1 3AC 3 2 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGCATACTTG s s

9 FIP-2 3AC 3 2 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGCATACTTG
10 FIP-1 3TG 3 2 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGCATTGTTG � �
11 FIP-2 3TG 3 2 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGCATTGTTG
12 FIP-1 3CTG 3 3 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGCATCTGTTG � �
13 FIP-2 3CTG 3 3 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGCATCTGTTG
14 FIP-1 3GGA 3 3 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGCATGGATTG � �
15 FIP-2 3GGA 3 3 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGCATGGATTG
16 FIP-1 3ACTG 3 4 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGCATACTGTTG � �
17 FIP-2 3ACTG 3 4 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGCATACTGTTG
18 FIP-1 3TGAC 3 4 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGCATTGACTTG � �
19 FIP-2 3TGAC 3 4 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGCATTGACTTG
20 FIP-1 6AC 6 2 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGACCATTTG s s

21 FIP-2 6AC 6 2 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGACCATTTG
22 FIP-1 6TG 6 2 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGTGCATTTG s s

23 FIP-2 6TG 6 2 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGTGCATTTG
24 FIP-1 6CTG 6 3 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGCTGCATTTG s s

25 FIP-2 6CTG 6 3 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGCTGCATTTG
26 FIP-1 6GGA 6 3 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGGGACATTTG � s

27 FIP-2 6GGA 6 3 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGGGACATTTG
28 FIP-1 6ACTG 6 4 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGACTGCATTTG s �
29 FIP-2 6ACTG 6 4 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGACTGCATTTG
30 FIP-1 6TGAC 6 4 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGTGACCATTTG � s

31 FIP-2 6TGAC 6 4 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGTGACCATTTG
32 FIP-1 9AC 9 2 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAAACCTGCATTTG s s

33 FIP-2 9AC 9 2 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAAACCTGCATTTG
34 FIP-1 9TG 9 2 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAATGCTGCATTTG s s

35 FIP-2 9TG 9 2 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAATGCTGCATTTG
36 FIP-1 9CTGd 9 3 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACTGCTGCATTTG s s

37 FIP-2 9CTGd 9 3 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACTGCTGCATTTG
38 FIP-1 9GGAd 9 3 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAAGGACTGCATTTG s s

39 FIP-2 9GGAd 9 3 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAAGGACTGCATTTG
40 FIP-1 9ACTG 9 4 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAAACTGCTGCATTTG s s

41 FIP-2 9ACTG 9 4 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAAACTGCTGCATTTG
42 FIP-1 9TGAC 9 4 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAATGACCTGCATTTG s s

43 FIP-2 9TGAC 9 4 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAATGACCTGCATTTG
44 FIP-1 9CCTd 9 3 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAACCTCTGCATTTG s s

45 FIP-2 9CCTd 9 3 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAACCTCTGCATTTG
46 FIP-1 9TCCd 9 3 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAATCCCTGCATTTG s s

47 FIP-2 9TCCd 9 3 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAATCCCTGCATTTG
48 FIP-1 9ATCd 9 3 AAGAATTCCACCTACCTCTCCC-TAGCTTAACTACAGAAATCCTGCATTTG s s

49 FIP-2 9ATCd 9 3 AAGAATTCCACCTACCTCTCCC-TGGCTTAACCATAGAAATCCTGCATTTG

Note. Tags were inserted in the F2 region in the FIP primer. The underlined bases indicate the tag positions. Amplification results were confirmed by the presence of the white
precipitate of magnesium pyrophosphate in the amplification solution.

a Symbols: s, white precipitate was confirmed; �, white precipitate was not confirmed.
b Primers without tag insertion.
c Primers used for every amplification.
d Tag insertion primers finally selected. These primers were also confirmed to amplify in Hb, Ht, and Hm plasmids.

192 Multisample detection system / N. Nakamura et al. / Anal. Biochem. 419 (2011) 190–195
B1) of the LAMP products are partially single-stranded loop [15].
Therefore, when the tag part is inserted into the F2 or B2 region
of the LAMP primer, the tag part is introduced into the single-
stranded loop portion of the amplification product. Finally, the tar-
get sample in which the amplification products from each sample
are mixed is detected by the DNA chip. The target sequence that
hybridized with the probe is designed to include both the tag part
and the F2–F1 or B2–B1 region.

First, the tag insertion position and the tag number in which the
amplification reaction was not obstructed were examined. As
shown in Fig. 2, the tag was inserted 3, 6, and 9 bases from the
30 end of the F2 region, and the tag numbers 2, 3, and 4 were exam-



Table 2
Sequence of probe DNA.

Number Name Sequence (50 to 30)

1 Probe for 9CTG AGTTTCAAATGCAGCAGTTCT
2 Probe for 9GGA AGTTTCAAATGCAGTCCTTCT
3 Probe for 9CCT AGTTTCAAATGCAGAGGTTCT
4 Probe for 9TCC AGTTTCAAATGCAGGGATTCT
5 Probe for 9ATC AGTTTCAAATGCAGGATTTCT
6 Negative control TGCTTCTACACAGTCTCCTGTACCTGGGCA
7 TGGTCCTGGCACTGATAATAGGGAATGTAT
8 CAAGGTCATAATAATGGTATTTGTTGGGGC
9 AGGTCATCCGGGACAGCCTCGCCAAGTTTT

10 AGTAGTTATGTATATGCCCCCTCGCCTAGT

Note. The underlined bases indicate the tag positions.
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ined. Two kinds of tag sequence were prepared for each design, and
1000 copies/reaction of the Hh and Hp plasmids were used. As
shown in Table 1, amplification reaction could be conducted for
all primers inserted into the 9 bases from the 30 end of the F2
Amplification
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Fig.2. Position of LAMP primer and target sequence. The sequence alignment of the 16S rRNA gene of Helicobacter species is shown. The numbers after species names are
GeneBank accession numbers. The arrows, bold-line squares, and triangles indicate the LAMP primer positions, target sequence positions, and tag insertion positions,
respectively. Tag sequences that inserted LAMP primers are listed in Table 1. The dotted-line squares indicate the specific sequence regions between Helicobacter species.
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Fig.3. Detection results of five tag introduction products by Genelyzer. 1.CTG is the detection result of a target sample containing a positive product from CTG tag insertion
primer and negative products from GGA, CCT, TCC, and ATC tag insertion primers. Similarly, 2.GGA, 3.CCT, 4.TCC, and 5.ATC are the detection results of target samples
containing one positive product and four negative products. Here 5 ll of each product was used for detection.

194 Multisample detection system / N. Nakamura et al. / Anal. Biochem. 419 (2011) 190–195
tion products can be obtained by optimizing the tag insertion posi-
tion and tag number.

Detection of the tag introduction products by DNA chip

The above-mentioned five kinds of tag introduction products
were detected by the DNA chip. As shown in Fig. 3, the DIpa that
originated from each tag introduction product was confirmed.
Next, the data of 148 samples for which equipment, operator,
day of operation, and number of positive product are different
were collected for the reliability evaluation and the threshold set-
ting of the DNA chip. The means ± 3SD (standard deviation) values
of the DIpa of the positive and negative samples were calculated as
described previously [16]. As shown in Table 3, the means ± 3SD
values of positive and negative samples had clearly divided in all
of the five tags. Based on these statistical results, the thresholds
of the positive and negative samples were set as 25 nA or more
and 10 nA or less, respectively.

Practical verification using field samples

To evaluate the practicality of the DNA chip, the comparison
between the existing nested PCR method and DNA chip was
performed by using 150 field samples. All 40 positive samples by
nested PCR were also positive by DNA chip. For the 110 negative
samples by nested PCR, 107 samples were negative and 3 samples
were positive by DNA chip (Table 4). For 3 samples whose results
were divided between the two methods, the samples diluted by
10 times in TE buffer showed unstable amplification by DNA chip.
When the sensitivity of nested PCR and DNA chip had been com-
pared by using the same sample, DNA chip showed sensitivity
superior to that of the nested PCR method by approximately an or-
der of magnitude. It is speculated that the bacterial concentrations
of these 3 samples were so low that it was impossible to detect
them by nested PCR. These results demonstrated the practicality
and accuracy of the DNA chip.

In this study, where tag insertion primers were used, it was
shown that five samples were easily detected by DNA chip. Simul-
taneous detection of more samples will become possible by
increasing the kinds of tag sequence and optimization of tag inser-
tion position and tag number. The advantages of this method are as
follows. First, the cost per sample can be drastically lowered
through multisample detection by one DNA chip. Second, this
method does not require any configuration change for the equip-
ment and the DNA chip. Third, there is no false-positive detection
by the nonspecific reaction of primers that sometimes occurs in



Table 3
Statistical results of 148 samples and threshold setting.

Number Tag Match/
Mismatch

Number of
sample

Mean of DIpa

(nA)
SD of DIpa

(nA)
Mean of DIpa � 3SD
(nA)

Mean of DIpa + 3SD
(nA)

Threshold setting
(nA)

1 CTG Match 70 47.5 2.9 38.8 – 25
Mismatch 78 �1.6 0.8 – 0.8 10

2 GGA Match 68 44.2 3.9 32.5 – 25
Mismatch 80 0.8 1.6 – 5.6 10

3 CCT Match 68 40.9 3.4 30.7 – 25
Mismatch 80 �1.5 0.9 – 1.2 10

4 TCC Match 70 38.8 3.6 28.0 – 25
Mismatch 78 �1.5 1.6 – 3.3 10

5 ATC Match 70 37.0 3.6 26.2 – 25
Mismatch 78 0.2 2.2 – 6.8 10

Table 4
Results of practical examination.

Positive Negative

Nested PCR 40 110
DNA chip 43 107
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LAMP reaction. Fourth, genotyping and species identification can
be analyzed according to the application. The target sequence
selected for this study was a common region between Helicobacter
species for screening use. There is a relatively specific region be-
tween each species in the vicinity of this target sequence (Fig. 2).
So, if this specific region is set as a target sequence, nearly every
species can be identified. Moreover, with the expansion of this
method, two or more target nucleic acids can be detected simulta-
neously by multiplex amplification. We are now developing the
DNA chip for multisample detection that identifies several infec-
tious canine diseases such as parvovirus, distemper virus, and en-
teric coronavirus. In addition, with a view to eventually offering a
lineup of automatic systems, we have developed a roll-type system
that detects 24 cassettes by automatic operation and a fully auto-
matic system that includes the nucleic acid extraction and ampli-
fication. The roll-type system was developed for examination
centers and has given satisfactory results with this developed
Helicobacter detection DNA chip. The combined technology of the
electrochemical DNA chip for multisample detection and the auto-
matic systems is expected to contribute to infectious disease diag-
nosis in the near future.
Conclusions

We have developed a novel multisample detection system using
a tag insertion primer and an electrochemical DNA chip. In the first
application, a screening chip that detected Helicobacter species was
developed. By optimizing the tag design, the prospect of amplifica-
tion without decreasing the detection sensitivity was indicated.
Furthermore, practicality and accuracy of the DNA chip were con-
firmed by the results of the practical verification test using the field
samples. This method is simple, and the cost per sample can be
drastically lowered. We plan to expand the application field of this
multisample detection technology to include genotyping, species
identification, simultaneous detection of plural target nucleic
acids, and so forth and expect it to contribute to the diagnosis of
infectious disease in humans and animals.
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