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Abstract

The role of serotonin in major depressive disorder (MDD) is the focus of
accumulating clinical and preclinical research. The results of these studies
reflect the complexity of serotonin signaling through many receptors, in a large
number of brain regions, and throughout the lifespan. The role of the serotonin
transporter in MDD has been highlighted in gene by environment association
studies as well as its role as a critical player in the mechanism of the most
effective antidepressant treatments — selective serotonin reuptake inhibitors.
While the majority of the 15 known receptors for serotonin have been
implicated in depression or depressive-like behavior, the serotonin 1A (5-HT 4)
and 1B (5-HT ) receptors are among the most studied. Human brain imaging
and genetic studies point to the involvement of 5-HT, , and 5-HT g receptors in
MDD and the response to antidepressant treatment. In rodents, the availability
of tissue-specific and inducible knockout mouse lines has made possible the
identification of the involvement of 5-HT, 4 and 5-HT g receptors throughout
development and in a cell-type specific manner. This, and other preclinical
pharmacology work, shows that autoreceptor and heteroreceptor populations
of these receptors have divergent roles in modulating depression-related
behavior as well as responses to antidepressants and also have different
functions during early postnatal development compared to during adulthood.
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Introduction

The serotonin hypothesis of depression has dominated the field
of depression for over four decades'. This theory is centered on
the idea that reduced serotonin signaling is a risk factor in the
etiology and/or pathophysiology of major depressive disorder
(MDD)*. However, the most robust body of evidence for the role
of serotonin in depression is the efficacy of increasing extracellu-
lar serotonin for the treatment of depression. The discovery that
the efficacy of tricyclic antidepressants (TCAs) and monoam-
ine oxidase inhibitor (MAOI) antidepressants was largely due to
their serotonergic actions, which prompted the use of serotonin
selective reuptake inhibitors (SSRIs), the first among them fluox-
etine, to treat depression’®. These drugs act at the serotonin
transporter (5-HTT, also known as SERT) and cause increases in
extracellular serotonin, which is the purported mechanism of
action®. Many subsequent drugs inhibiting serotonin reuptake
have shown behavioral efficacy as antidepressant drugs, sug-
gesting that increasing synaptic serotonin levels may lead to the

treatment of depression®”’.

Despite the relative success in treating depression by increasing
extracellular serotonin, there is a lack of strong evidence sup-
porting a direct correlation between low serotonin signaling and
depression. While some studies report an association between
levels of platelet serotonin and depression, this has not been
a consistent finding in large sample sets, and it is also unclear
how platelet levels are related to brain levels of serotonin'®''.
Additionally, few studies report direct correlations between cer-
ebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin
metabolite, and depression'>'*. Low levels of tryptophan have been
consistently linked to depression; however, these effects could
be independent of serotonin'“'"”. The lack of consistent clear-cut
abnormalities in global measures of serotonin signaling isn’t sur-
prising if one considers the complexity of the receptors at which
serotonin binds, the intricate neuroanatomical circuitry of the
serotonin system, and the developmental role serotonin plays as
a neurotrophic factor'*'®, Many recent studies have focused on
understanding the mechanisms through which serotonin affects
depression by studying the impact of 5-HTT and the 15 known
receptors through gene-association studies, human brain imaging,
and pharmacological and genetic mouse models'’.

The success in treating depression by targeting the transporter
with SSRIs prompted investigations into whether variability in
5-HTT expression levels could be involved in the etiology of
depression. A highly cited study showed that there is an association
between a polymorphism in the serotonin transporter (5S-HTTLPR)
and susceptibility to developing depression®. This and other
studies have shown that the short “s” allele, which results in
lower levels of 5-HTT expression (at least in vitro) and therefore
increased extracellular 5-HT, is associated with a higher risk of
depression when combined with stressful life events’””. This
discovery would be unexpected if developmental considerations
were not considered. Although inhibiting the function of the trans-
porter during adulthood decreases depressive symptoms as in the
case of SSRIs, reduced expression of 5-HTT during development
may increase depressive behavior in adulthood. A human func-
tional magnetic resonance imaging (fMRI) study supports this,
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showing that short allele carriers show morphological and func-
tional alterations in limbic circuits®. Additionally, mice lacking
5-HTT throughout life display increased depressive-like behav-
iors, and pharmacological blockade of 5-HTT in mice exclusively
during early postnatal development resulted in increased adult
depressive behavior™. These results highlight the differences in
developmental versus adult effects of altered serotonin neuro-
transmission on depression.

In addition to the serotonin transporter, the majority of the
15 serotonin receptors have been implicated in the modulation
of depression, depressive-like behaviors, or the response to anti-
depressant treatment'’. There are numerous pre-clinical studies
which have investigated the role of serotonin receptors using phar-
macological manipulations and genetic knockout (KO) models in
rodents (Table 1). Given the breadth of this literature, this review
will focus on two receptors that are among the most extensively
studied for their role in modulating depression, the 5-HT,, and
5-HT , receptor subtypes. In addition, attention will be paid to
population-dependent and development-dependent effects of
serotonin signaling at these receptors and will draw from both
rodent and human studies.

The 5-HT |, and 5-HT, receptors are both inhibitory Gi/o-coupled
seven transmembrane receptors that are located throughout the
brain”~’. A major difference between these two receptors is
their subcellular distribution’. 5-HT, receptors are somatoden-
dritic, while 5-HT , receptors are located on axon terminals™*.
This difference is also reflected in their mechanisms of inhibitory
action (Figure 1). Activation of either receptor causes decreased
neurotransmitter release; however, 5-HT,, receptor activation
causes hyperpolarization, leading to decreased firing, while
5-HT, receptors inhibit voltage-gated calcium channels in the
presynaptic terminal**~”. Another mechanism for 5-HT , receptor-
mediated inhibition is via effects on 5-HTT, and activation of the
5-HT , receptor increases serotonin reuptake’ .

Both 5-HT,, and 5-HT , receptors act as autoreceptors located
on serotonin neurons and also have heteroreceptor populations
located on non-serotonin receptors (Figure 2). Although the mRNA
in the raphe (corresponding to autoreceptors) is comparable
between the two receptors, their heteroreceptors have distinct
patterns of expression”. 5-HT , receptors are enriched in the
hippocampus and cortex, while 5-HT,, receptors are highly
expressed in the basal ganglia’*®"’. These differences in mechanism
of action and localization may play a role in the different func-
tional effects of these receptors.

While this review focuses on the contribution of 5-HT,, and 5-HT
receptors in depression and depressive-like behaviors, these recep-
tors also modulate other psychiatric-relevant phenotypes. For
example, alterations in 5-HT, receptor expression influence anxi-
ety behavior, and 5-HT , receptor signaling affects reward- and
impulsivity-related phenotypes. These receptor-based differences
in serotonergic regulation of emotional behavior, which segment
into endophenotypes, could contribute to the heterogeneity of
symptoms found in MDD*. Understanding the neural circuits
that subserve these receptor-based and endophenotype-based
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Table 1. Preclinical evidence supporting the role for serotonin receptors in depression.

Receptor PubMed Pharmacological studies on

Hits* depression

5-HT,, 588 Antagonists have
antidepressant-like effects
and potentiate the effects of
SSR'S‘@@‘MM

5-HT,, 52 Agonists have

antidepressant-like effects '™

5-HT. 282 Antagonists have
antidepressant-like effects;
agonists have pro-depressive

effects'! 142

2C

5-HT,, 252 Antagonist has
antidepressant-like effects'*®

5-HT, 81 Agonists have rapid
antidepressant-like

effects™" ™

5-HT,, 5 Unknown

5-HT, 62 Agonists produce
antidepressant-like effects
and antagonists block the
effects of SSRIs ™%

Antagonists have
antidepressant-like effects '™

56

5-HT. 137

Genetic effects on
depression

No known effect of 5-HT,,
KO on depressive-like
behavior'®

Required for behavioral
effects of SSRIs '

No known effect of 5-HT,,
KO on depressive-like
behavior

5-HT, required for
exercise-induced
antidepressant effects; KO
has antidepressant-like
phenotypemzws

KO has attenuated
responses to stress'®”

Other behavioral
phenotypes

Agonists are hallucinogenic;
antagonists are
antipsychotic and anxiolytic;
KO mouse has reduced
anxiety-like behavior'®-'%

KO mouse shows increased
impulsivity '

Antagonists have anxiolytic
effects; agonists decrease
impulsivity and motivation for
drug and food consumption;
KO mouse has reduced
anxiety-like behavior'#'#

Antagonists are anxiolytic'*’

Agonists are anxiolytic;
agonists improve cognitive
performance and reduce

feeding'®" 1%
Unknown KO mice display increased
exploratory behavior'**
Unknown Antagonists enhance
cognitive performance;
blockade of signaling is
anxiogenic'®"1%
KOs have an Antagonists have
antidepressant-like pro-cognitive effects'®”
phenotype '™

“Number of PubMed hits based on the search terms including “depression” and the receptor as of August 25, 2016.
N.B. 5-HT1D, 1E, 1F, 3B, and 5B are not included in the chart owing to a lack of published research concerning the role of these

receptors in behavior.

5-HT, serotonin; KO, knockout; SSRI, selective serotonin reuptake inhibitor.

differences can help clarify the often confusing and sometimes
contradictory findings from various preclinical approaches.
From a behavioral perspective, these phenotypes can be segmented
through formal unsupervised factor analyses to better divide
depressive behaviors into meaningful endophenotypes. Then
predictors of the different endophenotypes could be tested by
including genetic or pharmacological manipulations.

5-HT,, and depression

Of the 15 known serotonin receptors, the 5-HT,, receptor is the
most studied for its role in depression®. Quantification of 5-HT,,
receptor levels in humans from post mortem and positron emis-
sion tomography (PET) imaging studies reveals an increased level
of 5-HT,, receptors in patients diagnosed with MDD*~. Gene
association studies have linked a polymorphism in the 5-HT,, regu-
latory region (rs6295; G-1019C) with receptor levels in the brain
and also to increased risk for depression*~’. The GG genotype
at this single nucleotide polymorphism (SNP) is associated with

altered levels of 5-HT,, receptor expression and reduced respon-
siveness to antidepressant treatment***. Additionally, clinical
studies have revealed antidepressant effects of buspirone and
other 5-HT |, receptor agonists™-".

Rodent models have also shown that 5-HT,, receptor agonists,
such as 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT),
can have acute antidepressant-like effects’ . These effects
are blocked by 5-HT,, receptor antagonists, suggesting that
the antidepressant-like response is specific to 5-HT,, receptor
signaling™. 5-HT,, heteroreceptors, expressed throughout the
limbic system, are the likely site of action for these acute 5-HT,
receptor-mediated effects””. On the other hand, 5-HT,, autore-
ceptors work in opposition to the heteroreceptors, leading to
pro-depressive effects. Specifically, activation results in hyper-
polarization and reduced firing of raphe neurons, leading to
diminished serotonin release in projection regions™. Therefore,
stimulation of 5-HT,, autoreceptors from increased extracellular
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Figure 1. Schematic illustrating the inhibitory effects of serotonin (5-hydroxytryptamine, 5-HT) 1A (5-HT,,) (red) and 5-HT, (blue)
receptors on the normal firing and neurotransmitter release of a neuron (top). Activation of 5-HT,, receptors results in decreased
firing (middle), while activation of 5-HT; receptors causes decreased neurotransmitter release through actions in the presynaptic terminal

(bottom).
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Figure 2. Diagram summarizing the roles of autoreceptor and heteroreceptor populations of serotonin (5-hydroxytryptamine, 5-HT)
1A (5-HT,,) and 5-HT_ receptors on behavior during development and adulthood. 5-HTT, serotonin transporter.

serotonin following SSRI treatment is thought to oppose SSRI
actions by downregulating serotonin neuron activity”’. Over the
first few weeks of treatment, these receptors desensitize, which
may underlie the delayed behavioral efficacy of SSRIs*. Therefore,
blocking 5-HT,, autoreceptor activation has been introduced as
an adjunctive therapy to SSRIs. 5-HT,, receptor partial agonists
such as pindolol, and more recently vilazodone, have been shown
to be an effective adjunctive therapy to SSRIs in clinical studies™".
The development of new agonists that preferentially target sub-
populations of 5-HT |, receptors, for example autoreceptors versus
heteroreceptors, potentially through biased agonism, may be useful
tools for the treatment of MDD,

Differences in receptor levels have also been modeled in mice by
using genetic loss-of-function models and have allowed causal links
between receptor expression levels and depressive-like behavior.
5-HT,, receptor KO mice have an anti-depressive phenotype®®.
Tissue-specific KOs have been especially valuable for the dissec-
tion of this phenotype and have allowed investigations into the
distinct roles of different populations of receptors®. The absence
of heteroreceptors results in increased depressive-like behavior- as
measured in the forced swim test. This mouse model also allowed
for temporal control of receptor expression, which revealed a
developmental sensitive period for the effect of heteroreceptors
on depressive-like behavior. Specifically, knockdown of 5-HT,
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heteroreceptors in adulthood was not sufficient to produce the
depressive-like behavior. On the other hand, reduction of autore-
ceptors in adulthood increased mobility in the forced swim test,
suggesting an “anti-depressed” phenotype.

Preclinical studies have also confirmed a causal role for alterations
in 5-HT,, receptor expression in antidepressant efficacy. 5-HT,,
receptor KO mice do not show a behavioral response to
fluoxetine®’. As expected from the pharmacology work, this effect
is not mediated by autoreceptors, since reduced expression of
5-HT,, autoreceptors actually increases the speed and efficacy of
SSRI response, requiring only 8 days of fluoxetine treatment to
show a behavioral antidepressant-like response®. Recent data show
that 5-HT,, heteroreceptors are critical for an effective behav-
ioral response to an SSRI in mice®. Genetic or viral deletion of
5-HT,, receptors specifically in the dentate gyrus of the hippoc-
ampus reduced the behavioral response to fluoxetine. Furthermore,
expression of 5-HT,, receptors only in the dentate gyrus was
sufficient for normal antidepressant-like responses. These results
importantly demonstrate a mechanism for 5-HT,,-mediated
antidepressant effects localized in the mature granule cells of the
dentate gyrus.

5-HT,, and other psychiatric-relevant phenotypes
Anxiety behavior is also modulated strongly by the 5-HT,, recep-
tor, and, among depressed patients, almost half have a comorbid
anxiety disorder’. In preclinical studies, 5-HT,, receptor agonists
have anxiolytic effects, and 5-HT,, receptor KO mice display
increased anxiety-like behavior®2, The effect has a develop-
mental sensitive period, since early developmental but not adult
rescue of the receptor was sufficient to restore the normal pheno-
type in the KO’. Consistent with this, early postnatal blockade of
5-HT,, receptors, through genetic or pharmacological methods,
also leads to increased anxiety’*’”. Recent work has shown that the
sensitive period is peri-pubertal, and tissue-specific KO mice point
to a role for autoreceptors during this period of development®’*"’

Other psychiatric disorders have also been linked to the 5-HT,
receptor, including bipolar disorder and post-traumatic stress
disorder’*”. Additionally, the SNP rs6295 found in the premotor
region that is associated with risk for depression is also linked with
psychiatric hospitalization, a history of substance abuse, and prior
suicide attempts*’. Consistent with the studies in depression, the
G allele is associated with reduced expression of the 5-HT,, recep-
tor in the prefrontal cortex and an increased risk for psychiatric
outcomes. Interestingly, the effects on receptor expression were
also seen in the brain during early human embryonic development,
suggesting its potential importance in mediating developmental
contributions to adult depression. Finally, there were associa-
tions with childhood maltreatment with trends towards significant
genotype by environment interactions™.

5-HT,; and depression

While the 5-HT , receptor is best known for its role in regulat-
ing aggressive and impulsive behavior, it also plays an important
role in modulating depression. Activation of the 5-HT,, receptor
decreases serotonin levels in the brain through effects on release,
synthesis, and reuptake™**'. In humans, reduced 5-HT , recep-
tor function is associated with MDD®. Additionally, patients with
MDD are less responsive to 5-HT,, receptor agonists, suggesting
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reduced expression or desensitization®**. This is consistent with
clinical studies showing that 5-HT,, receptor agonists produce
antidepressant effects in humans®~*’. This has also been shown
in mice, with specific agonists resulting in antidepressant-like
behavior®**. However, genetic KO of the receptor also results in
antidepressant-like behavior, suggesting that this is possibly caused
by compensatory effects”~*.

Both autoreceptor and heteroreceptor populations of 5-HT ,
receptors have been implicated in depressive-like behaviors
using rodent models. However, since 5-HT , receptors are located
on presynaptic terminals, heteroreceptors and autoreceptors
have overlapping localization™. This rules out brain imaging and
pharmacological manipulations in preclinical models as tools to
differentiate the role of the two populations of receptors. Therefore,
it has been only the recent availability of a tissue-specific genetic
mouse model that has allowed the dissection of the role of 5-HT

receptors in the regulation of behavior”™.

Our recent studies show that selective ablation of 5-HT , autore-
ceptors results in decreased depressive-like behaviors in mice”’.
These mice also show increased elevations in serotonin levels
compared to controls following SSRI administration, suggesting
a potential mechanism of action for the behavioral effects.
Specifically, removing the terminal auto-inhibition may result
in increased serotonin in projection regions that are relevant to
depressive behavior. Furthermore, we also showed that the
impact of 5-HT , autoreceptors on behavior was not due to devel-
opmental expression, since the phenotype was not recapitulated
in a mouse with developmental knockdown. These data are
consistent with other evidence suggesting a pro-depressive role
for the activation of 5-HT, ; autoreceptors””. For example, 5-HT
mRNA is elevated in the raphe of rats following stress and in
models of depression such as learned helplessness, and viral
overexpression of 5-HT ; receptors in the raphe results in depres-
sive-like behavior following stress'”. In rats, reductions in 5-HT
receptor mRNA in the raphe are seen following SSRI treatment
in post mortem brains'’"'”. This effect isn’t seen in other brain
regions such as the cortex, hippocampus, or striatum, suggest-
ing that this effect is specific to autoreceptors. Additionally,
another study showed that 5-HT , autoreceptors may desensitize
following SSRI treatment, similar to 5-HT,, autoreceptors'®.
Finally, a recent PET study in humans reported that following
effective cognitive behavioral therapy for depression, 5-HT,,
receptor binding was reduced in the brainstem'*.

There is evidence which suggests an opposing role for 5-HT
heteroreceptors in depressive behaviors. Activation of 5-HT,,
heteroreceptors in a rodent serotonin depletion model (to remove
the contribution of autoreceptors) results in an antidepressant-like
effect'””. Additionally, reduced expression of 5-HT,, heterorecep-
tors in the ventral striatum is associated with depression in humans®.
Finally, 5-HT , receptors located in the ventral striatum have
been suggested to interact with pll (a 5-HT , receptor-binding
protein) to affect depression-related behaviors'*'?’.

5-HT,, and other psychiatric-related phenotypes

Reward dysfunction is a major symptom of MDD which is
mediated, in part, by altered signaling in the mesolimbic reward
system'*'">. 5-HT , receptors have been implicated in the neural
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basis of dysregulated reward sensitivity in a number of human
studies and preclinical models'*'", and both 5-HT,, receptor
protein and mRNA are located within the mesolimbic pathway
in the nucleus accumbens (NAc) and ventral tegmental area
(VTA)”. Additionally, activation of 5-HT , receptors in the VTA
increases dopamine levels in the NAc, potentially via effects on
GABAergic signaling in the VTA'".

Many studies linking the receptor to functional deficits in reward
processing have focused on addiction. Polymorphisms in the
5-HT,, receptor gene have also been associated with drug and
alcohol abuse''*~'?, Additionally, a PET imaging study revealed
increased 5-HT,, receptor binding in pathological gamblers, who
have known deficits in reward sensitivity, and gambling disorder
is highly comorbid with depression and alcohol and substance use
disorders''*'"*'. Another PET imaging study shows that there is
reduced 5-HT, ; receptor binding in cocaine-dependent participants
compared to in healthy controls'”. In preclinical models, 5-HT
receptor KO mice are more motivated to self-administer cocaine'*.
Consistent with this, 5-HT , receptor agonists attenuate the motiva-
tion for cocaine but paradoxically increase the rewarding effects
of cocaine'. These effects are mediated by 5-HT,, receptor
expression on medium spiny neurons in the NAc, likely through
their projections to the VTA'*'*. Additionally, 5-HT,, receptors
are required for the rewarding properties of social interaction,
supporting an impact on general reward systems''*.

5-HT,, receptors are also implicated in impulsive aggression.
In humans, polymorphisms in the gene encoding 5-HT,, recep-
tors have been associated with aggression, suicide, and disorders
that include impulsivity as a core phenotype, including attention
deficit hyperactivity disorder and substance use disorder''>'*'*’.
In mice, 5-HT,, receptor KOs are highly aggressive in tests
of male and female aggression and also display increased
impulsivity'**"*’. Additionally, 5-HT, , receptor agonists are known
as “serenics” because they decrease aggression'’!. While the
aggressive and impulsive phenotype was originally thought to be
modulated by the same underlying circuits, our recent work shows
that distinct populations of 5-HT ; receptors modulate aggression
and impulsivity”. Furthermore, developmental expression of the
5-HT,, receptor influences aggression, while adult expression
modulates impulsive behavior.

Conclusion
There is a considerable body of research that implicates serotonin
in the modulation of depression and depression-related behaviors.
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The preclinical work delineating the effects of signaling
through the 5-HT,, and 5-HT,; receptors has been made pos-
sible because of careful pharmacological studies as well as the
development of transgenic mouse models that have allowed for
tissue-specific and inducible knockdown. These studies have
highlighted the complexity of serotonin receptors, showing that
their role varies through the lifespan and by cell-type population.
Additionally, the availability of specific radioligands for PET
imaging of these receptors has allowed for the translation of find-
ings from preclinical work to humans. The large number of studies
concerning the role of these receptors is partially due to the fact
that the 5-HT | receptor subtypes were some of the first discovered,
and it may be only a matter of time before the roles of more newly
discovered receptors are clarified'”.

Despite the amassing of evidence of serotonin receptor-specific
involvement in depression, the primary pharmaceutical treat-
ment strategy for depression remains the inhibition of serotonin
reuptake. The lack of new treatment options is surprising given
the need for them, since current SSRI treatments are ineffective in
one-third of patients'*”. Additionally, the majority of patients,
as seen in the STAR*D study, don’t respond to administration
of the first SSRI treatment, requiring multi-step treatment plans
that take months'*”. Furthermore, the considerable differences in
treatment outcome also emphasize the heterogeneity of the
depressed patient population. A better understanding of receptor
signaling andneural circuit mechanisms by which serotonin affects
depression may inform the development of novel, more targeted
drugs that influence specific receptors, signaling cascades, or
time periods. Also, personalized treatment plans could be devel-
oped based on symptoms, biomarkers, or pathophysiological
presentation.
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