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Abstract: Despite advances in the characterization of colorectal cancer (CRC), it still faces a poor
prognosis. There is growing evidence that gut microbiota and their metabolites potentially contribute
to the development of CRC. Thus, microbial dysbiosis and their metabolites associated with CRC,
based on stool samples, may be used to advantage to provide an excellent opportunity to find
possible biomarkers for the screening, early detection, prevention, and treatment of CRC. Using 16S
rRNA amplicon sequencing coupled with statistical analysis, this study analyzed the cause–effect
shift of the microbial taxa and their metabolites that was associated with the fecal gut microbiota of
17 healthy controls, 21 polyps patients, and 21 cancer patients. The microbial taxonomic shift analysis
revealed striking differences among the healthy control, polyps and cancer groups. At the phylum
level, Synergistetes was reduced significantly in the polyps group compared to the healthy control
and cancer group. Additionally, at the genus level and in association with the cancer group, a total of
12 genera were highly enriched in abundance. In contrast, only Oscillosprira was significantly higher
in abundance in the healthy control group. Comparisons of the polyps and cancer groups showed
a total of 18 significantly enriched genera. Among them, 78% of the genera associated with the
cancer group were in higher abundance, whereas the remaining genera showed a higher abundance
in the polyps group. Additionally, the comparison of healthy control and polyp groups showed
six significantly abundant genera. More than 66% of these genera showed a reduced abundance in
the polyps group than in healthy controls, whereas the remaining genera were highly abundant in
the polyps group. Based on tumor presence and absence, the abundance of Olsenella and Lactobacillus
at the genus level was significantly reduced in the patient group compared to healthy controls. The
significant microbial function prediction revealed an increase in the abundance of metabolites in the
polyps and cancer groups compared to healthy controls. A correlation analysis revealed a higher
contribution of Dorea in the predicted functions. This study showed dysbiosis of gut microbiota at the
taxonomic level and their metabolic functions among healthy subjects and in two stages of colorectal
cancer, including adenoma and adenocarcinoma, which might serve as potential biomarkers for the
early diagnosis and treatment of CRC.

Keywords: colorectal cancer; gut microbiota; gut microbial dysbiosis; prognosis; biomarker; metage-
nomics; functional predictions
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1. Introduction

Colorectal cancer (CRC), also known as colorectal adenocarcinoma, is considered the
second most leading cause of cancer-related mortality and is responsible for more than
1.3 million new cases per annum [1,2]. Such a growing rate of incidence makes it the
most prevalent and significant health issue on a global scale. Generally, CRC arises from
certain epithelial cells of the large intestine following a series of genetic and epigenetic
perturbations. Subsequently, normal epithelial cells transform into adenomas (benign
neoplasms or polyps) followed by invasive carcinomas [3,4]. Several risk factors including
dietary habits (less fiber/excessive red meat), smoking, obesity, alcohol consumption, and
diabetes have been linked to the initiation and progression of CRC [4–6]. Additionally,
in recent years there have been cumulative reports finding the possible envelopment of
human gut microbiota in CRC carcinogenesis [7,8].

The human gastrointestinal tract, especially the colon, harbors a diversified microbial
community ranging from 1013–1014 microorganisms [9]. These microbes are primarily
dominated by bacteria as the core microbiota in the gut of healthy people, with obligate
anaerobes, mainly Bacteroides, Firmicutes, Proteobacteria Actinobacteria, and Verrucomicro-
bia comprising 95% of gut microbiota [10,11]. The gut microbiota performs a variety of
crucial functions that help the host in protection from pathogens, nutrient supply, im-
mune modulation, and shaping the intestinal epithelium [10,12]. Previous studies have
shown that various gut microbiota and their associated metabolites exhibit proinflamma-
tory and procarcinogenic properties which ultimately exert a great impact on colorectal
carcinogenesis [13–15].

After the advent of high throughput sequencing, the interest in the relationship be-
tween cancer and intestinal microbiota has rapidly grown in recent years. High throughput
sequencing has made many efforts to unveil the characterization, association, and func-
tional prediction of gut microbiota in healthy and diseased subjects [16,17]. There are
substantial reports, both in animal and human models, that suggest any alterations in
microbial community structures greatly influence the colon health condition, leading to
various intestinal disorders such as inflammatory bowel disease, diabetes, obesity, and
various type of cancer, particularly colorectal cancer [14,17,18]. Other reports of CRCs have
suggested the existence of linkages between gut microbiota and their metabolites in tumor
initiation and progression in a murine colitis-associated CRC model [18,19]. Additionally,
several reports highlighted evidence of fecal microbiota associated with CRC as being
tumorigenic in germ-free mice models [20,21].

Previous studies have revealed that the intestinal mucosa and fecal flora are different
in patients with colorectal cancer [15,22]. In the stool of healthy people, a higher bacterial
diversity has been observed as compared to the stool of patients with colorectal cancer [23].
However, it has been observed that the bacterial diversity on the mucosa close to cancer
cells is relatively low in the healthy person, whereas increased bacterial diversity is noticed
in colorectal cancer patients [17]. Additionally, the overall structure of lumen noncancer-
ous and cancerous microbiota found that a lower diversity was exhibited in similar but
cancerous tissue [8]. The relative abundance of dominant phyla including Firmicutes, Bac-
teroidetes, Proteobacteria, and Fusobacteria have been observed differently in both healthy
control and CRC patients [24]. In particular, Fusobacteria and Proteobacteria were more
abundant in cancer specimens, whereas a significantly higher abundance of Fusobacteria
and Firmicutes were observed in the stools of a colorectal patient [18]. According to recent
studies, Peptosteptococcus, Clostridium, Prutella, Porphyromonas, and Bacteroides are the key
bacteria linked with colorectal cancer [1]. Additionally, some other bacteria are currently
considered to be linked with colorectal cancer, such as Streptococcus bovis, a Gram-positive
opportunistic pathogen having the ability to grow in a 40% bile environment and cause
systemic infections in the human body [25]. Similarly, other common bacteria of the human
gut, such as Streptococcus gallolyticus and Helicobacter pylori, are believed to be involved
in colorectal cancer [26]. Moreover, certain strains of Escherichia coli producing a toxin
such as cyclomodulin, are also believed to be involved in the carcinogenesis of CRC [7].
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Additionally, mice infected with a certain strain of E. coli have displayed a marked increase
in the number of visible colonic polyps as compared to controls [27]. Previous reports also
highlighted a profound shift of bacterial groups, less common or more common, in healthy
subjects and CRC [23,28,29].

Additionally, it has been reported that gut microbial-associated metabolites are not
only helpful in the maintenance of human gut health, but they also play a key role in the
development of CRC [28,30]. There are substantial reports that the general gut microbiota
is associated with the initiation and progression of CRC through the production of car-
cinogens, cocarcinogens, or procarcinogen substances [29]. The direct interaction of gut
microbes with the epithelial cells is limited due to the presence of mucosal barriers [31].
However, these microbes convert the complex chemicals provided by the host and dietary
nutrients into a milieu metabolite which can be easily translocated across the mucosal
barrier and play a role in tumorigenesis through multiple mechanisms, such as modifying
signaling proteins [28,31]. In previous studies, it has been demonstrated that the elevated
gut microbes derived from secondary bile acids, such as deoxycholic acid, promote the
development and progression of CRC [32,33]. Contrarily, the decreased level of beneficial
gut microbial-associated metabolites, such as butyrate, is also involved in mutagenesis [34].
Additionally, gut microbiota-associated reductive and hydrolytic enzymes also play roles
in the occurrence of CRC [35].

Thus, taking advantage of the shift in microbial taxa and their metabolites in CRC
patient stool samples may provide an excellent opportunity to find possible biomarkers for
the screening, early detection, prevention, and treatment of CRC. Ultimately this will help
in the reduction of CRC-associated death globally. Therefore, in this study, we performed
amplicon sequencing of 16S rRNA genes based on high throughput sequencing to analyze
the overall bacterial compositions and their functional predictions that were associated
with the human gut microbiota of healthy subjects, polyps, and cancer patients to find
potential biomarkers associated with CRC.

2. Materials and Methods
2.1. Characteristics of Patients and Healthy Participants

In this study, a total of 17 healthy subjects were selected as a control group. Subjects
were aged 25–95 years old (both male and female) with no acute and chronic gastrointestinal
diseases and no antibiotic administration history within a one-month period prior to sample
collection. Similarly, 21 persons aged 25–95 years old (both male and female) with large
intestine tumor symptoms were divided into polyps and bowel cancer patients. After
radiography examination, patients with colorectal cancer were at a T and L level, based on
the TNM classification standard as previously described [18]. After diagnosis, these
patients had not been treated with chemotherapy and radiotherapy. Besides, for both the
control and the experimental groups the following conditions were excluded: (1) obesity,
pregnancy, high blood pressure, stroke, myocardial infarction, diabetes, hyperlipidemia,
gout, long-term lying, patients with primary and secondary parathyroid hyperthyroidism;
(2) drugs, alcohol, and drug abuse; (3) taking drugs (antibiotics, constipation drugs) or food
(probiotics) in the preceding month that could affect the gastrointestinal tract. Sample
collections were conducted according to the guidelines of the Declaration of Helsinki and
approved by the Institutional Review Board of Ditmanson Chia—Yi Christian Hospital,
Taiwan (CYCH-IRB No. 2019021 and date of approval: 11 April 2019).

2.2. Sample Collection and DNA Extraction

The fecal specimens of healthy subjects and patients with colorectal cancer and polyps
were collected in a sterile stool box with cryopreservation at Chiayi Christian Hospital,
Taiwan. Samples were then transported following the biosafety procedures and under
controlled temperature conditions to the laboratory at National Chung Cheng University,
Taiwan. Fecal gDNA was extracted from a 200 mg stool sample using a QIAamp DNA
Stool Mini Kit (QIAGEN) following the manufacturer’s instructions. Additionally, a bead-
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beating step was performed using a previously designed protocol [36]. In brief, 250 µL
of the stool sample was taken in a 2 mL sterilized tube holding 1.2 mL ASL lysis buffer
along with 0.3 g sterile 0.1 mm zirconia beads (BioSpec, Bartlesville, OK, USA) and this was
followed by vortex-mixing for 2 min. The samples were subjected to heating for 15 min
at 95 ◦C and subsequently homogenized using the Qiagen TissueLyser II. After treatment
with an InhibitEX Tablet, 350 µL of supernatant was shifted to another tube to perform the
subsequent purification steps using a QIAcube system.

The purity and concentration of the extracted gDNA was determined using a Nan-
odrop 2000 spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE, USA) at
230–280 nm. The quality of the gDNA was examined using gel electrophoresis (1.5% gel in
Tris-acetate ethylenediaminetetraacetic acid buffer) at 110 V for 30 min. The DNA bands
were visualized under ultraviolet light. The purified gDNA was stored at −20 ◦C for
further analysis.

2.3. Sequencing, Library Construction, and 16S rRNA Amplicon Data Analysis

We amplified the V3–V4 region of the hypervariable region of the 16S rRNA gene
from the extracted gDNA using 341F and 805R primer sets (with some modifications)
with the Illumina adapter overhang sequence attached at the 5′ end of the primers. The
sequences of the forward primers used in this experiment were as follows: (16S_341F) 5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWG CAG-3′,
(16S_341F _N) 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGAC AGnCCTACGGGN
GGCWGCAG-3′, (16S_341F _N N) 5′-TCGTCGGCAGCGTCAG ATGTGTATAAGAGAC
AGnnCCTACGGGNGGC WGCAG-3′, and (16S_341F _NNN) 5′-TCGTCGGCAGCGTCA
GATGTGTATAAGAGACAGnnnCCTACGGGNGG CWGCAG-3′. The reverse primer se-
quences were as follows: (16S_805R) 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAG
ACAGGACTACHVGGGTA TCT AATCC-3′, (16S_805R _N_) 5′-GTCTCGTGGGCTCGG
AGATGTGTATAAGAGA CAGnGACTACHVGGGTATCTAATCC-3′, (16S_805R _NN) 5′-
GTCTCGTGGGC TCGGAGATGTGTATAAGAGACAGnnGACTACHVGGGTATCTAA
TCC-3′, and (16S_805R _NNN) 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC
AG nnnGACTACHVGGGTATCTAATCC-3′. The amplification was performed in triplicate,
following the previously reported method [37]. The optimal PCR conditions were as fol-
lows: 95 ◦C for 3 min, followed by 30 cycles of 95 ◦C for 30 s (denaturation), 55 ◦C for 30 s
(annealing), 72 ◦C for 30 s (primer extension), and 72 ◦C for 5 min (elongation). The quantity
and quality of amplified DNA were assessed using the standard quality checks mentioned
above. Next, the amplicons (20 µL) from each sample were subjected to sequencing using
the pair-end method with the MiSeq Illumina platform (Illumina Inc., San Diego, CA, USA)
following the standard protocol at the National Yang-Ming University Genome Research
Center, Taiwan. The DNA libraries were ligated with the sequencing adapters and index
using the Nextera XT sample preparation kit (Illumina), following the manufacturer’s
instructions. The sequence data containing reverse and forward reads were aligned using
the CLC bio plate form (Genomic Workbench v.8.5) and the FASTA files were generated
as described in our previous study [38]. The QIIME2 system was used for the sequence
quality control and amplicon sequence variant (ASV)-based classification [39]. In brief, the
quality of raw sequencing reads was assessed by FastQC. DADA2 was used for denoising
and constructing ASVs. The denoising steps also included the truncation of the forward
(250–280 bp) and reversed reads (180–260 bp) based upon the quality profile and amplicon
length which was performed by using DADA2. The minimum and maximum number
of quality count reads was 4500 and 37,432 per sample, respectively. The rarefaction was
performed at 4300 read counts to estimate the bacterial diversity. Finally, the relative
abundance of microbes at the phylum and genus levels in each sample was obtained using
the QIIME2 view. Furthermore, the significant difference in the relative abundance at the
phylum and genus level in each group was analyzed using statistical analysis of taxonomic
and functional profiles (STAMP) software [40]. The significant relative abundance at the
phylum and genus level was examined using a two-tailed White’s non-parametric t-test



Microorganisms 2021, 9, 1548 5 of 20

(p < 0.05). Additionally, the linear discriminant analysis effect size (LEfSe) was performed
in Galaxy software (http://huttenhower.sph.harvard.edu/lefse/, accessed on 6 July 2021)
following an LDA score > 2 and p < 0.05 to identify the differential abundance in microbiota
among the experimental groups [41]. To know the significance among the clustering pattern
in the ordination plot, a permutational multivariate analysis of variance (PERMANOVA)
was performed using MicrobiomeAnalyst, based on the experimental groups [42].

2.4. Metagenomic Functional Prediction Based on 16S rRNA Gene Data

To examine the potential metabolic function of microorganisms in each sample be-
longing to healthy control, polyps, and CRC patients, the representative sequence and
denoised ASV abundance tables were used. These tables were input into the phylogenetic
investigation of communities reconstruction of Unobserved States (PICRUSt2) pipeline
(https://github.com/picrust/picrust2, accessed on 29 December 2020) using KEGG (Ky-
oto Encyclopedia of Genes and Genomes). All ASVs with a nearest-sequenced taxon index
(cutoff value > 2) were removed by default for the reliable annotation of metabolic functions
using the KEGG reference database as previously described [43]. Finally, using White’s
nonparametric t-test in STAMP software (p < 0.05) with 95% confidence intervals, the
results of level 2 KEGG pathways were used to ascertain the significant shift in the bacterial
community in each group. A Spearman correlation analysis was performed using IBM
SPSS Statistics 24 (IBM, Armonk and North Castle, NY, USA) to evaluate the significant
correlations between bacterial diversity and the potential functional prediction, considering
p-values in the range 0.01–0.05.

3. Results
3.1. Gut Microbial Richness and Diversity with Respect to Health Conditions and Based on 16S
rRNA Amplicon Sequencing

In order to study bacterial community composition in each stage of CRC and in
healthy controls, we performed 16S rRNA amplicon sequencing targeting the V3 and V4
regions, which after quality filtering and chimera removal generated a total of 1919 ASVs,
based on a 97% cutoff value using the reference database (Greengenes). As shown in
Figure 1A, among these, compared to healthy controls (n = 621), the cancer group (n = 901)
exhibited a higher ASV number, followed by the polyps group (n = 800). Additionally,
107 ASVs were common among the three experimental groups, while the majority were still
unique to each experimental group (413 for healthy controls, 549 for the polyps group, and
661 for the cancer group), revealing, compared to healthy controls, a higher unique ASV
diversity in the cancer group followed by the polyps group. Additionally, the richness and
diversity of the gut microbial community in each experimental group was evaluated using
Chao1 (Figure 1B), Simpson (Figure 1C) and Shannon (Figure 1D) alpha diversity indices,
revealing a higher alpha diversity in the cancer group compared to the healthy controls,
but the difference was not statistically significant. The beta diversity analysis based on
a weighted UniFrac distance matrix showed a low variation in microbial diversity and
as a result no clustering patterns were noted among the experimental groups (Figure 1E).
Additionally, the significance analysis of clustering patterns in the ordination plot was
evaluated using PERMANOVA analysis (F-value: 0.9726; R-square: 0.072337; p < 0.525)
which revealed no significant variation in beta diversity among the experimental groups.

http://huttenhower.sph.harvard.edu/lefse/
https://github.com/picrust/picrust2
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3.2. Gut Microbial Compositions and Abundance with Respect to the Healthy Condition and
Based on 16S rRNA Amplicon Sequencing

For the subsequent analysis, the annotated ASVs yielded a total of 11 classifiable phyla
(Figure 2A) and 85 genera (Figure 2B). Firmicutes, Bacteroides, and Proteobacteria were
the top three predominant phyla in the three experimental groups. Additionally, com-
pared to the control group, the abundance rate of observed phyla such as Euryarchaeota,
Fusobacteria, Lentisphaerae, and Proteobacteria was increased in the cancer group, fol-
lowed by the polyps group. The top three dominant bacteria in abundance at the genus
level were Bacteroides, Alistipes, and Roseburia associated with the control group, and Bac-
teroides, Clostridium, and Prevotella in the polyps group, whereas Bacteroides, Clostridium, and
Butyricimonas were associated with cancer patients, sequentially according to higher abun-
dance. There were 15 genera observed only in the cancer group, such as Methanobrevibacter,
Coxiella, Actinomyces, Coriobacterium, Paraeggerthella, Slackia, Porphyromonas, Vestibaculum,
Abiotrophia, Leuconostoc, weissella, Peptostreptococcus, Bulleidia, Cloacibacillus, and Haloferula.
Furthermore, seven genera were observed in both the polyps and cancer groups, but not in
healthy controls. The abundance of these genera increased or remained the same in the
cancer group compared to the polyps group, which included Rothia, Atopobium, Coprococcus,
Anaerotruncus, Sporobacter, Limnobacter, and Acinetobacter. In comparison with the control
group, there were five genera with increased abundance in the cancer and polyps groups,
which included, Eggerthella, Butyricimonas, Streptococcus, Defluviitalea, and Ruminococcus.
On the contrary, eight genera, namely, Bifidobacterium, Macellibacteroides, Alistipes, Odoribac-
ter, Paenibacillus, Oscillospira, Selenomonas, WAL_1855D, showed a decreased abundance in
the cancer and polyps group as compared to the control group.
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3.3. Distribution of Firmicutes and Bacteroides Ratios among Experimental Groups

To further explore the microbial dysbiosis, we checked the Firmicutes and Bacteroides
ratio as a marker in experimental groups, as shown in Supplementary Figure S1. The
Firmicutes/Bacteroides ratio was observed to be significantly higher in the cancer group
(1.9) followed by the polyps group (1.6) as compared to healthy controls (1.4).
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3.4. Differential Abundance of Bacterial Diversity among the Experimental Groups

To investigate the statistically significant differences in microbial diversity and abun-
dance at the phylum level in each group (healthy, polyps, and cancer) we used Statistical
Analyses of Metagenomic Profiles (STAMP) software using a two-sided White’s non-
parametric t-test (p < 0.05) following a Benjamini–Hochberg analysis to control for false
discovery rates. The STAMP statistical comparison is shown in Figure 3, and revealed that
only Synergistetes at the phylum level was significantly enriched in the healthy control
and polyps groups. The abundance of this bacterium significantly decreased in the polyps
group as compared to healthy controls. Similarly, only this bacterium was also found to be
significantly enriched in the polyps and cancer groups. The abundance was decreased in
the polyps as compared to the cancer group. However, healthy control and cancer groups
did not show any significant enrichment.
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To further investigate changes in bacterial diversity and abundance at the genus
level in healthy, polyps, and cancer groups, the comparison analysis revealed a total of
12 genera were significantly enriched in the cancer and healthy groups, including Rothia,
Limnobacter, WAL_1855D, Coriobacterium, Succinatimonas, Methabobrevibacter, Osllospira,
Abiotrophila, Acinebacter, Coxiella, Haloferula, and Leuconostoc (Figure 4). Among these
significant genera, except for Oscillosprira which was highly enriched in healthy controls,
all the other 11 significant genera were highly enriched in the cancer group. As shown in
Figure 4 left, a comparison of the polyps and cancer group showed a total of 18 significantly
enriched genera. Among them Aeromonas, WAL_1855D, Oscillospira, and Mitsuokella were in
significantly higher abundance in the polyps group, whereas the remaining 14 genera were
in significantly higher abundance in the cancer group. A comparison of the healthy controls
and polyp group showed six significantly abundant genera. Among them, Anaerotruncus
and Mitsuokella were in significantly higher abundance in the polyps group. However,
the abundance of the other four significant genera including Cytophaga, Campylobacter,
Enterococcus and Pseudomonas showed a decrease in abundance in the polyps as compared
to the healthy control group. As shown in Figure 4, based on tumor presence and absence,
the abundance of Olsenella and Lactobacillus at the genus level was significantly reduced
in the patient group as compared to healthy controls. However, LEfSe analysis showed
no significant difference in the microbial abundance among the experimental groups
(Supplementary Figure S2).
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3.5. 16S rRNA-Based Community-Level Functional Prediction of Health Conditions

To investigate the microbial functional prediction in health conditions, PICRUSt2
was implied based on 16S rRNA amplicon sequence data. A total of 154 KEGG level 3
functions were identified which generated a total of 32 functions at KEGG level 2. For clear
visualization and interpretation at KEGG level22, functions were further analyzed for
significant enrichment analysis among the three groups (healthy, polyps, and cancer) using
White’s nonparametric t-test, and multiple correlations among these significant pathways
were performed by Benjamini–Hochberg FDR analysis in STAMP. As shown in Figure 5,
a total of 15 pathways were significantly enriched in abundance among healthy, polyps,
and cancer groups. Among these, and associated with the polyps and cancer groups, were
increases in the abundance of these pathways: metabolism of other amino acids, glycan
biosynthesis and metabolism, biosynthesis of other secondary metabolisms, xenobiotic
biodegradation and metabolism. Additionally, two pathways related to cancer, namely
cancer: overview and cancer: specific types, were increased in the cancer group compared
to healthy subjects. Similarly, these pathways were also increased significantly in the polyps
compared to the heathy group. However, only the metabolism of other amino acids pathway
was significantly enriched in abundance in the polyps as compared to the cancer group.
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3.6. 16S rRNA-Based Community-Level Functional Profile and Its Correlation between
Experimental Groups

A Spearman correlation analysis was performed to further explore the correlation
between the microbial community at the genus level and the predicted functions at KEGG
level 2, as shown in Supplementary Table S1. The statistical significances were considered
highly positive and negative at p < 0.05 and <0.01, respectively. For better visualiza-
tion, we only considered statistically significant genera-associated predicted functions.
As shown in Figure 6, the correlation analysis revealed that all genera showed a significant
correlation with at least one predicted function. Among the positively correlated genera,
Dorea showed a strongly positive correlation (p < 0.01, 0.05) with 87.7% (n = 12/14) pre-
dicted functions. This was followed by Ruminococcus (p < 0.01, 0.05) 78.6% (n = 11/14),
Clostridium (p < 0.01, 0.05) 78.6% (n = 11/14), Bacteroides (p < 0.01, 0.05) 71.4% (n = 10/14),
Eggerthella (p < 0.01, 0.05) 71.4% (n = 10/14), Streptococcus (p < 0.5) 50% (n = 7/14), Atopobium
(p < 0.5) 43.9% (n = 6/14), Pseudomonas (p < 0.5) 14.3% (n = 2/14), and Actinomyces (p < 0.5)
14.3% (n = 2/14), respectively. Other positively correlated genera showed a significant
association with one respective predicted function. Additionally, five genera including
Desulfovibrio, Odoribacter, Prevotella, Scuccinatimonas, and Elizabethkingia, showed a 71.4%
(n = 10/14), 43.9% (n = 6/14), 14.3% (n = 2/14), 14.3% (n = 2/14), and 7.1% (n = 1/14)
negatively significant correlation with predicted functions, respectively.
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4. Discussion

Accumulating evidences have highlighted that the breakdown of gut microbiota is
linked to a variety of disorders, such as inflammatory bowel disease, diabetes, obesity,
and various types of cancer, particularly colorectal cancer [14,44]. In this study, we found
as compared to healthy controls, a higher number of ASVs associated with the cancer
group followed by the polyps group, which is in accordance with a previous report [17].
Many studies indicated that the ASV approach is of much higher resolution than the OUT
approach, especially in the human microbiota [41]. Additionally, the alpha diversity indices
revealed similar patterns of diversity distribution among the three experimental groups,
suggesting that the diversity of gut microbes increase following CRC development and
progression. However, differences in diversity have been reported in previous studies,
which are mainly associated with the nature of sampling or stages of CRC. The elevation
of certain phylum in this study, such as Euryarchaeota, Fusobacteria, Lentisphaerae, and
Proteobacteria, were higher in abundance in cancer patients or remained the same in polyps
patients as compared to healthy controls, which is consistent with previous studies [45,46].
Several studies have highlighted the role of these phylum in the dysbiosis, proinflammation,
and progression of CRC [24,45]. Additionally, Fusobacteria is also considered one of the
biomarkers for the prognosis of CRC, because it is consistently associated with CRC-
associated microbiota [47–49]. Immune modulation is assumed to be the key mechanism
by which Fusobacterium plays a role in CRC carcinogenesis, these include increased
natural killer cell inhibitors and myeloid-derived suppressor, Fap2 and FadA virulence
factors, microRNAs and bacterial metabolism [50,51]. Among the top three dominant
bacteria in abundance at the genus level, Bacteroides was the most dominant in the three
experimental groups, whereas the second and third most prevalent genera were different in
the cancer (Clostridium, and Butyricimonas), polyps (Clostridium, and Prevotella) and healthy
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control (Alistipes, and Roseburia) groups. Additionally, in previous reports, a difference
in the predominant bacteria at the genus level has been observed, conferred by various
factors such as diet, age, alcohol, geographical location and analytical methods [52–54].
Bacteroides are predominantly found in the human gut as one of the major microbiota
and were previously reported to be associated with healthy subjects, polyps, and cancer
patients as a dominant bacterium [55]. In previous reports the genus Prevotella has been
repeatedly associated with diets rich in fiber, whereas Bacteroides are associated with diets
rich in fat and animal protein [56–58]. Moreover, Prevotella has also been associated with
inflammatory responses in chronic disease [59]. Therefore, further research is needed to
know the potential role of this bacterium in inflammatory responses associated with CRC.
Additionally, 16S rRNA amplicon sequencing revealed 15 genera were only associated with
the cancer experimental group, which included Methanobrevibacter, Coxiella, Actinomyces,
Coriobacterium, Paraeggerthella, Slackia, Porphyromonas, Vestibaculum, Abiotrophia, Leuconostoc,
weissella, Peptostreptococcus, Bulleidia, Cloacibacillus, Haloferula, indicating these microbes
might have a special role in CRC initiation and development. However, the role of the
majority of these bacteria in CRC is still scarce. Nowadays, discussion on an increase or shift
of the archaeal population and methanogenic bacteria is becoming a hot topic associated
with CRC [60,61]. A previous study also indicated a significantly higher abundance of
Methanobrevibacter in fecal samples was associated with the tumor group as compared
to the control group [17]. Recently, the density of the genus Methanobrevibacter has been
negatively correlated with butyrate concentrations which have been reported to be involved
in supplementing energy to epithelial cells and altering mutagenic or toxic compounds [62].
This can support microbiota-related inflammatory events that occur in CRC pathogenesis,
due to the fact that methane-producing bacteria consume SCFA [61]. Previous studies have
suggested that the higher production of methane could lead to CRC [63–65].

The possible reasons for the high unassigned reads of Figure 2 might be due to the
difference in the taxonomy of selected classifiers (including reference databases) under the
ASV approach. In previous studies, it has been documented that the Greengene database
has some limitations for 16S rRNA taxonomic profiling because this database is no longer
being maintained [66,67]. For example, in the case of unclassified Kingdom or unclassified
phylum taxonomy assignments, the taxonomy classifier was confident enough to assign
phylum taxonomy assignments, but not high enough to assign the species or genus or
species level, respectively. Regarding the taxonomy classifiers, it could be improved by
refinements to the taxonomy classifiers [68,69] and by updating reference databases, such as
SILVA or RDP [70–73]. The cross validation of bacterial taxonomy was performed using the
SILVA database (Figure S3), which revealed 181 genera and a reduced ratio of unassigned
reads compared to the Greengene database, indicating the low resolution associated with
the Greengene database might be due to the low amount of bacterial DNA sequencing data.
Recent studies have reported that compared to Greengene and RDP databases, the SILVA
database has the highest per-read accuracy and lowest error rates in 16S metagenomic
classification, regardless of the software used in classification [70,74]. However, Balvočiūtė
and Huson indicated that SILVA, RDP, and Greengenes map well into NCBI, and what
kind of database is best for the 16S amplicon survey is based on the research aim [70].
The advantage of Greengene is its species-level identification and high accuracy, but the
weakness is its lesser amount of microbial sequence data.

Firmicutes and Bacteroidetes are the two most commonly dominant bacteria of the
human gut and their composition remains relatively unaffected in healthy subjects [75].
However, the ratio of F/B is considered to be potentially correlated with several diseases
that can be used as a preliminary basis for diagnosing certain diseases [76]. In this study,
the ratio of F/B was found to be higher in patients with colorectal cancer, followed by
polyps patients, than in healthy controls, which is in line with previous studies [77,78].

Several studies have demonstrated the shift of the microbial community in CRC
patients and healthy controls at different taxa levels [17,79]. In this study there was only
one phylum, namely Synergestetes, which was significantly enriched in the healthy control
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and polyps groups, and a decrease in the mean proportion of this phyla was observed
in the polyps group. Similarly, it was found significantly enriched in abundance in the
cancer and polyps groups, and a decrease in abundance was associated with the polyps
as compared to the cancer group. Thus, the significant shift of this bacterium among the
experimental groups could be a possible biomarker for the early detection of polyps in CRC
patients. A previous study has demonstrated a similar trend where a decreased abundance
of Synergistetes at the phylum level was observed with the progress of CRC [80].

At the genus level, Rothia, Limnobacter, WAL_1855D, Coriobacterium, Succinatimonas,
Methabobrevibacter, Abiotrophila, Actinobacteria, Coxiella, Haloferula, and Leuconostoc were
significantly predominant in the cancer group as compared to healthy controls. However,
the mean proportion of Oscillopsia was reduced in the cancer group when compared to
healthy controls. These results indicate that these highly enriched bacteria have a strong
relationship with cancer and may have a vital role in the development and progression of
CRC. In a previous report it is highlighted that a microbiota change indeed promotes the
occurrence and development of CRC [80]. The enrichment analysis showed Acinetobacter
was the most highly enriched genus in the cancer group. The next generation sequencing
of fecal and luminal microbiota of CRC patients and healthy subjects has revealed the
higher richness of Acinetobacter at a genus level to be associated with CRC [81]. Similarly
a recent study based on 16S rRNA amplicon sequencing has highlighted the envelopment
of the genus Acinetobacter in adenomas and diverticula [82]. The genus Weissella belong
to lactose fermenters, and certain species act as pathogens and occur mostly in patients
with impaired host defenses [83]. Additionally, the genus Rothia has also been described
as a human pathogen [84]. The enrichment of pathogenic bacteria associated with cancer,
suggest that they might be involved in the disruption of the intestinal environment by
causing pH changes, as previously described in the case of Helicobacter [81].

Additionally, the enrichment comparison of the cancer with the polyps groups re-
vealed 18 significant enriched genera, of which 14 were highly enriched in abundance in
cancer, whereas only four genera were highly abundant in the polyps group (Figure 4).
These findings suggest that a higher shift of bacteria at the genus level represent their
positive role in the development and progression of CRC. In enrichment analysis, the
most abundant genus associated with cancer was identified as Pyramidobacter, followed
by Peptostreptococcus, whereas Aeromonas was found as the predominant genus associated
with polyps. In a previous study on oral microbiota, the role of Peptostreptococcus has been
described as a biofilm producer which protects the cancerous cells from host immunity [85].
Therefore, the presence of this genus suggests the involvement of Peptostreptococcus in CRC
progression. Peptosteptococcus has been identified to be involved in the proliferation of
CRC by inducing the biosynthesis of intracellular cholesterol [86]. Pyramidobacter being
a sulfidogenic bacteria associated with diets higher in protein intake, can produce H2S,
which is one of the key factors leading to the impairment of mucus barriers at tumor sites,
facilitating tumor-elicited inflammation [87].

The enrichment analysis at the genus level also showed a significant association of six
genera in the polyps and healthy control groups. Among these Cytophaga, Campylobacter,
Pseudomonas, and Enterococcus were highly enriched in abundance and associated with
healthy controls, whereas Anaerotruncus and Mitsoukolia were significantly in abundance
and associated with the polyps group. A lower abundance of these bacteria in the polyps
as compared to healthy control group suggest the dysbiosis of gut microbiota, as Entero-
coccus and other facultative anaerobes or aerotolerant bacteria are vital for the microbial
homeostasis in the large intestine [81]. Similarly, a previous study indicated the higher
enrichment of Enterococcus and Anaerotruncus along with other bacteria in CRC [88].

Additionally, in this study, only two genera, including Olsenella and Lactobacillus,
were found significantly enriched in healthy control and patient groups, based on tumor
presence and absence. The abundance of these genera significantly declined in the patient
group compared to the healthy control group, which shows that they could be considered
a biomarker in the early detection of CRC, and a risk factor of CRC. However, further
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research is needed to explore these genera up to the species level to make potential biomark-
ers related with CRC. Both Lactobacillus and Olsenella are the inhabitants of the human
gut and have been previously found in association with reduced gut inflammation [17,89].
Additionally, Lactobacillus has been suggested as one of the probiotics to inhibit the devel-
opment and progression of gut epithelial cells [17]. However, little is known about the
role of the Olsenella species, including its disappearance during CRC which needs to be
further studied.

However, using LEfSe analysis we revealed no significant differences in microbial
abundance among the experimental groups. It is a big challenge to identify the differences
of two or more phenotypes in any metagenomic dataset [90]. In order to find statistical
significance, biological consistency, and the effect size estimation of predicted biomarkers,
many approaches or analyses from simple to complex have been established [91]. Re-
garding simple approaches or analyses, the t-test or ANOVA and non-parametric tests,
such as the Wilcoxon test, White’s t-test, Kruskal–Wallace test, and Welch’s t-test, are
often used to find statistically significant differences between two groups, which also have
the option of adjusting p-values using the Benjamini–Hochberg method [91]. Regarding
advanced analysis, there is much software constructed to summarize statistical significance,
biological consistency, and the effect size estimation of predicted biomarkers, including
Metastats/metagenomeSeq, LEFSe, STAMP, etc. [90–92]. However, the results of these
statistical analysis approaches are all credible, and the most suitable analysis results can be
selected according to the associated research background.

Previous studies have shown that various gut microbes and their associated metabo-
lites exhibit proinflammatory and procarcinogenic properties which ultimately exert a great
impact on colorectal carcinogenesis [13–15]. Recently it has been highlighted that dietary
fat, microbially induced lipids and obesity, may lead to major factors that contribute to
the increased rate of early-onset CRC [93]. Dysregulation of lipid metabolism in cancer
cells, which is increasingly recognized as one of the characteristics of aggressive cancer,
correlates with a poorer prognosis and shorter disease-free survival in CRC [93,94]. In this
study, the relative abundance of lipid metabolism increased significantly in both the polyps
and cancer groups compared to healthy subjects. Similarly, a previous study, based on
metabolomics analysis using H NMR spectroscopy, highlighted a significant increase in
the level of lipids in the malignant tissues of colon mucosa [30]. Additionally, the KEGG
pathway biosynthesis of other secondary metabolites was found to be the second most
abundant metabolic pathway. The biosynthesis of other secondary metabolites helps in
maintaining the homeostasis of gut microbiota. However, a compromised gut microbiota
leads to increased concentrations and the biosynthesis of other secondary metabolites
contributing to epithelial-mesenchymal transition, and thus favors the metastatic niche’s
setup [95]. Similarly, it has also been reported that xenobiotic metabolism and degrada-
tion increase the susceptibility of colonocytes to protumorigenic bacterial metabolites [96].
In the present study, xenobiotic metabolism and degradation was the third most abun-
dant metabolic pathway associated with polyps and cancer groups. Glycosylation is a
key post-translational process associated with proteins that alters protein functions and
plays a vital role in various biological processes. It has been observed that the aberrant
process of glycosylation is linked with the occurrence and progression of different types
of cancer, including CRC [97]. A higher abundance of this pathway was significantly
associated with polyps and cancer groups than with healthy subjects, suggesting that
this is particularly important in the pathology of microbiota-associated diseases such as
CRC. Similarly, previously in gut microbiota-associated diseases, such as inflammatory
bowel disease, various microbe species have been linked with the metabolism of mucus
glycans [98]. The proliferation of cancer cells also needs an abundant supply of amino
acids that act as substrates for protein synthesis and are essential in energy generation
and the maintenance of cellular redox hemostasis. The nutrient-poor microenvironment of
cancer and stromal cells requires a relationship with the microbial community to fulfill their
essential nutrients [99]. This study found a higher abundance of amino acid metabolism
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associated with polyps and cancer groups. Additionally, two cancer-related KEGG path-
ways, such as cancer overview and specific types of cancer, were in higher abundance in
polyps and cancer groups compared with healthy subjects. At KEGG level 3, these two
pathways belonged to choline metabolism in cancer, colorectal cancer, and MicroRNAs in
cancer (KEGG level 3 not shown here). In previous studies, it has been highlighted that
an increased abundance of choline is responsible for the signal transduction or growth
promotion of various human malignancies, including colon cancer and adenoma [100,101].
Similarly, a previous study, based on metabolomics analysis using H NMR spectroscopy,
highlighted a significant increase in the level of choline in the malignant tissues of colon
mucosa [30]. Additionally, MicroRNA is a short endogenous RNA molecule that regulates
post-transcriptional gene expression and is considered a key factor for the mutagenesis
of CRC, leading to a potential biomarker for the diagnosis, prognosis, and therapy of
CRC [102]. This study’s overall functional prediction associated with gut microbiota, sug-
gests that the metabolic reprogramming and these microbes’ metabolic products may serve
as potential biomarkers for the increased risk of CRC development and progression in
humans. However, further confirmation of the presence of these microbial metabolites
needs proteomic based analysis.

A Spearman correlation analysis was performed to examine the correlation between
the predicted functions and microbial community of the three experimental groups. The
analysis revealed that Dorea, Ruminococcus, Clostridium, Bacteroides, Eggerthella, Streptococcus,
and Atopobium were strongly positive in their correlation with the majority of the predicted
functions, indicating these microbes can independently play an important role in the
initiation and progression of CRP. Several studies have highlighted that the metabolic
contribution of these microbes is associated with the development of CRC. For example,
the genus Dorea has the capability to adhere to cancerous cells and may confer this genus
a competitive benefit in the cancerous colorectal environment [103]. The increased level
of Ruminococcus metabolites associated with lipid and amino acid metabolism have been
detected from the stool samples of CRC patients [104]. The role of these significantly
positive bacteria in xenobiotic biodegradation and metabolism by their enzymes, have
also been highlighted in previous studies [105]. Additionally, Desulfovibrio showed a
significantly negative correlation with the majority of predicted functions, followed by
Odoribacter, Prevotella, Scuccinatimonas, and Elizabethkingia, suggesting these bacteria are
involved in the regulation of their respective predicted functions.

The overall taxonomic findings suggest that the significant shift of microbial diversity
increases with the progress of CRC. For a more clear understanding we can say that
the shift of microbes was less in polyps patients and higher in cancer patients when
comparing them with the healthy controls. The shift in microbial taxa at different taxonomic
levels could be a possible biomarker in the diagnosis and treatment of CRC and needs
further extensive validation. However, the role of gut microbiota and their community
structure in different precursors of CRC have not been clearly discussed in previous studies.
Additionally, the functional predictions associated with gut microbiota suggest that the
metabolic reprogramming of their metabolic products may serve as potential biomarkers
for the increased risk of CRC development and progression at different stages in humans.
However, for further confirmation of the presence of these microbial metabolites we
suggest that the use of metabolomic and proteomic based analyses might be considered
ideal methods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9081548/s1, Figure S1: Ratio of Firmicutes to Bacteroides in experimental
groups, Figure S2: Cladogram plot of LEfSe analysis among the experimental groups, Figure S3: 16S
rRNA amplicon sequencing based relative abundance of microbial diversity at genus level among
the experimental groups using SILVA database. Table S1: Correlation analysis between the predicted
functions and bacterial taxa at the genus level.
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