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Single cell Hi-C (scHi-C) technologies enable the study of chromatin spatial organization directly from
complex tissues at single cell resolution. However, the identification of chromatin loops from single cells
is challenging, largely due to the extremely sparse data. Our recently developed SnapHiC pipeline pro-
vides the first tool to map chromatin loops from scHi-C data, but it is computationally intensive. Here
we introduce SnapHiC2, which adapts a sliding window approximation when imputing missing contacts
in each single cell and reduces both memory usage and computational time by 70%. SnapHiC2 can iden-
tify 5 Kb resolution chromatin loops with high sensitivity and accuracy and help to suggest target genes
for GWAS variants in a cell-type-specific manner. SnapHiC2 is freely available at: https://github.com/
HuMingLab/SnapHiC/releases/tag/v0.2.2.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The recently developed single cell Hi-C (scHi-C) [1–4] and its
derived technologies, such as sn-m3c-seq [5,6], provide powerful
tools to study chromatin spatial organization directly from com-
plex tissues at single cell resolution. In particular, sn-m3c-seq
can reveal distinct cell types based on single cell DNA methylome
[5,6]. Many three-dimensional (3D) genome features, including A/B
compartments, topologically associating domains (TADs) and chro-
matin loops, have been characterized in single cells [7–9]. Among
them, it is of particular interest to identify chromatin loops from
single cells, which can shed novel insights on cell-type-specific
gene regulation mechanisms.

Chromatin loops, which are defined as pairs of genomic loci
with significantly higher contact frequency compared to the
expected contact frequency due to random collision, have been
originally discovered from deeply sequenced bulk cell Hi-C data
[10] and play a critical role in genome structure and genome
function [11]. However, identifying chromatin loops from single
cell Hi-C (scHi-C) data is extremely challenging, largely due to data
sparsity. Specifically, �1 billion contacts are usually required to
robustly map chromatin loops from bulk cell Hi-C data. Neverthe-
less, most currently available scHi-C and sn-m3c-seq datasets con-
sist of a few hundred cells for each cell type, with on average � 1
million contacts per cell [2,5,6]. Aggregating all cells belonging to
the same cell type into pseudo bulk Hi-C data still cannot reach
the typical required number of contacts for loop calling, limiting
the sensitivity of existing methods developed for bulk Hi-C data
[12]. A detailed description of publicly available scHi-C datasets
[1–6,13–20] and related computational challenges can be found
in recent review papers[21–23].

To address this challenge, we recently published SnapHiC, a
computational pipeline to identify loops from scHi-C data [9].
SnapHiC consists of two steps. First, it adopts the random walk
with restart (RWR) algorithm [7] to impute contact probability in
each cell at 10 Kb bin resolution. Next, it applies both global and
local background models to identify chromatin loops. The key
methodological innovation in SnapHiC is that each cell is treated
as an independent unit, leading to substantially improved power
in loop calling (see details in our recent review paper [21]).
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However, the computational cost of SnapHiC is high. In particular,
the first step (i.e., RWR imputation) consumes a large amount of
computational resource in terms of both computing time and
required memory, thus limiting its applicability to a large number
(e.g., greater than500) of cells or calling loops at sub-10 Kb resolu-
tion. Given the increasing interest in identifying loops from scHi-C
data [24], a computationally more efficient implementation of
SnapHiC is therefore of urgent need.

Here we present SnapHiC2, an efficient chromatin loop caller
for scHi-C data. Compared to SnapHiC, SnapHiC2 achieves more
than 3X speed up and saves � 70% memory usage, making the
identification of sub-10 Kb-resolution loops from a large number
of cells computationally feasible. SnapHiC2 is freely available at:

https://github.com/HuMingLab/SnapHiC/releases/tag/v0.2.2.
2. Materials and methods

2.1. A sliding window approach for scHi-C imputation.

In SnapHiC2, we employ a sliding window approach to approx-
imate the RWR algorithm (Figure S1). Briefly, in each single cell,
we model each chromosome as an unweighted undirected graph,
where each node is an equal-sized genomic locus (e.g., 5 Kb bin
or 10 Kb bin). We then add edges to adjacent genomic loci pairs
and all genomic loci pairs with chromatin contacts. Next, we use
the RWR algorithm to calculate the probability of traveling
between any two loci, which is defined as the imputed chromatin
contact probability. The computational complexity of the RWR
algorithm is determined by the size of the graph, in other words,
the number of genomic loci in each chromosome. In the original
study [9], we applied the RWR algorithm to the entire chromo-
some, which is time-consuming and requires a large amount of
memory. As a computationally more efficient implementation,
SnapHiC2 leverages partially overlapped sliding window approxi-
mation, and substantially speeds up the RWR algorithm.

Let X ¼ fxmng represent a 10 Kb bin resolution Hi-C contact
matrix for one cell (the bin resolution can also be set to 5 Kb),
where xmn is the number of contacts between bin m and bin n.
Instead of computing the RWR-imputed contact probability for
all 10 Kb bin pairs in the entire chromosome-wide Hi-C contact
matrix, we break down the computation into a series of partially
overlapped matrices along the diagonal line of the original matrix.
Specifically, each matrix is d by d in size, and two consecutive
matrices overlap by a d=2 by d=2 sub-matrix. In other words, the
step size of the sliding window is d=2 (see detailed illustration in
Figure S1).

Let Ak ¼ fak
ij : 1 � i < j � dg be a d by d matrix, which is the k th

step in the moving window. We use the RWR algorithm to impute
the contact probability for all 10 Kb bin pairs within this d by d
matrix. To avoid artifacts near corners due to incomplete chro-
matin contact information, we only keep imputed contact proba-
bility for a subset of bin pairs in the middle rectangle specified
below:

ak
ij : 1 � i < j � d; j� i � d=2; iþ j � d=2þ 1; iþ j � 3d=2

n o
:

Figure S1 illustrates the first 3 steps of the sliding window pro-
cedure. In step 1, we perform RWR for bin pairs in the red block
and generate imputed contact probabilities for bin pairs in the
red rectangle. Then moving to step 2, we again perform RWR for
bin pairs in the blue block and generate imputed contact probabil-
ities for bin pairs in the blue rectangle. Continuing to step 3, we yet
again perform RWR for bin pairs in the purple block and generate
imputed contact probabilities for bin pairs in the purple rectangle.
We repeat this sliding window procedure until we reach the end of
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the chromosome. Then, we concatenate the RWR-imputed contact
probabilities for all bin pairs within in 1 Mb genomic distance (the
1 Mb boundary is highlighted by the dashed yellow line, and bin
pairs subject to loop calling reside in shaded regions illustrated
by the striped red, blue, purple lines), while skipping the two cor-
ners near chromosome start and end (i.e., the black triangles).

2.2. A data-driven approach to determine sliding window size

It is critical to choose an appropriate size for the sliding win-
dows. When the window size is too small, a large amount of infor-
mation outside the sliding window will be lost, resulting in an
inaccurate approximation of RWR-imputed contact probabilities.
In contrast, when the window size is too large, the computational
cost will be too expensive. SnapHiC2 adopts a data-driven
approach and selects the window size to keep more than 80% of
the chromatin contacts, achieving a balance between imputation
accuracy and computational efficiency (see details in Results).
3. Results

3.1. The data-driven approach to determine sliding window size

We used scHi-C data from 100 oligodendrocytes (ODCs) from
human cortex [5] and 742 mouse embryonic stem cells (mESCs)
[2] as benchmark examples. For each cell, we calculated the pro-
portion of intra-chromosomal contacts within a certain 1D geno-
mic distance (Figure S2A) and found that more than 80% of
contacts were within 20 Mb and 10 Mb, for 100 ODCs and 742
mESCs, respectively.

Next, we applied SnapHiC2 with five different sliding window
sizes (10 Mb, 20 Mb, 30 Mb, 40 Mb, and 50 Mb) and compared
SnapHiC2-identified chromatin loops with SnapHiC-identified
chromatin loops, which are based on the full chromosome version
of the RWR imputation. We first evaluated the loop overlap
between these two versions. SnapHiC2 identified a slightly larger
number of loops than SnapHiC (Figure S2B), with 60.9% �77.3%
of loops identified as overlapping (Figure S2C). We then evaluated
the precision, recall, and F1-score (i.e., the harmonic mean of pre-
cision and recall), treating as working truth chromatin loops iden-
tified from bulk Hi-C data, H3K4me3 PLAC-seq data, as well as
cohesin and H3K27ac HiChIP data [25–29]. We found that
SnapHiC2 with different sliding window sizes achieved compara-
ble precision, recall, and F1-score, compared with SnapHiC
(Figure S2D, S2E, and S2F). For example, when applied to 100
ODCs, SnapHiC2 with sliding window size 20 Mb achieved preci-
sion 0.699, recall 0.261 and F1-score 0.380, similar to SnapHiC
(precision 0.775, recall 0.232 and F1-score 0.357). Consistently,
when applied to 742 mESCs, SnapHiC2 with sliding window size
10 Mb achieved precision 0.560, recall 0.285 and F1-score 0.378,
again comparable to SnapHiC (precision 0.655, recall 0.278 and
F1-score 0.391). Taken together, our results suggest that SnapHiC2,
with its data-driven strategy to select sliding window size that
retains more than 80% of contacts, can identify loops with similar
quality as the original SnapHiC algorithm.

3.2. SnapHiC2 is computationally efficient

Reassured with the satisfactory performance of SnapHiC2, we
then evaluated its computational efficiency. Specifically, for the
RWR imputation step, we applied both SnapHiC and SnapHiC2
(with sliding window size 20 Mb) to 100 ODCs and 742 mESCs,
each repeated three times, and recorded the corresponding compu-
tational time and memory used (Fig. 1). When applied to 100 ODCs,
SnapHiC2 was 3.2 times faster than SnapHiC (average time: 1.56 h

https://github.com/HuMingLab/SnapHiC/releases/tag/v0.2.2


Figure 1. Computational advantage of SnapHiC2 in speed and memory, using 100 ODCs and 742 mESCs as the illustrative example. A. Computational time comparison. B.
Memory usage comparison.
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vs. 5.04 h, Fig. 1A) and only consumed 30.2% of the memory (aver-
age required memory: 16.02 GB vs. 53.02 GB, Fig. 1B). Consistently,
when applied to 742 mESCs, SnapHiC2 was 3.1 times faster than
SnapHiC (average time: 8.98 h vs. 27.81 h, Fig. 1A), and only con-
sumed 36.7% of the memory (average required memory:
13.04 GB vs. 35.55 GB, Fig. 1B). These results demonstrate that
SnapHiC2 substantially enhances computational efficiency com-
pared to SnapHiC.

3.3. SnapHiC2 can identify 5 Kb resolution chromatin loops with high
sensitivity and accuracy

In the original study [9], we applied SnapHiC to identify 10 Kb
resolution chromatin loops. With the more efficient SnapHiC2
implementation, we can afford to improve the bin resolution to
5 Kb. Here, we re-analyzed scHi-C data in chromosome 3 from
742 mESCs [2] at 5 Kb resolution using both SnapHiC and
SnapHiC2. In addition, we aggregated the 742 mESCs and applied
two versions of the HiCCUPS algorithm [10], one with the default
settings (HiCCUPS-default) for deeply sequenced bulk Hi-C data
(greater than1 billion contacts) and the other with more lenient
settings (HiCCUPS-lenient) for shallowly sequenced bulk Hi-C data
(�500 million contacts).

We first applied SnapHiC, SnapHiC2, HiCCUPS-default, and
HiCCUPS-lenient to chromosome 3 data in all 742 mESCs, and a
subset of mESCs (N = 100, 200, 300, 400, 500, 600, and 700,
Fig. 2). We randomly sampled a subset of mESCs three times to
evaluate the robustness of SnapHiC2, HiCCUPS-default and
HiCCUPS-lenient. Due to the high computational cost of SnapHiC
at 5 Kb bin resolution, we only run SnapHiC once. We found that
both SnapHiC and SnapHiC2 identified more 5 Kb loops than both
two versions of HiCCUPS (Fig. 2A and Table S1). For example, using
all 742 mESCs, SnapHiC, SnapHiC2, HiCCUPS-default and HiCCUPS-
lenient identified 252, 294, 6 and 24 5 Kb loops in chromosome 3,
respectively (Fig. 2A). Next, we used 5 Kb resolution loops identi-
fied from bulk Hi-C data, H3K4me3 PLAC-seq and cohesin, and
H3K27ac HiChIP data [26–29] as the reference loop list (i.e., treated
as the working truth) and evaluated the precision, recall, and F1-
score. Compared to loops identified from two versions of HiCCUPS,
both SnapHiC and SnapHiC2-identified loops achieved slightly
lower precision (Fig. 2B), much improved recall (Fig. 2C), and sub-
stantially higher F1-score (Fig. 2D). For example, using all 742
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mESCs, SnapHiC2 loops have precision 0.534, recall 0.182 and F1-
score 0.271, while SnapHiC loops have precision 0.623, recall
0.180 and F1-score 0.279. In addition, HiCCUPS-default loops have
precision 0.667, recall 0.006 and F1-score 0.013. HiCCUPS-lenient
loops have precision 0.708, recall 0.031 and F1-score 0.060.

3.4. The Sox2 locus

We then examined the Sox2 gene locus, where a functional
enhancer-promoter interaction between Sox2 promoter and the
super-enhancer � 100 Kb downstream has previously been vali-
dated by CRISPR experiment in mESCs [30]. At 5 Kb resolution,
both SnapHiC and SnapHiC2 required as few as 100 cells to identify
such enhancer-promoter interaction, whereas HiCCUPS-default
and HiCCUPS-lenient required at least 600 cells and 500 cells,
respectively (Fig. 2E). This example showcases the significantly
enhanced sensitivity of SnapHiC2 compared to two versions of
HiCCUPS.

Next, for all 742 mESCs, we compared the SnapHiC2-identified
5 Kb-resolution loop with the SnapHiC-identified 10 Kb-
resolution loop with Sox2 promoter (Fig. 2F). The bin interacting
with Sox2 promoter is chr3:34.755 Mb-34.76 Mb and chr3:34.75
Mb-34.76 Mb, based on SnapHiC20s 5 Kb calling and SnapHiC’s
10 Kb calling, respectively. In the CRISPR experiment [30], the
deleted region is chr3:34,756,113–34,761,855, largely overlapped
with the 5 Kb interacting bin identified by SnapHiC2. In addition,
we found a strong H3K27ac ChIP-seq peak (chr3:34,754,670–34,7
58,019) from mESCs overlapped with the 5 Kb interacting bin.
Taken together, these pieces of evidence suggest that the 5 Kb
loops identified by SnapHiC2 can better pinpoint the functional
enhancer of Sox2 gene than the 10 Kb loops identified by SnapHiC.

3.5. SnapHiC2 can identify cell-type-specific loops linking GWAS
variants to putative disease genes.

Lastly, we applied SnapHiC2 to identify 5 Kb-resolution loops
from astrocytes, L2/3 neurons, microglia and oligodendrocytes,
each with 261 cells [5] (Table S2). We identified a large proportion
of cell-type-specific loops, underscoring the importance of map-
ping chromatin loops using single cells from the same cell type
(Figure S3). As one illustrative example, we checked chromatin
loops anchored at the transcription start site of gene PAGR1, which



Figure 2. SnapHiC2 can identify high-quality 5Kb resolution chromatin loops from mESC cells. In Figure 2A, 2B, 2C and 2D, the error bar represents the standard deviation
across three random samples. A. For 100, 200, 300, 400, 500, 600, 700, 742 cells, SnapHiC2 identifies similar numbers of loops with SnapHiC. SnapHiC2 identified more loops
than HiCCUPS with either default or lenient settings. B. SnapHiC2 achieves slightly lower precision than SnapHiC and the two versions of HiCCUPS. C. SnapHiC2 achieves
slightly higher recall than SnapHiC and much higher recall than the two versions of HiCCUPS. D. SnapHiC2 achieves comparable F1-score with SnapHiC and much higher F1-
score than the two versions of HiCCUPS. E. Both SnapHiC and SnapHiC2 detect a functional 5Kb resolution enhancer-promoter interaction at the Sox2 locus in mESCs with
much fewer cells than the two versions of HiCCUPS. F. Genome browser view of the Sox2 locus showing that the 5Kb loops identified by SnapHiC2 can better pinpoint the
functional enhancer of Sox2 gene than the 10Kb loops identified by SnapHiC.
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has been reported to be associated with neuropsychiatric disorders
[31]. We found a L2/3-specific loop linking the promoter of gene
PAGR1 to a 5 Kb bin (chr16:29,930,000–29,935,000) containing
six schizophrenia-associated GWAS SNPs (Fig. 3) (rs4407079
[chr16:29,931,899], rs4609871 [chr16:29,932,064], rs9936474
[chr16:29,932,691], rs12932403 [chr16:29,934,050], rs12596042
[chr16:29,934,754] and rs11150574 [chr16:29,934,819]). Among
them, four SNPs (rs4407079, rs4609871, rs9936474 and
rs12932403) reside in neuronal enhancers [25]. In addition, gene
PAGR1 shows the highest expression in L2/3 neurons among these
four cell types [32] (Fig. 3). Notably, gene PARG1 is greater
than 100 Kb away from these schizophrenia-associated GWAS
SNPs, with multiple genes residing in the middle. In addition, mul-
tiple schizophrenia-associated GWAS SNPs are outside of the neu-
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ronal enhancers. Integrating the multi-omics evidence from
epigenome, transcriptome and 3D genome suggests that PAGR1 is
the likely functional gene underlying the GWAS variants, and most
likely in L2/3 neurons.
4. Discussion

In this paper, we describe SnapHiC2, a computationally efficient
pipeline to identify chromatin loops from scHi-C data. Compared to
our original SnapHiC, SnapHiC2 adopts a sliding window approach
when implementing the RWR algorithm, achieving more than 3
times speed up and reducing memory usage by around 70%. In
addition, we provide an implementation of the loop calling step



Figure 3. SnapHiC2 identifies a 5Kb L2/3-specific loop linking the PAGR1 promoter to six schizophrenia-associated GWAS SNPs.
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(i.e., step 2) for running on GPUs, leveraging the JAX library in
Python. When testing on the Volta GPU with Intel(R) Xeon(R) Gold
6148 CPU @ 2.40 GHz, we found that SnapHiC20s GPU implementa-
tion of step 2 achieved more than 2X speed-up compared with
SnapHiC’s CPU implementation of step 2, each with a single proces-
sor. SnapHiC2 enables the identification of chromatin loops from
single cells at 5 Kb resolution, facilitating the characterization of
promoter-interacting enhancers, as well as identification and pri-
oritization of putative target genes for GWAS variants. We believe
that SnapHiC2 will become a useful tool to study 3D chromatin
organization at single cell resolution.
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