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A major feature of type 1 diabetes mellitus (T1DM) is 
hyperglycemia and dysfunction of pancreatic -cells. In a 
previous study, we have shown that Tat-DJ-1 protein inhibits 
pancreatic RINm5F -cell death caused by oxidative stress. In 
this study, we examined effects of Tat-DJ-1 protein on 
streptozotocin (STZ)-induced diabetic mice. Wild type (WT) 
Tat-DJ-1 protein transduced into pancreas where it markedly 
inhibited pancreatic -cell destruction and regulated levels of 
serum parameters including insulin, alkaline phosphatase 
(ALP), and free fatty acid (FFA) secretion. In addition, 
transduced WT Tat-DJ-1 protein significantly inhibited the 
activation of NF-B and MAPK (ERK and p38) expression as 
well as expression of COX-2 and iNOS in STZ exposed 
pancreas. In contrast, treatment with C106A mutant Tat-DJ-1 
protein showed no protective effects. Collectively, our results 
indicate that WT Tat-DJ-1 protein can significantly ameliorate 
pancreatic tissues in STZ-induced diabetes in mice. [BMB 
Reports 2018; 51(7): 362-367]

INTRODUCTION

Type 1 diabetes mellitus (T1DM) is characterized by 
destruction and dysfunction of pancreatic -cells, leading to 
impaired blood glucose levels (1). DM affects about 411 
million people worldwide. T1DM constitutes about 10% of all 
diabetes patients (2, 3). Diabetes also affects metabolism in 
various tissues, including the liver which plays an important 

role in metabolic processes as a metabolic center (4). Other 
studies have reported that oxidative stress and inflammation 
are associated with impairment of insulin levels (5, 6). 
Streptozotocin (STZ), a pancreatic -cell toxin, is generally 
used to induce T1DM in animal models. An STZ-induced 
diabetic model affects pancreatic -cells by hyperglycemia and 
free fatty acids with reduced serum insulin levels (7, 8).

DJ-1, a highly conserved and homodimeric protein, was 
initially discovered as a novel oncogene. It is extensively 
expressed in human tissues including brain, kidney, liver, and 
pancreas (9). DJ-1 plays a crucial role in protecting various 
cells from oxidative stress while mutant DJ-1 is known to be 
associated with Parkinson’s disease (10, 11). DJ-1 protein 
contains cysteine residue at Cys-46 positions. C106A mutant is 
highly susceptible to oxidative stress. Thus, cysteine residue 
plays a key role in the function of DJ-1. C106A mutant also 
leads to the loss of function of DJ-1 protein. It is highly 
associated with various diseases (10-13). Several studies have 
shown that DJ-1 in neuronal cells can protect against cell 
death caused by oxidative stress (14-16).

In general, the application of proteins has many difficulties 
because of their molecular sizes and low permeabilities into 
cells. Protein transduction domains (PTDs) are known to 
transduce into cells or tissues. Thus, PTD fusion proteins have 
been used to overcome these difficulties. Many researchers 
have reported that various PTD fusion proteins can transduce 
into cells and protect cells against cell injury caused by 
oxidative stress in various diseases (17-21). Recently, we have 
demonstrated that transduced wild type (WT) Tat-DJ-1 protein 
can drastically protect against oxidative stress or cytokine- 
induced RINm5F cell death (22, 23). WT Tat-DJ-1 protein can 
reduce cell damage in oxidative stress-induced HepG2 cells. 
In contrast, mutant DJ-1 protein fails to protect cells (24). The 
function of Tat-DJ-1 protein in diabetic model is poorly 
understood. Thus, the objective of this study was to determine 
the effect of Tat-DJ-1 protein on STZ-induced diabetes in mice. 
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Fig. 1. Protective effects of Tat-DJ-1 protein on streptozotocin
(STZ)-induced diabetes in mice. Diabetes was induced by a single 
intraperitoneal injection of 120 mg/kg STZ. Tat-DJ-1 protein (2 
mg/kg) was injected three times into STZ-induced diabetic mice. 
Pancreatic tissue sections were stained with hematoxylin and eosin 
(H&E), histidine, and insulin. Black boxes denote areas seen at 
higher magnification. They are presented in the lower right corner 
of the panel. Scale bar, 100 m (50 m for high magnification).

Fig. 2. Effects of Tat-DJ-1 protein on blood parameters in 
STZ-induced diabetic mice. Diabetes was induced by a single 
intraperitoneal injection of 120 mg/kg STZ. Tat-DJ-1 protein (2 
mg/kg) was injected three times into mice with STZ-induced 
diabetes. Changes in levels of blood glucose (A), serum insulin 
(B), alkaline phosphatase (ALP) (C), and free fatty acid (FFA) (D) 
were determined using respective assay kits. **P ＜ 0.01 versus 
relevant STZ-induced diabetic group.

RESULTS AND DISCUSSION

Effects of Tat-DJ-1 protein on STZ-induced diabetes in mice 
To determine functions of Tat-DJ-1 protein in T1DM, we 
prepared an experimental diabetic model using STZ according 
to a previous study (25). To induce diabetes in animal model, 
STZ is commonly used because it causes irreversible damage 
and leads to dysfunction of pancreatic -cells (7, 8, 26). Mice 
were divided into six groups. Immunohistochemistry staining 
was then performed. As shown in Fig. 1, pancreatic -cell 
destruction was drastically induced in STZ-exposed mice. 
However, WT Tat-DJ-1 protein inhibited pancreatic -cell 
destruction. WT Tat-DJ-1 protein also markedly increased 
insulin levels in STZ-exposed mice. In contrast, control DJ-1, 
C106A Tat-DJ-1, or Tat peptide had no protective effect on 
STZ-exposed mice. 

We also determined effects of Tat-DJ-1 protein on blood 
glucose levels, insulin, alkaline phosphatase (ALP), and free 
fatty acid (FFA) secretion in STZ-induced diabetic mice (Fig. 2). 
In STZ-induced diabetic mice, serum insulin levels were 
reduced compared to those in controls. However, WT Tat-DJ-1 
protein significantly increased serum insulin levels in 
STZ-induced diabetic mice. Blood glucose, ALP, and FFA 
levels in STZ-induced diabetic mice were drastically higher 
than those in controls whereas WT Tat-DJ-1 protein 
significantly decreased those levels in STZ-induced diabetic 
mice. However, other treated groups of STZ-exposed mice did 
not show changes in blood parameters. Similarly, other studies 
have shown that DJ-1 protects against pancreatic -cell death 
in STZ-exposed mice. In DJ-1 KO mice, insulin levels are 
significantly lower compared to those in STZ-treated mice (27). 
Other studies have shown that high glucose levels and FFA 
affect -cell functionality and survival throughout the course of 
DM. This is called glucotoxicity. In addition, it has been 
reported that serum levels of ALP, AST, and ALT are increased 

by hepatotoxic effect of STZ in STZ-induced diabetic animal 
models (28-31).

Effects of Tat-DJ-1 protein on MAPK signaling pathway in 
pancreas 
Previous studies have showed that DJ-1 can regulate various 
cell signaling pathways, including mitogen activated protein 
kinase (MAPK), phosphatidylinositol-3-kinase (PI3K)/Akt, and 
apoptosis signal-regulating kinase (ASK1) that regulate cell 
survival or cell death (32-35). Other reports have also 
suggested that diabetic nephropathy (DN), one of prevalent 
complications associated with diabetes, involves nuclear factor 
kappa B (NF-B) and MAPK (36). We determined whether this 
protein might regulate MAPK and NF-B in STZ-exposed 
pancreas. As shown in Fig. 3A, phosphorylation levels of ERK 
and p38 protein were higher in the pancreases of STZ-exposed 
mice compared to those in control mice. WT Tat-DJ-1 protein 
markedly reduced phosphorylation levels of ERK and p38 
proteins in STZ-exposed mice. However, we did not detect 
JNK expression levels in this study (data not shown). Our 
results also showed that phosphorylation levels of IB and 
p65 in pancreases of STZ-exposed mice were higher than 
those in control mice. WT Tat-DJ-1 protein reduced 
phosphorylation levels of IB and p65 levels in STZ-exposed 
mice (Fig. 3B). In contrast, other treatments did not affect 
signaling pathways in STZ-exposed mice. Consistent with 
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Fig. 3. Effects of Tat-DJ-1 protein on STZ-induced MAPK and 
NF-B activation in pancreas. Diabetes was induced by a single 
intraperitoneal injection of 120 mg/kg STZ. Tat-DJ-1 protein (2 
mg/kg) was injected three times into mice with STZ-induced 
diabetes. Activation of MAPK (A) and NF-B (B) was determined 
by Western blot analysis and the band intensity was measured by 
densitometry. **P ＜ 0.01 versus relevant STZ-induced diabetic 
group.

Fig. 4. Effects of Tat-DJ-1 protein on STZ-induced inflammatory 
response in pancreas. Diabetes was induced by a single intraperi-
toneal injection of 120 mg/kg STZ. Tat-DJ-1 protein (2 mg/kg) 
was injected three times into mice with STZ-induced diabetes. 
Expression levels of COX-2 and iNOS protein (A) and mRNA (B) 
were determined by Western blotting and RT-PCR analysis. Band 
intensity was measured by densitometry. **P ＜ 0.01 versus 
relevant STZ-induced diabetic group.

these results, our previous studies have shown that transduced 
Tat-DJ-1 protein inhibits oxidative stress-induced RINm5F and 
HepG2 cell death by regulating MAPK and NF-B activation 
(23, 24). Recently studies have shown that phosphorylation 
levels of MAPKs are increased in STZ-exposed rats whereas 
treatment with ginsenoside (GSS) exerts protective effects 
against T1DM via regulating MAPKs activation (37). Zhang et 
al. (38) have also shown that lentinan (LNT) used in traditional 
medicine can suppress MAPK (JNK and p38) and NF-B 
activation in STZ-exposed INS-1 cells. 

Tat-DJ-1 protein inhibits STZ-induced inflammation in 
pancreas 
Accumulating evidence suggests that the development of 
T1DM or DN will lead to inflammation (39-41). Pro- 
inflammatory cytokines and oxidative stress are known to 
trigger pancreatic -cell death (42-44). As shown in Fig. 4, 
COX-2 and iNOS expression levels were increased in 
STZ-treated mice compared to those in normal control mice. 
WT Tat-DJ-1 protein markedly reduced expression levels of 
these proteins whereas mice in other treatment groups did not 
show any significant changes in these expression levels 
compared to STZ-exposed mice. Kellogg et al. (45) have 
shown that COX-2 can lead to destruction of pancreatic tissues 
in diabetes, suggesting that regulating COX-2 pathway is a 
potential therapeutic strategy to control diabetic peripheral 

neuropathy. Several studies have shown that COX-2 and iNOS 
inhibitors can effectively alleviate diabetic neuropathic pain in 
STZ-induced neuropathy (46). COX-2 and iNOS also con-
tribute to STZ-induced diabetic hyperalgesia. COX-2 and iNOS 
inhibitors can suppress hyperalgesia occurring in STZ-exposed 
rats (47).

In summary, our study demonstrated that transduced WT 
Tat-DJ-1 protein could attenuate STZ-induced diabetes by 
suppressing changes of blood parameters, MAPK and NF-B 
signaling pathways, and inflammatory responses. In contrast, 
mutant Tat-DJ-1 protein did not show protective effects in 
STZ-exposed mice. Our results indicate that WT Tat-DJ-1 
protein may represent a useful therapeutic agent for T1DM. 
However, further study is still needed to explore its potential 
applications.

MATERIALS AND METHODS

Materials 
Primary and HRP-conjugated secondary antibodies were 
obtained from Santa Cruz Biotechnology (Santa Cruz, CA, 
USA) and Cell Signaling Technology (Beverly, MA, USA). Tat 
peptides were purchased from PEPTRON (Daejeon, Korea). 
WT Tat-DJ-1, C106A Tat-DJ-1, and control DJ-1 protein were 
prepared in our laboratory as described previously (23, 24). 
Male ICR mice were obtained from the Experimental Animal 
Center at Hallym University. All other agents were of the 
highest grade available unless otherwise stated. 
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Animals and experimental protocol 
Male ICR mice at 6-week-old were housed at constant 
temperature of 23oC and relative humidity of 60% with a fixed 
12 h light:12 h dark cycle. They were provided free access to 
food and water. All experimental procedures involving 
animals and their care conformed to the Guide for the Care 
and Use of Laboratory Animals of the National Veterinary 
Research & Quarantine Service of Korea. They were approved 
by the Hallym Medical Center Institutional Animal Care and 
Use Committee (Permit No. Hallym 2015-17).

To examine effects of Tat-DJ-1 protein on STZ-induced 
diabetic mice, mice were divided into six groups (n = 7 per 
group): 1) non-diabetic normal control mice; 2) STZ-induced 
diabetic mice; 3) STZ ＋ control DJ-1 protein treated mice; 4) 
STZ ＋ WT Tat-DJ-1 protein treated mice; 5) STZ ＋ C106A 
Tat-DJ-1 protein treated mice; and 6) STZ ＋ Tat peptide 
treated mice. Diabetes was induced by STZ as described 
previously (25). Diabetic mice received intraperitoneal injections 
of STZ (120 mg/kg) dissolved in 50 mM citrate buffer (pH 4.5) 
whereas normal control mice were given citrate buffer. These 
mice received three injections of WT Tat-DJ-1 protein (2 mg/kg) 
at 1, 3 and 5 days, C106A Tat-DJ-1 protein (2 mg/kg), control 
DJ-1 protein (2 mg/kg), or Tat peptide (2 mg/kg). Mice were 
sacrificed by cervical dislocation at 7 days after the induction 
of diabetes with STZ. Pancreatic tissues were removed for 
histological examinations. To analyze pancreatic -cells, tissue 
sections were incubated with either an anti-mouse insulin IgG 
(dilution 1:300; InnoGenex, San Ramon, CA, USA) or anti-His 
(dilution 1:200). Pancreatic tissue sections were stained with a 
peroxidase/3,3'-diaminobenzidine (DAB) system kit (Dako 
EnVision kit; Dako, Glostrup, Denmark) or hematoxylin and 
eosin (H&E; Sigma-Aldrich) as previously described (48). 

Blood analytical measurements
Changes in blood glucose levels were analyzed using 
Accu-Chek glucose strips and Accu-Chek compact plus meter 
(Roche, Germany). To minimize effects of diurnal fluctuations, 
blood samples were collected from tail veins at the same time 
every day. Serum insulin (Shibayagi, Japan), alkaline phos-
phatase (ALP; Asan Pharmaceutical, Korea), and free fatty acid 
(FFA; Bioassay system, USA) levels were measured using 
commercially available assay kits. 

Western blot analysis
Pancreas biopsies were homogenized vigorously in tissue 
protein extraction buffer with a protease inhibitor cocktail. 
Samples of equal amounts of proteins were subjected to 12% 
SDS-PAGE and transferred to nitrocellulose membranes. These 
membrane were blocked with 5% nonfat dry milk in TBST 
buffer (25 mM Tris-HCl, 140 mM NaCl, 0.1% Tween 20, pH 
7.5) for 1 h. Membranes were then incubated with primary 
antibodies (p-ERK, ERK, p-p38, p38, p-IB, IB, p-p65, p65, 
COX-2, iNOS, -actin) and HRP-conjugated secondary 
antibodies. Protein bands were detected using enhanced 

chemiluminescent reagents (Amersham, Franklin Lakes, NJ, 
USA) (49). 

Reverse Transcription (RT)-PCR analysis
Total RNA was isolated from pancreas biopsy sample using an 
Easy blue kit (Invitrogen, Carlsbad, CA, USA) according to the 
manufacturer’s instructions. RNA (1 g) was reversibly trans-
cribed and cDNA aliquots were amplified with COX-2, iNOS, 
and -actin primers: COX-2 antisense, 5’-TGGACGAGGTTTTT 
CCACCAG-3’; COX-2 sense, 5’-CAAAGGCCTCCATTGACCA 
GA-3’; iNOS antisense, 5’-CTGTCAGAGCCTCGTGGCTTT-3’; 
iNOS sense, 5’-ATGGCTCGGGATGTGGCTAC-3’; -actin anti-
sense, 5’-GGACAGTGAGGCCAGGATGG-3’; -actin sense, 
5’-AGTGTGACGTTGACATCCGTAAAGA-3’. A PCR Premix kit 
(Intron Biotechnology, Seoul, Korea) was used to perform PCR. 
PCR products were resolved on 1% agarose gel after ethidium 
bromide staining. They were visualized with ultraviolet light 
(50). 

Statistical analysis
Differences between groups were analyzed by one-way 
analysis of variance followed by Bonferroni’s post-hoc test 
using GraphPad Prism software (version 5.01; GraphPad 
Software Inc., San Diego, CA, USA). **P ＜ 0.01 was consi-
dered to indicate statistically significant difference.
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