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Abstract

Background: Although post-traumatic stress disorder (PTSD) is primarily a mental disorder, it can cause additional
symptoms that do not seem to be directly related to the central nervous system, which PTSD is assumed to directly
affect. PTSD-mediated heart diseases are some of such secondary disorders. In spite of the significant correlations
between PTSD and heart diseases, spatial separation between the heart and brain (where PTSD is primarily active)
prevents researchers from elucidating the mechanisms that bridge the two disorders. Our purpose was to identify

genes linking PTSD and heart diseases.

Methods: In this study, gene expression profiles of various murine tissues observed under various types of stress or
without stress were analyzed in an integrated manner using tensor decomposition (TD).

Results: Based upon the obtained features, ~ 400 genes were identified as candidate genes that may mediate heart
diseases associated with PTSD. Various gene enrichment analyses supported biological reliability of the identified
genes. Ten genes encoding protein-, DNA-, or mRNA-interacting proteins—ILF2, ILF3, ESR1, ESR2, RAD21, HTT, ATF2,
NR3C1, TP53, and TP63—were found to be likely to regulate expression of most of these ~ 400 genes and therefore
are candidate primary genes that cause PTSD-mediated heart diseases. Approximately 400 genes in the heart were
also found to be strongly affected by various drugs whose known adverse effects are related to heart diseases and/or

fear memory conditioning; these data support the reliability of our findings.

Conclusions: TD-based unsupervised feature extraction turned out to be a useful method for gene selection and
successfully identified possible genes causing PTSD-mediated heart diseases.
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Background

Post-traumatic stress disorder (PTSD) [1] is primarily a
mental illness caused by stressors. Nevertheless, PTSD
can cause additional symptoms apparently not directly
related to the central nervous system. PTSD-mediated
heart diseases are some of such examples [2]. Although it
is believed that PTSD highly correlates with heart failure
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[3], the mechanisms by which PTSD mediates heart fail-
ure are still unclear. Because a study on twins revealed a
strong correlation between PTSD and heart diseases [4],
the genomic factors are believed to link the two disorders.
Therefore, in this study, tensor decomposition (TD)-based
unsupervised feature extraction (FE)—which is the exten-
sion of a recently proposed principal component analysis-
based unsupervised FE that has been successfully applied
to various bioinformatics problems [5-22]—was used for
various gene expression profiles of murine tissues with the
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aim to find genes coexpressive or differentially expressed
between stressful and unstressful conditions in the brain
and heart. As shown in the text below, we identified
approximately 400 genes using TD-derived features, and
these genes are strongly related to neurodegenerative dis-
eases as well as cardiac-muscle aberrations. Furthermore,
the top 10 genes encoding protein-, DNA-, or mRNA-
interacting proteins were identified as those governing
expression of these ~ 400 genes and are possible thera-
peutic targets in PTSD-mediated heart diseases according
to other reports.

Methods

Gene expression

The gene expression profiles used in this study were
downloaded from the Gene Expression Omnibus
(GEO) database (GEO ID GSE68077). The file
“GSE68077_series_matrix.txt” that is available as “Series
Matrix File(s)” was downloaded. Probes whose names
start with “EA” were removed. The gene expression pro-
file was standardized (i.e., means and variances in each
sample are 0 and 1, respectively).

Gene expression profiles were formatted as a tensor,
Xijy joj3js» Of the ith probe, subjected to jith treatment
(j1 = 1: control, j; = 2: treated [stress-exposed] samples),
in the joth tissue [j» = 1: amygdala (AY), j» = 2: hip-
pocampus (HC), jo = 3: medial prefrontal cortex (MPFC),
jo = 4: septal nucleus (SE), jo = 5: striatum (ST), jo = 6:
ventral striatum (VS), j» = 7: blood, j, = 8: heart, jo = 9:
hemibrain, j, = 10: spleen], with the jsth stress duration
(js = 1:10 days, j3 = 2: five days) and jsth rest period after
application of stress (ja = 1: 1.5 weeks, ja = 2: 24 hours,
ja = 3: 6 weeks). Zero values were assigned to missing
observations (e.g., measurements at 6 weeks after a 5-day
period of stress are not available).

TD-based unsupervised FE

To perform gene selection using gene singular value vec-
tors, x¢, i, for synthetic data and xy,; for real gene expres-
sion profiles, we have to decide which singular value
vectors are used for the selection. If we denote this set of
gene singular value vectors as €2, then a P-value, P;,, for
synthetic data and P; for real gene expression profiles, is
assigned to each gene by assuming that the singular value
vectors of genes obey a x? distribution,
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for real gene expression profiles, where oy, and oy are the
standard deviation of the £;th and ¢sth singular value vec-
tors (x¢,,; and xy; ;), whereas P[ > x] is the P-value for the
hypothesis that the argument is greater than x, assuming a
x? distribution. After that, genes associated with adjusted
P-values less than 0.01, 0.05, and 0.1 for the synthetic
dataset and 0.01 for real gene expression profiles were
selected, respectively.

Computation of adjusted P-values

The adjusted P-values were computed either by the
p-adjust function in R [23] with the “BH” (Benjamini—
Hochberg) option or the fdrtool in R [23] with the statis-
tic=“pvalue” option. The AUC was computed by means of
the colAUC function in the caTools package in R [23].

The synthetic dataset

This dataset is composed of a 30,000 x 10 x 10 tensor,
Xivinizr 1 < i1 < 30,000,1 < ip, i3 < 10. The first (i1),
second (i2), and third (i3) modes represent genes, tissues,
and treatments, respectively. For each of 10 treatments,
100 genes were expressed in four out of 10 tissues. The
first gene through the 100th gene are expressive during
the first treatment, the 101st to 200th genes are expressive
during the second treatment, and so on. If a combination
of a gene set and class falls into a blue filled square in
Fig. 1 (e.g., the second gene set in the third class), then
Xiyin,is ODeys a Gaussian distribution of mean 4 and vari-
ance 1; otherwise, the mean is assumed to be zero. x;; is
standardized within each sample as well.

Enrichment analyses

These analyses were conducted by means of g:profiler
r1622_e84._eg31 [24] and Enrichr [25]. All probe IDs
were converted to gene symbols before uploading to
the servers. For g:profiler, all the genes included in the
microarray were uploaded as a background.

Enrichment analysis of MSigDB

A total of 457 gene symbols were uploaded to http://
software.broadinstitute.org/gsea/msigdb/annotate.jsp
(registration and login are needed). The option “C2:
curated gene sets” was selected.

Clustering analysis

For synthetic data, two clustering methods were used. The
first is hierarchical clustering (Ward method) using the
Euclidean distance between the first gene’s and 10th gene’s
singular value vectors, x¢, ;;, 1 < €1 < 10, as the distance.
Then, the generated trees were partitioned into 11 clus-
ters. The Ward method was implemented as the hclust
function in R [23] with the method="ward” option. Par-
titioning was performed using the cutree function in R
using k=11 option (the number of clusters is 11). The
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Fig. 1 The gene expression pattern of 10 gene sets. Each of which includes 100 genes from synthetic data (thus, 1000 of the total of 30,000 genes
are being considered). The remaining 29,000 genes do not have any class specificity. Blue squares represent classes where the genes in each gene

second one is a Gaussian mixture, which was carried out
by the Mclust function in the mclust [26] package in R [23]
with the G=1:11 option (assuming 1 to 11 clusters).

Results

TD applied to tensors of gene expression profiles

In this study, gene expression profiles were regarded as
tensors. Gene expression profiles were analyzed in various
tissues including the heart and brain, under various con-
ditions (stressful or unstressful), with various periods of
stress and rest time after application of a stressor. These
datasets were naturally regarded as a tensor, xj, .
where i stands for genes and jx, kK = 1,...,m denotes var-
ious tissues as well as experimental conditions. To reduce
the number of degrees of freedom, tensors can be decom-
posed to smaller tensors, vectors, or matrices. Although
there are multiple implementations, higher-order singu-
lar value decomposition [27] (HOSVD) was employed
in the present study, and a tensor was decomposed as
Ziyosim = 2ty G - o b)) - Koy [Tizr %o
where G is the core tensor and x¢, j, and xy,,, ; are singu-
lar value matrices. In this implementation, singular value

vectors, Xy, j, or Xy, associated with G with greater
absolute values primarily and correlatively contribute to
the original tensor, x;;,..j,, ek = 1,..., Mm%,
are supposed to be orthogonal matrices and thus have
the same absolute values and equally contribute to the
tensor, whereas only the amount of G counts for the
contribution).

Synthetic data

Prior to application to gene expression profiles, TD was
applied to a synthetic dataset to demonstrate usefulness
of our strategy. In this synthetic dataset, 10 tissues were
assumed to be treated with 10 experimental conditions
(thus, there were assumed to be 10x 10 = 100 samples). In
each experimental condition, in four out of 10 tissues, 100
distinct genes were expressed (Fig. 1). Thus, in total, 1,000
genes were expressive in some of the 10 tissues under
some of the conditions tested. The remaining majority of
genes (as many as 29,000 because in total 30,000 genes are
assumed to exist) were not expressed at all in any tissues
under any conditions. The task was to identify separately
10 sets of 100 genes as being coexpressive in four tissues.
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Applying TD to the synthetic dataset,

Xit,in,iz = Z G(ereb £3)xll,i1xez,i2x(3,i3r
£1,02,¢3

genes were embedded into the space spanned by the
derived gene singular value vectors, x¢, ;. We found that
they are strictly clustered coincidently with the 10 pre-
sumed clusters (Fig. 2). Although genes identified as out-
liers by means of these gene singular value vectors, x¢,
were extracted, it was obvious that TD-based unsuper-
vised FE successfully identified some of the 1,000 genes
with a relatively smaller number of false positives no mat-
ter which adjusted P-values were employed as threshold
values (Fig. 3).

To test quantitatively whether the 10 clusters of the
genes were identified correctly, hierarchical clustering
as well as mixture Gaussian clustering were performed.
Ten gene clusters were found to be identified correctly,
and expression patterns were also correct (Table 1 and
Additional file 1).
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In the next subsection, TD-based unsupervised FE is
applied to real gene expression profiles.

Real gene expression profiles

In the previous subsection, the usefulness of our strat-
egy was successfully demonstrated on synthetic data. In
this subsection, TD-based unsupervised FE is applied to
real data, i.e., gene expression profiles [28], which were
formatted as a five-mode tensor that contains indices
corresponding to genes (i) versus tissues (j2) vs stress
duration (j3) vs rest period after application of stress (j4) vs
control or treatment (j;) (Table 2). Replicates in each cat-
egory were averaged within each category before TD was
applied. It is definitely a challenging dataset because genes
being sought must be differentially expressed between
treated and control samples, not in all tissues but in some
tissues. HOSVD was applied to the tensor and five sin-
gular value matrices, x¢j,,1 < k < 4, and xy;;, were
obtained. Figure 4a shows the second control-related or
treatment-related singular value vectors, x¢;—3j;,j1 = 1,2.
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Fig. 2 Scatter plots involving the second gene’s through fifth gene’s singular value vectors. x¢, j;, 2 < £1 < 5,0f 1,000 genes (1 < i; < 1000) that
belong to one of the 10 gene sets. These 10 gene sets are represented by distinct combinations of colors and symbols. The 29,000 genes not
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Fig. 3 Performance of synthetic data (averaged over 100 trials). BH:
Benjamini-Hochberg, FDR: false discovery rate. Red curves: true
positive rates, black curves: false positive rates, solid curves: P = 0.01,
dashed curves: P = 0.05, dotted curves: P = 0.1, blue dash-and-dot
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The findings indicate that this expression represents a dif-
ference between control (j; = 1) and treated (j; = 2)
samples. Next, tissue singular value vectors, x¢,j,,1 <
£3,j2 < 10, were studied (Fig. 4b and Additional file 2).
Then, the fourth tissue singular value vector, xg,—4,,,1 <
j2 < 10, was found to show coexpression among amyg-
dala (AY, j» = 1), hippocampus (HC, j» = 1), and
heart (j, = 8), which represents the phenotypes of inter-
est. After that, we investigated which gene singular value
vectors are associated with the fourth sample as well as
the second control-related or treatment-related singular
value vectors. Table 3 shows the top-ranked core tensor
Gty = 2,8y = 4,13, ¢4,5) with greater absolute values.
Then, gene singular values vectors, x¢;¢(1,4,11),i» Were iden-
tified as being associated with the fourth sample as well
as the second control-related or treatment-related singu-
lar value vectors. After that, 801 probes (Additional file 3)
associated with adjusted P-values less than 0.01 were
selected as outliers using these three gene singular value
vectors.

Table 1 Clustering of genes identified by TD-based unsupervised FE for synthetic data

1 2 3 4 5 6 7 8 9 10 1

Mclust
1 80 0 0 0 0 0 0 0 0 0 5
2 0 71 0 0 0 0 0 0 0 0 5
3 0 0 90 0 0 0 0 0 0 0 1
4 0 0 0 65 0 0 0 0 0 0 1
5 0 0 0 0 69 0 0 0 0 0 2
6 0 0 0 0 0 00 0 0 0 0 16
7 0 0 0 0 0 66 0 0 0 0 2
8 0 0 0 0 0 0 66 0 0 0 5
9 0 0 0 0 0 0 0 77 0 0 4
10 0 0 0 0 0 0 0 0 74 0 3
" 0 0 0 0 0 0 0 0 0 81 11

Ward
1 81 0 0 0 0 0 0 0 0 0 5
2 0 71 0 0 0 0 0 0 0 0 4
3 0 0 90 0 0 0 0 0 0 0 3
4 0 0 0 65 0 0 0 0 0 0 1
5 0 0 0 0 69 0 0 0 0 0 8
6 0 0 0 0 0 66 0 0 0 0 4
7 0 0 0 0 0 0 66 0 0 0 8
8 0 0 0 0 0 0 0 77 0 0 5
9 0 0 0 0 0 0 0 0 64 0 4
10 0 0 0 0 0 0 0 0 0 35 3
1 0 0 0 0 0 0 0 0 0 46 10

Rows: gene sets (the first to the tenth are the gene sets to which the first 1000 genes are likely to belong, and the 11th is the gene set to which the remaining 29,000 genes

are likely to belong), columns: clustering
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Table 2 Samples used in this study Numbers before/after comma are control/treated samples

stress, days 5 10 5 10

rest period 24h 1.5w 24h [ 24h 15w 24h 6w
AY 32 54 34 34 HC 35 4,5 54 4,5
MPFC 4,5 55 34 44 SE 32 23 33 33
ST 55 55 54 44 VS 55 55 34 54
blood 55 55 4,5 4,5 heart 55 4,5 55 55
hemibrain 55 45 55 55 spleen 55 55 54 55

h: hours, w: weeks

AY:amygdala, HC: hippocampus, MPFC: medial prefrontal cortex, SE: septal nucleus, ST: striatum, VS: ventral striatum

To determine whether the 801 selected probes are selec-
tively expressive in the AY, HC, and heart as expected,
the ¢ test was applied to all the 40 combinations of con-
trol and treated samples. Then, 13 combinations (Table 4)
turned out to have the adjusted P-values less than 0.01.
Because the AY, HC, and heart are abundantly repre-
sented in Table 4, it is obvious that our strategy, TD-based
unsupervised FE, successfully identified probes selectively
coexpressive in AY, HC, and heart between control and
treated samples.

Comparison with other methodologies

In contrast to the success of this strategy, which was
applied to a synthetic dataset and real gene expression
profiles, other tested methods failed to identify some of
the 1000 genes correctly in synthetic data (Additional
file 4) and failed to identify some of the significantly
differentially expressed genes (Additional file 4).

Discussion

Biological reliability was evaluated by means of 457 gene
symbols (Additional file 5) that are associated with the
801 identified probes, uploaded to g:profiler. Various bio-
logical terms were enriched (Additional file 6): 198 Gene
Ontology (GO) biological process (BP) terms, 79 GO cel-
lular component (CC) terms, 49 GO molecular function
(MF) terms, 7 Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, and 38 REACTOME pathways. Among
them, neurodegenerative-disease-related KEGG pathways
were enriched (three categories): “Huntington’s disease,’
“Parkinson’s disease,” and “Alzheimer’s disease” as well as
one KEGG heart disease-related pathway, “Cardiac mus-
cle contraction, GO BP terms, “heart contraction” and
“cardiac muscle contraction” as well as GO CC term “neu-
ron part” were also identified. Thus, these findings suggest
that the identified genes are potentially related to neuronal
functions as well as heart anomalies.

To evaluate the relation between the selected genes
and PTSD-mediated heart diseases, two biological
terms, “nonsense-mediated decay” (NMD; REACTOME)
and “SRP-dependent cotranslational protein targeted to

membrane” (REACTOME, GO BP), were further ana-
lyzed because these two are reported to be specifically
related to fear memory and heart failure (see below).

NMD was reported to regulate cardiac myosin-binding
protein C mutant levels in cardiomyopathic mice [29].
Arc mRNA is targeted for NMD, and time-tependent
expression of Arc and Zif268 after acquisition of fear con-
ditioning is observed [30]. On the other hand, cardiac
involvement is less common and survival is better among
patients with anti-SRP [31]. Srp54 is also upregulated after
contextual fear conditioning in the rat [32]. Furthermore,
SRP is related to NMD [33]. SRP and NMD are associated
with abnormal gene expression, e.g., miss-splicing, which
is suggested to induce PTSD-mediated heart diseases.
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Fig. 4 Singular value vectors employed a The second control-related
or treatment-related singular value vector, xg,—, . Control: j; = 1,
and treatment (stress): j; = 2. b The fourth tissue singular value
vector, Xg,—4j,, AY:j, = 1,HC: jo, = 2, heart: j, = 8, hemibrain: j = 9,
and spleen: j, = 10. Other tissue singular value vectors, £, # 4, can
be found in Additional file 2
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Table 3 Top-ranked G(£1 = 2,£; = 4,£3,£4,£5) with greater
absolute values

4 7 s G(2,4,€3,44,05)
1 1 11 -35.0

1 1 1 -30.8

2 2 1 -30.3

2 3 4 -30.0

2 3 1 287

2 2 4 285

Next, to identify what governed the processes overall,
457 gene symbols were uploaded to Enrichr [25] because
457 genes are too many to be considered primary factors
of PTSD-mediated heart diseases; a smaller number of
factors is preferable. As a result, many genes listed among
“Transcription factors PPI” were found to be enriched
(41 genes have the adjusted P-values less than 0.05; see
Additional file 7 for the full list). As for the top 10 pro-
teins (Table 5), many are related to heart diseases and fear
memories as shown below. Mutation of the most signifi-
cant gene, ILF3, is related to heart attacks [34]. ESR1, the
second most significant gene, was reported to be related to
fear conditioning [35] and heart diseases [36]. RAD21, the
third most significant gene, is related to memory forma-
tion [37] (through genomic structure of BDNF and Arc)
as well as to heart diseases [38]. HT'T, the fourth most
significant gene, is related to heart diseases [39] and its
full name is Huntingtin, which is naturally related to the
corresponding neurodegenerative disease. ATF2, the sev-
enth most significant gene, was reported to be possibly
involved in Alzheimer’s and heart diseases [40].

ATF2 and c-Jun are parts of AP-1, which is known to
be related to fear extinction [41] as well as extinction of
contextual fear memory [42]. NR3C], the eighth most sig-
nificant gene, has frequently been reported to be related
to fear emmory [43], and its mutation is reported to be
related to muscle strength [44]. GR, encoded by NR3CI,

Table 4 Thirteen combinations of tissues and experimental
conditions where the selected 801 probes are differentially
expressed between Stress-exposed and control samples

stress duration 10 days 5 days

rest period 24 hours 6 weeks 24 hours 1.5 weeks
AY O O

HC O O O

MPFC O

Heart O O
Hemibrain O O
Spleen O O O

MPFC: medial prefrontal cortex
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Table 5 Top 10 proteins interacting with the 457 genes
identified by TD-based unsupervised FE, which were listed by
Enrichr (“Transcription factors PPI")

Term Overlap P-value Adjusted P-value
ILF3 50/297 6.90E-29 1.59E-26
ESR1 81/871 9.85E-28 1.13E-25
RAD21 37/237 1.89E-20 145E-18
HTT 38/293 3.98E-18 2.29E-16
ILF2 28/184 1.81E-15 8.34E-14
ESR2 34/365 4.19E-12 1.61E-10
ATF2 26/237 4.13E-11 1.36E-09
NR3C1 18/239 1.05E-05 3.02E-04
TP53 31/628 5.38E-05 1.12E-03
TP63 12/120 1.99E-05 5.08E-04

is required for fetal heart maturation [45]. NR3C1 was
also reported to be one of the driver genes of PTSD
[2] in a study involving a search for the genes causing
PTSD-mediated heart diseases. The ninth most signifi-
cant gene, TP53, is one of upstream regulators of pathways
associated with the onset of memory deficits in mice [46],
although nothing was reported to the tenth significant
TP63.

Figure 5 shows the graphical representation of enriched
biological terms as well as the 10 above-mentioned
interacting proteins. The figure indicates that they are
tightly inter-related. Thus, the 10 identified proteins
are likely to regulate expression of genes enriched in
these biological terms and PTSD-mediated heart dis-
eases as well although additional experimental validation
is needed.

To confirm correctness of identification of the enriched
biological terms, the 457 gene symbols were also uploaded
to MSigDB [47] (Additional file 8). As a result, “Nonsense-
mediated decay enhanced by the exon junction complex,’
“SRP-dependent cotranslational protein targeted to mem-
brane” (REACTOME), “Parkinson’s disease,” “Alzheimer’s
disease,” “Huntington’s disease,” and “Cardiac muscle con-
traction” (KEGG) were found to be significantly enriched.
Therefore, the identified enrichment of these biological
terms is trustworthy.

Finally, to confirm the reliability of the selected genes,
DrugMatrix in Enricher was analyzed. Many compounds
that affect gene expression in the rodent heart were
identified; in total, 7,098 combinations of drugs with
various dose densities and solvents were found to have
the adjusted P-values less than 0.01 (Additional file 9).
First of all, all the top 10 combinations (Table 6) were
found to decrease expression of some genes in the heart,
in agreement with the expectation that the identified
genes should be related to the heart because they are
supposed to contribute to heart failure. In addition,



Taguchi BMC Medical Genomics 2017, 10(Suppl 4):67

Fig. 5 Graphical representation of relations between the identified
biological terms and proteins. Biological temrs (orange) and various
protein-, DNA-, or mRNA-binding proteins (cyan). A: “heart
contraction” (GO BP), B: “cardiac muscle contraction” (GO BP), C:
“protein targeted to ER" (GO BP), D: “SRP-dependent cotranslational
protein targeted to membrane” (GO BP), E: “neuron part” (GO CC), F:
“Huntington'’s disease” (KEGG), G: “Parkinson’s disease” (KEGG), H:
“Alzheimer’s disease” (KEGQ), I: “Cardiac muscle contraction” (KEGG), J:
“nonsense-mediated decay (NMD)" (REACTOME), K: “SRP-dependent
cotranslational protein targeted to membrane” (REACTOME). Orange
edges: genes shared by biological terms, blue edges: genes targeted
by protein-, DNA-, or mRNA-binding proteins. Width of edges is
proportional to the number of genes. Sizes of the orange circles
representing biological terms are proportional to the number of
genes enriched in each biological term among the 457 genes
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many adverse effects caused by these drugs, as shown in
Table 6, are also associdated with PTSD-mediated heart
diseases. For example, the most significant drug, low-dose
prednisolone [48], increases long-term risk of ischemic
cerebrovascular events. Long-term administration of the
second most significant drug, ethosuximide, adversely
affects fear memory [49]. The third most significant com-
pound, caffeine, is known to be related to heart diseases
[50] as well as acquisition and retention of Pavlovian con-
ditioned freezing [51]. The fourth most significant drug,
clomipramine, was once suggested to be used for the treat-
ment of anxiety [52]. The fifth most significant drug, pred-
nisolone, was reported to alleviate adverse cardiac effects
[53]. Several cases of cardiac adverse reactions related to
the seventh and ninth most significant drug, vinorelbine,
have been reported in the literature [54]. The eighth most
significant drug, atropine, affects heart rate [55]. Cardiac
arrest was reported after administration of the tenth most
significant drug, oxymetazoline (nasal spray) [56]. These
relations between heart problems or fear memory and
drugs downregulating expression of selected genes in the
heart support the reliability of our findings, too.

Before closing this subsection, I would like to comment
on some points. First, comparisons with some related
works. Since Vaccarino et al [4] has clearly denoted
that there are limited number of mutated genes shared
between PTSD and congenital heart defect (CHD), it
might not look reasonable that I argued that genomic
background was important. However, even if there are no
shared mutated genes between PTSD and CHD, genomic
background can induce association between PTSD and
CHD. For examples, there are two genes A and B. A is
a CHD causing genes and B is regulating A. Then, even
if mutation of B takes place not in CHD but in PTSD,
genomic background (i.e., mutation of gene B) still can
induce CHD. This means that shared mutated genes is not

Table 6 Top 10 significant drugs identified by DrugMatrix in Enricher

Candidate drugs Overlap P-value Adjusted P-value
Prednisolone-184_mg/kg_in_Water-Rat-Heart-5d-dn 53/343 1.10E-28 4.34E-25
Ethosuximide-1200_mg/kg_in_Water-Rat-Heart-3d-dn 50/319 2.16E-27 5.66E-24
Caffeine-93_mg/kg_in_Water-Rat-Heart-3d-dn 51/345 1.07E-26 1.69E-23
Clomipramine-115_mg/kg_in_Water-Rat-Heart-3d-dn 49/320 2.19E-26 2.55E-23
Prednisolone-184_mg/kg_in_Water-Rat-Heart-3d-dn 53/340 7.07E-29 434E-25
Gatifloxacin-770_mg/kg_in_Corn_QOil-Rat-Heart-1d-dn 48/315 9.12E-26 7.19E-23
Vinorelbine-1.5_mg/kg_in_Saline-Rat-Heart-1d-dn 51/351 245E-26 2.55E-23
Atropine-94_mag/kg_in_Water-Rat-Heart-5d-dn 51/353 3.22E-26 2.82E-23
Vinorelbine-1.5_mg/kg_in_Saline-Rat-Heart-3d-dn 47/305 1.83E-25 131E-22
Oxymetazoline-0.5_mg/kg_in_Water-Rat-Heart-5d-dn 48/325 3.77E-25 247E-22

Drug names, concentrations, solvents, period after treatment, and up- or downregulation (dn) are listed. Overlap means the number of genes among the 457 genes

identified by TD-based unsupervised FE
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only genomic background that can induce the association
between PTSD and CHD. Cho et al [57] also investigated
mRNA and miRNA expression of stressed mouse heart.
Nevertheless, since we have extensively studied this study
in our previous study [7], I did not discuss about it in
the present paper. Finally, Pollard et al [2] identified 37
mutated genes shared between PTSD and cardiovascular
disease (CVD). However, as in the case of PTSD and CHD,
shared mutated genes are not only factors that can medi-
ate PTSD mediated heart disease. Actually, there are no
significant overlaps between these 37 genes and our 457
genes. Possibly, our identified gene expression alteration
between PTSD and controls is not due to a direct effect of
shared mutated genes but due to more complicated indi-
rect effect. Second, 1 would like to briefly argue about
how TD can figure out hidden relations among genes and
diseases. From the mathematical point of views, TD is
nothing but possible assumption. Thus, the validation of
methodology can be done only based on the goodness of
outcomes. Since our results are biologically reliable, our
assumption that gene expression has hidden structure that
can be figured out TD seems to be correct. More appli-
cations of this strategy will add more confidence to TD
based unsupervised FE in the future.

Conclusions

In this paper, TD-based unsupervised FE was applied to
murine tissue gene expression profiles with and with-
out stress conditions. The resulting 457 genes associated
with 801 probes identified as outliers using gene singu-
lar value vectors were subjected to various enrichment
analyses. Ten proteins likely to regulate expression of
these genes are proposed here as possible causal genes of
PTSD-mediated heart diseases.
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