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Oral squamous cell carcinoma is one of the most malignant tumors with high mortality rate worldwide. Biomarker discovery is
critical for early diagnosis and precision treatment of this disease. MicroRNAs are small noncoding RNA molecules which often
regulate essential biological processes and are good candidates for biomarkers. By integrative analysis of both the cancer-associated
gene expression data and microRNA-mRNA network, miR-148b-3p, miR-629-3p, miR-27a-3p, and miR-142-3p were screened as
novel diagnostic biomarkers for oral squamous cell carcinoma based on their unique regulatory abilities in the network structure of
the conditional microRNA-mRNA network and their important functions.These findings were confirmed by literature verification
and functional enrichment analysis. Future experimental validation is expected for the further investigation of their molecular
mechanisms.

1. Introduction

Oral squamous cell carcinoma (OSCC) is the sixth most
common cancer with more than 300,000 cases worldwide
each year [1]. It is the most malignant tumor in the oral and
maxillofacial regions and accounts for 90% of oral cancers
[2, 3]. The risk factors for OSCC could be tobacco, alco-
hol consumption, betel quid (BQ) chewing, Bidi smoking,
and genetic predisposition [4, 5]. OSCC can metastasize
to lymph-node, even to remote organs with high mortality
rate. The present diagnosis of OSCC often happened at late
stage and the treatment can be unsuccessful due to its local
recurrence.The precise early diagnosis is critical and essential
to the future prevention and personalized treatment of this
disease.

MicroRNA is a family of functional noncoding RNA
molecules containing about 22 nucleotides, which play roles
in the posttranscriptional gene regulation. Since many key
biological processes including the development, differen-
tiation, and cell cycles are regulated by microRNAs, the
abnormal expression of microRNAs is often associated with

the initialization and progression of many diseases [6, 7].
Thus miRNAs usually could serve as suitable biomarkers for
many diseases, such as neurodevelopmental disorders [8],
cancer, and cardiovascular disease [9–11].

Previous studies have demonstrated that microRNAs
played important roles in OSCC. For example, microRNA-
23b/27b cluster is reported as tumor suppressive and regu-
lates the MET oncogene in OSCC [12]. MicroRNA-27a-3p
can regulate transition from epithelial to mesenchymal in
OSCC by targeting YAP1 [13]. The apoptosis-related protein
expression and radiosensitivity in BQ-associated OSCC are
regulated by microRNA-17-5p [14]. Metabolic shift in OSCC
is mediated by microRNA-340 targeting glucose transporter-
1 [15]. Tumor growth and activation of NF-𝜅B signaling were
promoted via the regulation of NLK by microRNA-92b in
OSCC [16]. In addition, microRNA-17/20a was suggested as a
prognosticmarker since it can inhibit cell migration inOSCC
[2]. Circulating microRNA-21 and PTEN (phosphatase and
tensin homolog) are reported as promising biomarkers for
detection of OSCC [17].
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Figure 1: Schematic pipeline for the identification of oral squamous cell carcinoma (OSCC) microRNA biomarkers.

From the above introduction, we believe that microRNAs
are good candidates to act as diagnostic and prognostic
biomarkers of OSCC. As we know, OSCC is a complex and
heterogeneous disease. For this reason, more precise and
personalized biomarkers are needed for the diagnosis, prog-
nosis, and treatment of OSCC. Until now, very few studies
have focused on the expression data of OSCC to integrate
it with the microRNA-mRNA network structural analysis
for biomarker discovery in OSCC, especially the application
of bioinformatics and network analysis to the study of the
functions of microRNAs in the OSCC initialization and
progression.

The experimental methods for biomarker discovery are
time-consuming and costly. Bioinformatics screening will
be helpful to the efficient biomarker screening. Previously,
several models have been developed to infer key and
biomarker microRNAs in complex diseases from conditional
gene expression data. Differential expression genes (DEGs)
are often used to screen biomarker genes, but only few DEGs
are validated as biomarkers; therefore integrative analysis of
DEGs with other information is very necessary for efficient
biomarker discovery. As described in previous work [18–21],
these models screen the potential biomarker based on the
scrutinizing of the structure of the conditional microRNA-
mRNA network. By statistical analysis of the network struc-
ture and functions of the biomarker microRNA’s targets, the
model can very effectively identify novel putative microRNA
biomarkers for the diagnosis of complex diseases. So we here
apply the model to the biomarker microRNA discovery for
diagnosis of OSCC.

2. Materials and Methods

Theschematic pipeline of the present work for the data collec-
tion, model construction, biomarker microRNAs prediction,
and validation and enrichment analysis of the targets of the
predicted microRNAs is presented in Figure 1. The details
of the step-by-step procedures for the screening of OSCC
diagnostic biomarker microRNAs are described as follows.

2.1. Gene Expression Data Collection. The data for the OSCC
gene expression and microRNA expression were extracted
from the GEO database [22]. The OSCC associated expres-
sion data in the GEO database are listed in Table 1. Eight
OSCC associated data sets measured from different microar-
ray platforms are available in the GEO database. After the
condition filtering, the final data used for the construction
of OSCC-specific microRNA-mRNA network are GSE30784
and GSE28100. The former is the mRNA expression data
including 167 OSCC samples and 45 samples as control [23]
and the latter is the microRNA expression data with 17 OSCC
samples and 3 control samples [24].Thedatawere normalized
and the differentially expressedmRNAswere identified based
on linear models in Limma R package [25, 26]. The 𝑝 value
and other parameters were calculated with the empirical
Bayes (eBayes) method.The Benjamini-Hochberg correction
was applied to adjust the 𝑝 values. The adjusted 𝑝 value less
than 0.05 was chosen as the cut-off criteria.

The reported OSCC associated microRNAs were also
collected from PubMed citations by the search criteria “(Oral
squamous cell carcinoma OR OSCC) AND (miRNA OR
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Table 1: OSCC gene expression data collected from GEO database.

Accession/ID PMID Platform OSCC Control Gene/microRNA
GSE3524 15381369 GPL96 𝑛 = 16 𝑛 = 4 Gene

GSE70604 26700817 GPL2986 𝑛 = 7 𝑛 = 6 Gene23624915

GSE37991 25204733 GPL6883 𝑛 = 40 𝑛 = 40 Gene23362108
GSE28100 22761427 GPL10850 n = 17 n = 3 MicroRNA
GSE23558 22072328 GPL6480 𝑛 = 27 𝑛 = 5 Gene
GSE25099 21853135 GPL5175 𝑛 = 57 𝑛 = 22 Gene
GSE30784 18669583 GPL570 n = 167 n = 45 Gene
GSE10121 18472963 GPL6353 𝑛 = 35 𝑛 = 6 Gene

Table 2: Previously reported microRNA biomarkers for OSCC from PubMed.

MicroRNA PMID Biomarker Type Samples Expression in OSCC NOD
(Ref.)a

TFP
(Ref.)a

miR-155-5p 26307116
24692283 Prognostic biomarker Tissue Upregulated 71 0.211

miR-483-5p 26224475 Diagnostic/prognostic
biomarker Serum Upregulated 4 0.135

miR-216a 25955794 Prognostic biomarker Tissue Downregulated 6 0.087
miR-21-3p
miR-96-5p
miR-141-3p
miR-130b-3p

25532855 Prognostic biomarker Tissue Upregulated

N/A
8
22
2

N/A
0.159
0.167
0.119

miR-21-5p 24755828 Prognostic biomarker Tissue Upregulated 38 0.135
miR-31-5p 22083872 Diagnostic biomarker Saliva Upregulated 10 0.142
aThe NOD and TFP are calculated based on the reference human microRNA-mRNA network, while the measurements in Section 3.2 are calculated based on
the OSCC-specific network.

microRNA) AND (biomarker∗ OR marker∗)”. They were
checked manually and listed in Table 2.

2.2. Prediction of microRNA Biomarkers for Diagnosis of
OSCC. As reported in the previous researches in Shen’s
group [18–21], twomeasurements are important for candidate
biomarker microRNA. The first one is the novel of degree
measurement (NOD). It measures the number of genes solely
targeted by certain microRNA [19, 20]. This character is
reasonable since the abnormal alteration of this type of
interaction cannot be compensated by another microRNA-
mRNA interaction pair as most of the microRNA-mRNA
interactions are synergic. The other measurement is the
transcription factor percentage (TFP), which was defined as
the percentage of transcription factor (TF) genes of all targets
of the microRNA [18].

According to the above hypothesis, the OSCC-specific
microRNA-mRNA network was constructed by mapping
the detected differentially expressed microRNAs in OSCC
onto the reference human microRNA-mRNA network. The
reference network was constructed with the integration of
the experimentally validated and computational predicted
microRNA-mRNA pairs. The experimentally validated data
included information from miRecords [27], TarBase [28],
miR2Disease [29], and miRTarBase [30], while the com-
putational predicted microRNA-mRNA pairs are extracted
from no fewer than 2 databases among HOCTAR [31],

ExprTargetDB [32], and starBase [33].With the reconstructed
conditional network, the above-mentioned measurements,
that is, theNODandTFP,were calculated for eachmicroRNA
in the OSCC-specific network. MicroRNAs with significantly
large NOD and TFP values (Wilcoxon signed-rank test, 𝑝
value < 0.05) were screened as putative biomarkers.

2.3. Functional Enrichment Investigation of the Targets of Pre-
dicted OSCC Diagnostic MicroRNA Biomarkers. Functional
enrichment analysis of the genes targeted by the identified
candidate biomarker microRNAs from the OSCC-specific
microRNA-mRNA networks was performed through three
different tools: Gene Ontology Annotation, KEGG Pathway
Analysis, and Ingenuity Pathway Analysis (IPA). Here, the
first two analyses were conducted on the DAVID (Database
for Annotation, Visualization, and Integrated Discovery)
online analysis webpage [34]. The significantly enriched
pathways and ontologies for OSCC with 𝑝 value less than
0.05 were ranked. The 𝑝 value was calculated based on
the hypergeometric test and FDR adjustment was used for
multiple test correction.

3. Result and Discussion

3.1. The Characterization of the Previous Reported OSCC
Diagnostic Biomarker MicroRNAs. We checked the PubMed
citations and the previously reported biomarker microRNAs
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Table 3: Candidate OSCC microRNA biomarkers identified by our model.

MicroRNA NOD 𝑝 value TFP 𝑝 value Number of targets
miR-148b-3p 15 5.06E-06 0.168 0.00912 95
miR-155-5p 27 1.25E − 12 0.259 1.53E − 05 58
miR-629-3p 10 0.00845 0.214 4.58𝐸 − 05 14
miR-27a-3p 10 0.00845 0.194 3.81𝐸 − 04 31
miR-142-3p 10 0.00845 0.164 0.0168 55
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Figure 2: Candidate oral squamous cell carcinoma (OSCC) microRNA biomarkers with their target genes. Here, ellipses in black represent
5 microRNA biomarkers. Genes in red are associated with OSCC according to literature reports while genes in yellow are reported to be
associated with other oral diseases.

for OSCC were listed in Table 2. From Table 2, it is clear
that all the reported microRNAs have high NOD and TFP
values except miR-21-3p, which cannot be extracted from the
reconstructed microRNA-mRNA network. This observation
confirmed that the model using the NOD and TFP as two
measurements for the evaluation of the potential biomarkers
is applicable for OSCC biomarker discovery.

3.2. Predicted Diagnostic Biomarker MicroRNAs for OSCC.
We first identified 56 dysregulated microRNAs and 3375
differentially expressed genes in OSCC by using the pipeline
presented in Figure 1. Five microRNAs were identified
through Wilcoxon signed-rank test with 𝑝 value less than
0.05. These microRNAs were predicted to be candidate
biomarkers for the diagnosis of OSCC. Their network
structural characteristics in the microRNA-mRNA network,
including the number of targets andNODandTFPvalues cal-
culated based on the conditional OSCC-specific microRNA-
mRNA network, are listed in Table 3. Among the five

microRNAs, miR-155-5p was reported in previous work as
biomarker [35, 36]. The other four microRNAs, that is, miR-
148b-3p, miR-629-3p, miR-27a-3p, and miR-142-3p, are the
novel putative biomarkers identified for OSCC.

3.3. Literature-Based Validation of Identified MicroRNA
Biomarkers. The targets of the five putative microRNAs are
presented in Figure 2. From the figure, we can see that some
of the targets of these microRNAs have been reported to
be associated with OSCC (genes colored red) or other oral
diseases (genes colored yellow) according to the PubMed
citations.

3.4. Functional Enrichment Analysis of Target Genes of Can-
didate MicroRNA Biomarkers. The functional enrichment
analysis was further performed to explore the roles of the
uniquely regulated genes of the identified microRNAs in
OSCC with DAVID and IPA tools. Figure 3 presented the
Gene Ontology (GO) Annotation for targets of the identified
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Figure 3: Gene Ontology (GO) Annotation for genes targeted by identified microRNA biomarkers. (a), (b), and (c), respectively, represent
three levels of GO: biological process, cellular component, and molecular function. The statistical significance value (𝑝 value) has been
negative 10-based log-transformed. The top 10 significantly enriched items are listed for each level.
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Figure 4: KEGG Pathway Enrichment Analysis and Ingenuity Pathway Analysis for genes targeted by identified microRNA biomarkers.
The statistical significance value (𝑝 value) has been negative 10-based log-transformed. The top 10 significantly enriched pathways are listed,
respectively, in (a) and (b).

microRNA biomarkers in OSCC. The three levels of GO
analysis are presented in Figures 3(a)–3(c), respectively,
for biological process, cellular component, and molecular
function. The top 10 significantly enriched items are listed
for each level. Most of the dysregulated biological processes
are the positive/negative biological or cellular processes,
the regulation of cell cycle, and the response to oxygen-
containing compound. The former are well-known popular
cancer-associated processes, while the latter is associated
specificallywithOSCC [37–39].Themost enrichedmolecular
functions are the general cancer-associated items, such as
protein binding, protein kinase activity, and receptor signal-
ing protein activity. The functions for carbohydrate binding
[40–42] and glycosaminoglycan binding [43, 44] were also
discovered in the OSCC studies.

The result of the pathway enrichment analysis of the
targeted genes of the putative microRNA biomarkers is
displayed in Figure 4. The most common cancer-associated
pathways like p53 signaling pathway and cell cycle pathway
are enriched in both the DAVID and IPA methods. There
are still other pathways such as PI3K-Akt signaling pathways
and colorectal cancer metastasis were screened by these two
enrichment analyses. The Aryl hydrocarbon receptor [45–
47], the HGF [48, 49], ECM receptor interaction [50, 51],
Hepatitis B [52, 53], and glucocorticoid receptor signaling
[54] are all supported by the PubMed citations.

4. Conclusions

In this research, we applied the concepts of NOD and TPF
to the integrative analysis of OSCC gene expression and the
microRNA-mRNA network. We identified five microRNAs
that could be putative biomarkers for OSCC. Among them,
one has been reported as biomarker and two are reported as
associated microRNAs. The other two are the novel finding
microRNA biomarkers. As a result, four novel biomarker
microRNAs, that is, miR-148b-3p, miR-629-3p, miR-27a-3p,
and miR-142-3p, are discovered in our work. The literature
checking and the functional enrichment analysis confirmed
our finding. Therefore, further experimental verification and
clinical testing were suggested for these putative OSCC
microRNA biomarkers.

Abbreviations
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TF: Transcription factor
NOD: Novel out degree
TFP: Transcription factor gene percentage
KEGG: Kyoto Encyclopedia of Genes and
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IPA: Ingenuity Pathway Analysis.
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