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Abstract: In this paper, we obtain upper bounds on the minimum distance for turbo codes using
fourth degree permutation polynomial (4-PP) interleavers of a specific interleaver length and classical
turbo codes of nominal 1/3 coding rate, with two recursive systematic convolutional component
codes with generator matrix G = [1,15/13]. The interleaver lengths are of the form 16¥ or 48Y¥,
where Y is a product of different prime numbers greater than three. Some coefficient restrictions are
applied when for a prime p; | ¥, condition 3 1 (p; — 1) is fulfilled. Two upper bounds are obtained for
different classes of 4-PP coefficients. For a 4-PP fyx* + f3x° + fox? + fix (mod 16k ¥), k. € {1,3},
the upper bound of 28 is obtained when the coefficient f3 of the equivalent 4-permutation polynomials
(PPs) fulfills f3 € {0,4¥} or when f3 € {2¥,6¥} and f, € {(4ky —1) - ¥, (8kp — 1) - ¥}, kr € {1,3},
for any values of the other coefficients. The upper bound of 36 is obtained when the coefficient f3
of the equivalent 4-PPs fulfills f3 € {2¥,6Y} and f, € {(2k; —1)- ¥, (6kp — 1) - ¥}, kp € {1,3},
for any values of the other coefficients. Thus, the task of finding out good 4-PP interleavers of the
previous mentioned lengths is highly facilitated by this result because of the small range required for
coefficients f4, f3 and f,. It was also proven, by means of nonlinearity degree, that for the considered
inteleaver lengths, cubic PPs and quadratic PPs with optimum minimum distances lead to better
error rate performances compared to 4-PPs with optimum minimum distances.

Keywords: PP interleaver; 4-PP; minimum distance; upper bound; turbo codes

1. Introduction

Error correcting codes with very good performances are an essential component for modern digital
communications systems [1,2]. There are three classes of capacity approaching codes—turbo codes [3],
low density parity check codes [4], and polar codes [5]. As a class of capacity approaching error
correcting codes, turbo codes have gained much interest since their invention. One of the important
research directions is increasing their minimum distances by different approaches. For example,
recent works that deal with this topic are [6-9]. In [6], some upper bounds on the minimum distance
for 3-dimensional turbo codes (conventional turbo codes with an additional patch) with quadratic
permutation polynomial (QPP) interleavers were derived. Some example of QPPs found by random
search that lead to significantly improved minimum distances are given. In [7], 4-dimensional (4-D)
turbo codes are proposed and upper bounds on bit error rate (BER) performances are derived.
These upper bounds imply weight enumerating functions and are derived by a simplified, augmented
state-diagram-based method. This method is used to select different parameters of 4-D turbo codes so
that they lead to lower BER values or higher minimum distances. In [8], a moment based augmented
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state diagram method was proposed to derive tighter upper bounds on BER performance for 4-D turbo
codes. It was used to design 4-D turbo codes in order to achieve improved BER performances. In [9],
a modified interleaver for a new structure of 4-D turbo codes, based on superposition modulation
and grouped power allocation, has been proposed to improve the minimum distance. An appropriate
design of interleavers for turbo codes considers the approaches that can lead to higher minimum
distances. In this respect, knowing the upper bounds on the minimum distances for different classes of
interleavers is important from the perspective of the measurements of their performances or limitations.

Permutation polynomial (PP) interleavers for turbo codes were introduced by Sun and Takeshita
in 2005 [10]. They are very attractive because of their fully algebraic description, low memory, and high
performance if they are appropriately chosen. Other very high-performing interleavers that are not
fully algebraic described, are dithered relative prime (DRP) interleavers [11] and almost regular
permutation interleavers [12]. Many results have been obtained regarding QPP interleavers. They have
been chosen as interleavers for turbo codes in the long term evolution (LTE) standard [13]. The most
notable results regarding QPP interleavers are those from [14,15]. In the last years, analysis and design
of PP interleavers of degree greater than two have gained interest. For example, good interleavers
based on PPs of degree greater than two have been obtained in [16-18].

In [15], upper bounds of the minimum distance for turbo codes with QPP interleavers and
different interleaver lengths were obtained. Some upper bounds for PP interleavers of any degree
were obtained in [19]. Recently, some results regarding upper bounds of the minimum distance for
turbo codes with cubic permutation polynomial (CPP) interleavers have been acquired [20,21]. In this
paper, for the first time, upper bounds of the minimum distance for turbo codes with fourth degree
permutation polynomial (4-PP) interleavers of a specific type of interleaver length and for classical
turbo codes of nominal 1/3 coding rate, with two recursive systematic convolutional component codes
with generator matrix G = [1,15/13], were obtained. Specifically, for interleaver lengths of the form
16Y or 48Y, with ¥, a product of prime numbers greater than three, the minimum distance is upper
bounded by the value of 36 or 28, depending on the 4-PP coefficients. Some coefficient restrictions are
applied when for a prime p; | ¥, condition 3 { (p; — 1) is fulfilled. If ¥ is a product of prime numbers
pi > 7 so that 3 | (p; — 1), the result in the paper is fully general.

The paper is structured as follows. In Section 2, some preliminary results about 4-PPs are given.
The main results are worked through in Section 3. Some remarks and examples are given in Section 4,
and Section 5 concludes the paper.

2. Preliminaries

2.1. Notation

In the paper we use the following notation:

(mod L), with L a positive integer, denotes modulo L operation;

e a|b, withaand b positive integers, denotes a dividing b;

e af{b,withaand b positive integers, denotes that a does not divide; b

° gcd(a, b), withaand b positive integers, denotes the greatest common divisor of 2 and b;
e log,(-) denotes base 10 logarithm;

e  ¢%is the natural exponential function of variable x.

2.2. Results Regarding 4-PPs
A 4-PP modulo L is a fourth degree polynomial

m(x) = (fix + fox* + f3x° + fux*) (mod L), 1)

sothatforx € {0,1,...,L — 1}, values 7r(x) (mod L) perform a permutation of the set {0,1,--- ,L —1}.
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A 4-PP is true if the permutation it performs cannot be performed by a permutation polynomial
of degree smaller than four.

Two 4-PPs with different coefficients are different if they lead to different permutations.

Conditions on coefficients f1, f2, f3, and fy so that the fourth degree polynomial in (1) is a 4-PP
modulo L have been obtained in [22]. Because we are interested in interleaver lengths of the form
16 - Hﬁl p; or 48 - H?ﬁl pi, with Nj, a positive integer, in Table 1 we give the coefficient conditions only
for the primes 2, 3, and p;, i = 1,2, ..., Ny, when the interleaver length is of the form

Ny
[ = 22 .33 .Hpi, withnp, > 1,np3 € {0,1}, )
i=1

pi>3,i:1,2,...,Np,p1 <p2<--- <pr.

Table 1. Conditions for coefficients f1, f5, f3, and fy so that 7(x) in (1) is a fourth degree permutation
polynomial (4-PP) modulo L of the form (2) (p; is a prime number so that p; | L).

1 pi=2 npp>1  fi #0,(f2+ f1) =0, f3 = 0 (mod 2)
2 pi=3 n3=1 (fi+f3) #0,(f2+fs) =0 (mod3)
@) 3|(pi—1) nrpy=1 f#0,f2=0,f3=0,f=0(modp;)
(pi >7)
) 3t(pi—1) npp=1 f1#0,£=0,f=0,f;=0(modp;) or
f2 =3f1f3 (mod p;), f3 # 0, fs = 0 (mod p;)

A 4-PP modulo L
p(x) = (p1x +p22” + p3x° + p4x*) (mod L), 3)

is an inverse of the 4-PP in (1) if
n(p(x)) = x (mod L),Vx € {0,1,--- ,L —1}. 4)

3. Main Results

In this section, we consider the interleaver lengths of the form

Np 4 Np Np 4 Np
L=16-[[pi=2* [[piorL=48-T]pi=2*3-[]ps ©)
i=1 i=1 i=1 i=1

with p; different prime numbers so that p; > 3,Vi=1,2,...,Np,and p; <pp <--- < pN,.
For p; a prime so that 3 { (p; —1),7 € {1,2,...,N,}, we will consider only the 4-PPs with
coefficients fulfilling conditions

fi#0,f2=0,f3=0,fs =0 (mod p;). ©)
In the following, we denote
NP
[Iri=¥ @)

The reason for which we focus on the interleaver lengths of the form given in (5) is as follows.
In [17], 4-PPs of several lengths that lead to the best minimum distance of 36 were reported. We wanted
to see if this minimum distance is a general upper bound for a general form of interleaver lengths.
From the lengths in [17] for which the best minimum distance of 4-PPs is 36, we restrict ourselves to
those of the form given in (5) and also we restrict ourselves to the coefficients fulfilling conditions (6)
when 3 1 (p; — 1) because, in this case, the possible coefficients of a true 4-PP are limited to a few values
(see Lemma 1). This simplifies finding the coefficients of the inverse 4-PPs, and thus, the proofs for
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upper bounds on minimum distance for 4-PPs of the focal interleaver lengths. We note that increasing
the power of primes in the product ¥ leads to more values of the possible coefficients of 4-PPs, and thus,
finding the inverse 4-PPs is more complicated.

3.1. Methodology

The research methodology is similar to that from [20,21] and it is described in this subsection.
To find upper bounds on the minimum distance for turbo codes that have 4-PP interleavers of lengths
of the form given in (5), the research methodology assumes the following steps:

(1) For the interleaver lengths of the form given in (5), we found all possible values for the
coefficients of true different 4-PPs. Thus, every 4-PP will have the coefficients equivalent to these
found values.

(2)  We proved that for the interleaver lengths in question, every true 4-PP has an inversely true 4-PP,
extending the result from [23].

(8) For some 4-PPs with particular minimum distances, we found the interleaver patterns that lead
to these minimum distances. There are several methods to find minimum distance of turbo
codes with particular interleavers. The method from [24] or its improved version from [25]
allow the determination of the true minimum distance (dmin), but their complexity increases
rapidly when increasing dmin. Methods based on impulses of high amplitude inserted in the
all-zero codeword and then decoding this perturbed codeword to give a decoded codeword
of low weigth, are faster for high values of dnyi, and useful for finding interleaver patterns.
Double impulse method (DIM) and triple impulse method (TIM) [26] are more reliable among
the impulse based methods. An alternative method of TIM is the full range double impulse
method from [27] (denoted DIMK in [28]), wherein the reliability of DIM is improved by a full
range for the second impulse, instead of a limited range search. The complexity of impulse based
methods can be reduced for structured interleavers (such as 4-PP ones) [29]. We have made use
of DIMK method for finding the interleaver patterns from Theorems 1 and 2.

(4) Finally, we proved that these critical interleaver patterns always appear for 4-PPs of the
interleaver lengths in question and classes of their coefficients.

3.2. Coefficients of 4-PPs for the Interleaver Lengths of the Form 16Y or 48¥

In [23], we derived a pure mathematical result. For interleaver lengths of the form 16Y¥, in Lemma
3.1 from [23], the possible values of the coefficients of a true 4-PP were obtained. Lemma 3.2 provides
an equation to determine the coefficients of an inverse true 4-PP without giving all its possible
solutions. The next two lemmas are extensions of Lemmas 3.1 and 3.2 from [23]. Lemma 1 gives
the coefficients of a true 4-PP and Lemma 2 gives the coefficients of an inverse true 4-PP of a true
4-PP, fulfilling conditions (6) when 3 { (p; — 1), the modulo of an integer of the form given in (5).
These two lemmas are necessary to derive the upper bounds on the minimum distance from Section
3.3. We note that because of coefficient conditions 2) from Table 1, the extension of the results
from [23] to the interleaver lengths of the form 48Y is not straightforward. Because 3 1 ¥, we can
have any of the following combinations of f4 and f, coefficients” conditions: (1) f = 1 (mod 3),
fo =2 (mod 3); (2) f4 =2 (mod 3), f, =1 (mod 3), with any of the following combinations of f3 and
f1 coefficients conditions: (1) f3 = 0 (mod 3) and f; # 0 (mod 3); (2) f3 = 1 (mod 3), f1 # 2 (mod 3);
(3) f3 =2 (mod 3), f1 # 1 (mod 3). Therefore, we will have more different cases to determine the
coefficients of an inverse 4-PP, as Tables 5-8 show.

Lemma 1. Let the interleaver length be of the form given in (5). Then all true different 4-PPs fulfilling
conditions (6) when 3 1 (p; — 1), have possible values for coefficients fa, f3, and f, equivalent to those given in
Table 2 from the second, third, and fourth columns, respectively. Coefficient f1 has to always be odd.
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Table 2. Possible values for coefficients fy, f3, and f; so that 77(x) in (1) is a true 4-PP modulo L of the
form (5).

L fi f3 f2
16¥Y Y Oor2¥ or4¥Y or6¥Y Y or 3¥ or 5Y or 7Y
48Y Y Oor2¥ord4Yor6¥Y 5Yorl1lY or17Y or 23¥Y

Proof. For the interleaver length of the form L = 16Y, a true 4-PP is equivalent to a 4-PP for which
for<L/2=8Y, f3 <L/2=28Y,and fy < L/8 = 2Y¥. For the interleaver length of the form L = 48Y,
a true 4-PP is equivalent to a 4-PP for which f, < L/2 =24Y, f3 < L/6 =8Y¥,and f; < L/24 =2VY.
Taking into account the coefficient conditions for a 4-PP given in Table 1 and that ¥ is odd, coefficients
f2, f3, and f4 from Table 2 follows.

We note that when L = 16¥ or L = 48Y, (from condition 1 in Table 1) f; becomes odd. O

Lemma 2. Let the interleaver length be of the form L = 16 - ki - ¥, with k € {1,3} and ¥ given in (7).
Then, a true 4-PP 7t(x) = fix + fox* + f3x° + fux* (mod L), fulfilling conditions (6) when 3 { (p; — 1),
has an inverse true 4-PP p(x) = p1x + p2x? + p3x3 + pgx* (mod L), with

P4 = f4, ()
p3 = k3, 2Y, )
P2 = (2k2,p 'kL — 1) - Y. (10)

p1 is the unique modulo L solution of the congruence fip1 =¥ -k +1 (mod L). k, k3 », and k3, are given in
Tables 3-8, according to the values of ks s = f3/(2¥), ko, r = (f2/¥ +1)/(2kr), and fy (mod 16k ).

Proof. p(x) is an inverse 4-PP of 7r(x) if
n(p(x)) = x (mod L),Vx € {0,1,...,L —1}. (11)
Taking into account Lemma 1, after some algebraic manipulations, Equation (11) is equivalent to

(fip1 — 1) - x + (fip2 + f201) - ¥* + (f103 + 220201 + f3p07) - X0+

+(fapi + 3f30102 + 220301 + f203 + fipa) - ¥+
+(4£20702 + 330103 + 3f30103 + 2f204p1 + 2f20302) - X0+
+(4f20703 + 620105 + 330407 + 63010203 + f305 + 2f2pap2 + f203) - x°+
+ (4110407 + 124070203 + 4110103 + 6f3040102 + 3f30105 + 3f30503 + 2f2pap3) - 7+
+(12£2070204 + 6f30703 + 12f2010303 + 6£3010304 + fa3 + 3f30504 + 3f30203 + f203) - x°+
+(12 4070304 + 12£2010504 + 12f2010205 + 3f30105 + 4f20503 + 6f3020304 + f303) - "+
+(64070% + 24f101020304 + 420103 + 4120301 + 6110303 + 3f30205 + 3f30304) - x'0+
+(12f4030304 + 4110203 + 12101020% + 12f2010504 + 3f30305) - x'' +
+(6f1030% + 12f3020304 + f403 + 12fap10303 + f303) - x'*+
+(4f20304 + 122020303 + 4f20103) - X' + (6fa030% + 4fap203) - '+
+(4f10303) - x° + (fa07) - ¥ = 0 (mod L), Vx € {0,1,...,L —1}. (12)

Because 77(x) and p(x) are true 4-PPs, from Lemma 1 it results that o, = f4 = ¥, p3 = k3, - 2¥,
fz = k3,f - 2%, with k3,p,k3,f € {0, 1,2,3}, 02 = (2k2’p ckp—1)-Y, and f, = (2k2,f kp—1)- Y,
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with ko, ko r € {1,2,3,4}, k; € {1,3}. Because p; is odd Vi € {1,2,...,N,}, ¥ from (7) is also
odd. Then, we can have ¥ = 1 (mod 8), ¥ = 3 (mod 8), ¥ = 5 (mod 8), or ¥ = 7 (mod 8).
Then, 2¥ = 2 (mod 8) or 2¥ = 6 (mod 8). Because every p; is odd and 3 { p;, we can have ¥ = 1
(mod 24),Y =5 (mod 24), Y =7 (mod 24), ¥ = 11 (mod 24), ¥ = 13 (mod 24), ¥ = 17 (mod 24),
¥ =19 (mod 24), or ¥ = 23 (mod 24). Then, 2% = 2 (mod 24), 2% = 10 (mod 24), 2¥ = 14 (mod 24),
or 2¥ = 22 (mod 24).

Table 3. Coefficients of an inverse 4-PP for a 4-PP (mod 16Y¥) (Part I) (ko f = (k) Ft 1)/2 and

ko,p = (ky, +1)/2). For fi (mod 16) = fi5 +8, p1 (mod 16) = (1,5, +8) (mod 16).

ks f k;, f fis ksp Ky 0 P1,fis k for P1,fis k for
for kqf,4 =1 kyg=1 forkyy=3 kys=3

0 1 1 0 1 13 12 13 4
3 2 5 3 8 11 0

5 0 1 9 12 9 4

7 2 5 15 8 7 0

3 1 2 3 13 12 5 12
3 0 3 11 0 11 0

5 2 3 1 4 9 4

7 0 3 15 8 15 8

5 1 0 5 13 12 13 4
3 2 1 3 8 11 0

5 0 5 9 12 9 4

7 2 1 15 8 7 0

7 1 2 7 13 12 5 12
3 0 7 3 8 3 8

5 2 7 1 4 9 4

7 0 7 7 0 7 0

1 1 1 1 5 5 4 13 4
3 3 1 3 8 3 8

5 1 5 1 4 9 4

7 3 1 15 8 15 8

3 1 3 3 5 4 13 4
3 1 3 3 8 3 8

5 3 3 9 12 1 12

7 1 3 7 0 7 0

5 1 1 1 5 4 13 4
3 3 5 3 8 3 8

5 1 1 1 4 9 4

7 3 5 15 8 15 8

7 1 3 7 13 12 5 12
3 1 7 3 8 3 8

5 3 7 1 4 9 4

7 1 7 7 0 7 0
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Table 4. Coefficients of an inverse 4-PP for a 4-PP (mod 16¥) (Part IT) (kp s = (K ft 1)/2 and
kap = (ké/p +1)/2). For fi (mod 16) = f18 + 8, p1 (mod 16) = (py f,, +8) (mod 16).

k3,f ké,f f1,8 k3,p ké,p p1’f1’8 k for pl,f1,s k for
for k‘y,4 =1 k\y’4 =1 for k‘f’4 =3 k\}"4 =3

2 1 1 2 1 5 4 5 12
3 0 5 3 8 11 0

5 2 1 1 4 1 12

7 0 5 15 8 7 0

3 1 0 3 5 4 13 4
3 2 3 11 0 11 0

5 0 3 9 12 1 12

7 2 3 15 8 15 8

5 1 2 5 5 4 5 12
3 0 1 3 8 11 0

5 2 5 1 4 1 12

7 0 1 15 8 7 0

7 1 0 7 5 4 13 4
3 2 7 3 8 3 8

5 0 7 9 12 1 12

7 2 7 7 0 7 0

3 1 1 3 5 13 12 5 12
3 1 1 3 8 3 8

5 3 5 9 12 1 12

7 1 1 15 8 15 8

3 1 1 3 13 12 5 12
3 3 3 3 8 3 8

5 1 3 1 4 9 4

7 3 3 7 0 7 0

5 1 3 1 13 12 5 12
3 1 5 3 8 3 8

5 3 1 9 12 1 12

7 1 5 15 8 15 8

7 1 1 7 5 4 13 4
3 3 7 3 8 3 8

5 1 7 9 12 1 12

7 3 7 7 0 7 0
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Table 5. Coefficients of an inverse 4-PP for a 4-PP (mod 48%) (Part I). For f; (mod 48) = f104 + 24,
p1 (mod 48) = (py f,,, +24) (mod 48).

k3,f k2,f f1,24 k3,p kZ,P p1,f1’24 for k for p1,f1’24 for k for
kvp12=1 kyi2=1 ky1n=7 kypn=7
(p11) (k1)

0 1 1/13 0 1 13/1 /12 011 (ky + 24)
5/17 0 1  41/29 12/12  (mod48) (mod 48)
7/19 2 3 15/3 8/8  (pi1+24)

11/23 2 3 43 / 31 40 / 40 (mod 48)

2 1/13 2 2 B5/9 34720 (0111 24) 3
5/17 2 2 1/13 4/28 (mod 48) (mod 48)
7/19 0 2  31/43 2470 011
11/23 0 2 35/47 0/ 24 (mod 48)

3 1/13 0 3 13/1 12/12 011 (k1 +24)
5/17 0 3  41/29 12/12  (mod48) (mod 48)
7/19 2 1 15/3 8/8  (p11+24)

11/23 2 1 43 /31 40 / 40 (mod 48)

T 1/13 2 4 579 4720  (p11+24) k1
5/17 2 4 1/13 4 /28 (mod 48)  (mod 48)
7/19 0 4 7719 0/24 011
11/23 0 4 11/23 24/0 (mod 48)

1 1 3/15 3 1 35/23 8/8 P11 kr
5/177 1 3 1775 36 /36  (p11+24) (mod 48)
9/21 1 3 45/33  20/20  (mod48)

/23 3 1  43/31  40/40 011

2 3/15 1 2 3/15 §/32 011 k1
5/17 3 2 25737 28/4  (p11+24) (mod 48)
9/21 3 2 29 /41 20 / 44 (mod 48)

11/23 1 2 11/23 24/0 01,1

3 3/15 3 3 35/23 8/8 011 K
5/17 1 1 7/5  36/36  (pi1+24) (mod 48)
9/21 1 1 45 / 33 20 / 20 (mod 48)

11/23 3 3 43 / 31 40 / 40 01,1

4 3/15 1 4 3/15 8/32 01,1 k1
5/17 3 4 1/13 1728 (p11+24) (mod48)
9/21 3 4 5/17 44 /20 (mod 48)

11/23 1 4 11/23 24 /0 01,1
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Table 6. Coefficients of an inverse 4-PP for a 4-PP (mod 48¥) (Part II). For f; (mod 48) = f1 04 + 24,
p1 (mod 48) = (py f,,, +24) (mod 48).

k3,f k2,f f1,24 k3,p kZ,P p1,f1’24 for k for p1,f1’24 for k for
kvp12=1 kyi2=1 ky1n=7 kypn=7
(p11) (k1)
2 1 1/13 2 1  37/25 36/3 o1 (k1 + 24)
3/15 0 3  19/7 §/8  (p11+24) (mod 48)
7/ 19 0 3 47 / 35 40 / 40 (mod 48)
9/21 2 1 45 / 33 20/ 20 01,1

2 1/13 0 2 5/17 1/28  p1;+24 R
3/15 2 2 27 / 39 32/8 01,1 (mod 48)
7/ 19 2 2 31 /43 24 /0 (mod 48)

9/21 0 2 13/25 20/4  p;; +24

3 1/13 2 3  37/25  36/3% o1 (k1 1 24)
3/15 0 1 19/7 8§/8  (p1+24) (mod 48)
7/19 0 1  47/35  40/40  (mod 48)

9/21 2 3  45/33  20/20 i1

T 1/13 0 4 5/17 1/28  pi+24 R
3/15 2 4 3/15 8/ 32 o1 (mod 48)
7/ 19 2 4 7/19 0/24 (mod 48)

9/21 0 4 13/25 20/44  p; +24

3 1 1/13 3 3 13/1 12712 (p11 +24) 2
5/17 3 3  41/29  12/12  (mod48) (mod 48)
7719 1 1 47/35  40/40 o1
11/ 23 1 1 27 / 15 8/8 (mod 48)

> 1/13 1 2 29/4 2874 (p11 +24) R
5/17 1 2 33/ 45 20 / 44 (mod 48)  (mod 48)
7/19 3 2 7719 0/24 o1t
11 /23 3 2 11/23 24 /0 (mod 48)

3 1/13 3 1 13/1  12/12 (o1 +24) 3
5/17 3 1 41 /29 12 /12 (mod 48) (mod 48)
7/ 19 1 3 47 / 35 40 / 40 01,1
1/23 1 3 27/15 8/8 (mod 48)

i 1/13 1 4 5/17 /28 (p11 +24) R
5/17 1 4  9/21  44/20  (mod48) (mod 48)
7/19 3 4 7719 0/24 o1
11/23 3 4 11/23 24 /0 (mod 48)
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Table 7. Coefficients of an inverse 4-PP for a 4-PP (mod 48Y) (Part III). For f; (mod 48) = fj 04 + 24,
p1 (mod 48) = (py f,,, +24) (mod 48).

k3,f k2,f f1,24 k3,P kZ,P p11f1,24 for k for p11f1,24 for k for
ky12=5 ky12=5 kyp2=11 ky1n=11
(p15) (ks)

0 1 1/13 0 1 13/1 12 /12 015 (ks +24)
5/17 0 1 41/29 12/12  (mod48)  (mod48)
7/19 2 3  47/35 8§/8 (o151 24)

11/23 2 3 27 / 15 40 / 40 (mod 48)

7 1/13 2 2 29741  44/20 (pi5+24) ks
5/17 2 2 33/45  4/28  (mod48)  (mod 48)
7/ 19 0 2 31 /43 24/0 015
11/23 0 2  35/47 0/24  (mod 48)

3 1/13 0 3 13/1 12/12 015 (ks + 24)
5/17 0 3 41/29 12/12  (mod48)  (mod48)
7/19 2 1 47/3% 8/8  (pis+24)

11/23 2 1 27 / 15 40 / 40 (mod 48)

4 1/13 2 4 29 /41 44 / 20 (p15 +24) ks
5/17 2 4 33/ 45 4/28 (mod 48)  (mod 48)
7/19 0 4 7719 0/ 24 015
11/23 0 4 11/23 24/0 (mod 48)

T 1 1/13 1 3 37/25  36/36  pist24 ks
3/15 3 1 19/7 40 / 40 015 (mod 48)
7 /19 3 1 47 / 35 8/8 (mod 48)

9/21 1 3 45 / 33 4/4 015+ 24

2 1/13 3 2 5/17 20 / 44 015 +24 ks
3/15 1 2 3/15 40 /16 015 (mod 48)
7/ 19 1 2 7/19 0/24 (mod 48)

9/21 3 2 13 /25 4/28 015 +24

3 1/13 1 1 37/25  36/36  pi5 124 ks
3/15 3 3 19/7  40/40 015 (mod 48)
7/19 3 3 47 / 35 8/8 (mod 48)

9/21 1 1 45 / 33 4/4 01,5 + 24

4 1/13 3 4 29 /41 44 / 20 015+ 24 ks
3/15 1 4 3/15 40 / 16 01,5 (mod 48)
7/19 1 4  7/19 0/24  (mod 48)

9/21 3 4 3771 2874  pi5+24
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Table 8. Coefficients of an inverse 4-PP for a 4-PP (mod 48¥) (Part IV). For f; (mod 48) = f1 04 + 24,
p1 (mod 48) = (py f,,, +24) (mod 48).

k3,f k2,f f1,24 k3,P kZ,P p11f1,24 for k for poL24 for k for
k¢12=5 ky12=5 kypn=11 ky; =11

(p15) (ks)

2 1 3/15 0 3 35/ 23 40 / 40 p15+24 (ks +24)
5/17 2 1 1775 36 / 36 015 (mod 48)
9/21 2 1 45/ 33 4/4 (mod 48)

11/23 0 3 437731 8/8 015 + 24

2 3/15 2 2 27 /39 16 /40 P15 ks
5/17 0 2 25 /37 44720 (015 +24) (mod48)
9/21 0 2 29 / 41 4/28 (mod 48)

11/23 2 2 35 /47 0/24 015

3 3/15 0 1 35/ 23 40 /40 p15+24 (ks +24)
5/17 2 3 1775 36 / 36 015 (mod 48)
9/21 2 3 45/ 33 4/4 (mod 48)

1/23 0 1 43/ 31 8/8 P15 +24

4 3/15 2 4 3/15 40/ 16 015 ks
5/17 0 4 25 /37 44/20  (p15+24) (mod48)
9/21 0 4 29 / 41 4/28 (mod 48)
1m1/23 2 4 11/23 2470 015

3 1 1/13 3 3 13/1 12712 (p15+24) ks
5/17 3 3 41 /29 12 /12 (mod 48)  (mod 48)
7 / 19 1 1 15 / 3 40 / 40 01,5
1m/23 1 1 43/ 31 8/8 (mod 48)

2 1/13 1 2 4579 2874 (p15+24) ks
5/17 1 2 1/13 20 / 44 (mod 48)  (mod 48)
7/19 3 2 7719 0/24 015
1/23 3 2 11 /23 24 /0 (mod 48)

3 1/13 3 1 3/1 12712 (p15+24) ks
5/17 3 1 41/ 29 12 /12 (mod 48)  (mod 48)
7/19 1 3 15/3 40 /40 015
1/23 1 3 43 / 31 8/8 (mod 48)

4 1/13 1 4 21/33 4728 (o15+24) ks
5/17 1 4 25/ 37 44 / 20 (mod 48)  (mod 48)
7/19 3 4 7719 0/24 015
1/23 3 4 11 /23 24 /0 (mod 48)

Thus, for L = 16k. Y, ki, € {1,3}, p3 = k3, -2¥, f3 = ks - 2¥, with ks, k3 ¢ € {0,1,2,3},
p2 = (2kppk; —1) ¥, and fo = (2kyp sk — 1) - ¥, with k;, € {1,3}, koo ko f € {1,2,3,4}, (12) is
equivalent to

(fior = 1) - x+ ¥ (f1 - (2ka ok — 1) + (2ko tkp — 1) - p3) - ¥+
+2¥ - (fiks,p + (2ko ek — 1) - (2kpok, — 1)¥p1 + k3 p7) - X2+
+¥ - (pf + 6k f - (2kp ok — 1) - - pf + 4k - (2kp php — 1) - ¥ - p1+
+(2ky tkp — 1) - (kg ok, — 1)2 W2 + f1) - 2+
+2¥2 (2 (2kppkp — 1) - p} + 6kg ks ppT + 3ks ¢ - (2kp ok — 1) - Fpy + (2hp tkp — 1) - p1+
+2- (2ky tkp — 1) - (2kg ok, — 1) k3, ¥) - X0+
+2%2 - (43,07 + 3+ (2kp ok — 1) - ¥pT + ks pp] + 12k5 k3, - (2k ok — 1) - Fp1+
h p - (2kg pkp —1)° W2 + (2kg pkp — 1) - 2k pkp — 1) - ¥ +2- (2kp gk — 1) - K5, %) - x%+

+4‘P2 . (p% + 6k3,p . (2k2,pkL — 1) Tp% + (2k2,pkL — 1)3 . szl + 3k3,f . (2k2,pkL — 1) . “ijl—f—
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+6k3 k3, W1 + 3k pkap - (2kgpky — 1) W2 + ks - (g ek — 1) - F) - 27+
+¥7 - (12 (2kp ok — 1) - p] + 24K5 07 + 24ks - (2kg ok — 1)7 - Fp1 + 24ks, ks 1+
+(2kg ok — 1) W2 4 6ks f - (2kppkr — 1)2 - + 24ks (k5 , - (2kapk — 1) - ¥ + (2kp, gk — 1)) - x5+
+2¥° - (12k3,p07 + Bks po1 + 24K3 , - (2kg ok — 1) - ¥p1 +6 - (2K pkp — 1)* - Fp1+
aks p - (2kg ok —1)° - W2+ 12ks ks o - (2kp ok — 1) - ¥ + 8ks k3, ¥) - 17+
+2¥° - (307 + 16k3 , ¥ 1 + 24ks - (2kp ok — 1) - ¥po1 +2- (2kp ok — 1)° - ¥+
123, - (2kg pkp — 1)% - W% 4 Bka g - (2kp ok — 1) - ¥ + 12k3 k3, F) - x'0+
HAYE - (1265 501 + 3 - (kg pkr — 1) - p1 4 8K3, - (2kppkr — 1) - ¥+
+6k3p - (2kppkp — 1) ¥ + 3k ks ) - x1 1+
294 (12k3 01 + 8K3 ¥ +3 - (2kg pkp — 1)% ¥ +24K3 , - (2kp ok — 1) - ¥ + kg ) - x+
HAFE - (01 4 8K3 , ¥ + 6k3,p - (2kppkr — 1) - F) - x'° 4+ 4F° - (6k5, + (2kp php — 1)) - 2™
+ (8k3p¥°) - ¥ + ¥ - x1© = 0 (mod 16k, ¥),Vx € {0,1,..., 16k, ¥ — 1}. (13)
Because ¥ | L, from (13) we have
(fipt1—1)-x=0(mod ¥),vx € {0,1,..., 16k, ¥ —1}. (14)
Equation (14) is equivalent to
fipr =1 (mod ¥) < fip1 =¥ -k+1 (mod 16k, ¥), withk € {0,1,2,...,16k; —1}.  (15)

We note that when k; = 1, we have ged(f1,16¥) = 1. According to Theorem 57 from [30], in this
case congruence (15) has only one solution in variable p;. When k; = 3, we can have ged(f1,48¥) = 3.

Thus, congruence (15) has three solutions, but as we will see, only one solution from the three will
be valid.

With (15) and denoting ¥ (mod 16k} ) = ky, (13) is fulfilled if and only if
k-x+ (fl : (2k2/pkL — 1) + (2k2,ka — 1) p%) x4

+2- (fiksp + (kg gk — 1) - (2ky g — Vkyp1 + ks p03) - X7+
+(p] + 6ks f - (2knpkp, — 1) -k - pT + 4ksp - (2ka gk — 1) - ky - p1+

+(2ky k= 1) - (2hegphy — 1) K + f1) - x4
+2ky - (2 (2kp,pkr, — 1) - p + 6ks k3 07 + 3ks ¢ - (2ko pkp, — 1)% - kypy + (2ko sk — 1) - p1+

+2 (2ky tkp — 1) - (2kg ok — 1) - k3 pky) - X0+

+2ky - (4kz 007 + 3+ (2o ok — 1)% - kypt + 3k 7 + 12k3 pks o - (2kp ok — 1) - kyp1+
g g+ (2kg ok — 1) - K + (2ka pkp — 1) - (kg pkp — 1) kg +2- (2ky ek — 1) - 5 ) - x0+
+4ky - (p7 + 6ksp - (2kppky — 1) - kepT + (2kppkp, — 1) - k§py + 3k f - (2kopkp — 1) - kypr+
+6k3, k3 oy 01 + 3ks ks p - (2ka ek — 1)% - K + ks - (ko ey — 1) - k) - X7+

i - (12 (kg k. — 1) - pF + 24Kk3 ;07 + 243, - (2ka k. — 1)% - kwpy + 24ks, k3 pp1+
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+(2kg pkp — 1)* - + 6k - (2kp ok — 1)% - ky + 24k k3 , - (2kp ok — 1) - ky + (2kp sk — 1)) - 2%+
+2k% - (12k3 07 + 3k, p01 + 24k§,p (2kppkr, — 1) - kyp1 + 6 - (2kp ok — 1) - kypr+
+aks,, - (2kg ok —1)% - k§ + 12ks, ks p - (2ka k. — 1) - by + 8ks ¢k3 ) - x”+
+2k - (307 + 16K3 kw1 + 24ks - (2kp ok — 1) - kyp1+
+2- (2kppkr —1)° - k§ + 125, - (2kp ok — 1) - kg + 3ks p - 2k okp, — 1) - ky 4 12ks 63 k) - x'+
Ak - (1263 1 + 3+ (Zkopky — 1) - p1 +8K3, - (2ka,pky — 1) ky+
+6ks,p - (2Kkapkr, — 1)% - ky + 3k ks p) - x4
+2k% - (12k3 001 + 8k‘§,pkxy +3- (2kgpkp —1)% - ky +24K3 o (2kppkp —1) ky + kg f) - K2y
4k - (014 8K3 kv + 6k3 o - (2ka ok — 1) k) - x™° 4 4k - (6K3, + (2kppkr — 1)) - x4+
+(8ks k) - x° + k% - x'® = 0 (mod 16k), Vx € {0,1,...,16k; —1}. (16)

We note that the values of k; and ky are given by the interleaver length.

Because ¥ is odd, when k; = 1 we can have ky € {1,3,5,7,9,11,13,15}.

For ki, = 1 we denote klZ,f = 2k; r —1and k'2/p =2kyp — 1.

In this case, the variables from Equation (16) are f; (mod 16),p; (mod 16) € {1,3,5,...,15},
k3p ks € {0,1,2,3}, k,Z,p’ klZ,f € {1,3,5,7}, k, and ky. The values of ks, f, k,Z,f’ and f; (mod 16) are
given by the true 4-PP, for which we want to find the inverse 4-PP; and ky is given by the interleaver
length. Given the values of ky, k3, fr klz, fr and f1 (mod 16), we can find the coefficients of the inverse 4-PP
by exhaustive searching for the rest of variables, k3 , k’z, o P1 (mod 16), and k. For each k3, € {0,1,2,3},
k/2,p € {1,3,5,7}, p1 (mod 16) € {1,3,5,...,15},and k € {0,1,...,15}, we test if the left hand side
term from (16), evaluated modulo 16, is equal to 0 for each x € {0,1,...,15}. For a combination of
variables ky, k3 r, k/z, f and f; (mod 16), only a combination of k3 , k’z,p, p1 (mod 16), and k results in a
solution of (16). In this way, using Matlab environment we found all the solutions of Equation (16).
Solutions in variables k, f; (mod 16), o1 (mod 16), k3 5, k3 f, and k/Z,p' klz,f are the same Vky € {1,5,9,13},
and also solutions in the previously mentioned variables are the same Vky € {3,7,11,15}. For every
k¢ € {1,3,5,...,15}, solutions of Equation (16) in variables k, k3/p,k3,f, and klZ,p’kIZ, are the same
Vf1 (mod 16) € {1,9}, or Vf1 (mod 16) € {3,11}, or Vf; (mod 16) € {5,13}, or Vf; (mod 16) € {7,15}.
If the solution of Equation (16) in variable p; (mod 16) for f; (mod 16) = f; (mod 8) = f15 € {1,3,5,7}
and the other variables with fixed values, is py 7, ; (mod 16), then solution of the same equation in
variable p; (mod 16), for f; (mod 16) = fi5 + 8, is (1,5, +8) (mod 16). Thus, for k, = 1, we can
summarize the solutions of (16) for every ky (mod 4) = ky4 € {1,3} and for every f; (mod 8) €
{1,3,5,7}. These solutions are given in Tables 3 and 4.

When k; = 3, because 31 ¥, we can have ky € {1,5,7,11,13,17,19,23,25,29,31, 35, 37,41,43,47}.
We note that in this case, because of condition (f; + f3) # 0 (mod 3), we can have only some
values for f; (mod 48), not every odd number. Because 3 { ¥, we can have ¥ (mod 3) € {1,2}.
Because f3 = k3 ¢ - 2, with k3 ¢ € {0,1,2,3}, we can have:

(1) fi (mod 48) € {1,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47}, when ¥ (mod 3) € {1,2} and
kss € {0,3);

(2) f1 (mod 48) € {1,3,7,9,13,15,19,21,25,27,31,33,37,39,43,45}, when ¥ (mod 3) = 1 and
ks s =2orwhen¥ (mod3) =2and k3 s =1;

3)  fi (mod48) € {3,5,9,11,15,17,21,23,27,29,33,35,39,41,45}, when ¥ (mod 3) = 1and ks s = 1
or when ¥ (mod 3) =2 and k3 s = 2.

Solutions of Equation (16) for k; = 3 were found in the same way as for k;, = 1, as it was
previously explained. Solutions in variables k, f; (mod 48), p; (mod 48), k3 5, k3 ¢, and k5, k7 s are the
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same Vky € {1,13,25,37}, or Vky € {5,17,29,41}, or Vky € {7,19,31,43}, or Vky € {11,23,35,47}.
For every ky € {1,5,7,11,...,47}, solutions of Equation (16) in variables k, k3,p,k3,f, and ky, kz,f
are the same f; (mod 48) and for (f; +24) (mod 48). If the solution of Equation (16) in variable
p1 (mod 48) for f1 (mod 48) = f1 (mod 24) = f; 74 and with the other variables with fixed values,
is p1,7,,, (mod 48), then solution of the same equation in variable p; (mod 48), for f; (mod 48) =
fi2a+24,1s (py,f, ,, +24) (mod 48). Thus, for k;, = 3, we can summarize the solutions of (16) for every
k¢ (mod 12) = ky 1o € {1,5,7,11} and for every f; (mod 24). These solutions, found by means of
Matlab software, are given in Tables 5-8. [

We note that the inverse 4-PP from Lemma 2 is a true 4-PP, and thus the 4-PP 7r(x) does not admit
an inverse QPP or CPP.

3.3. Upper Bounds on the Minimum Distances for 4-PP-Based Turbo Codes for Interleaver Lengths of the Form
16Y or 48Y

In this subsection, we prove that for the interleaver lengths of the form given in Equation (5), a true
4-PP leads to a minimum distance which is upper bounded by the value of 36 or 28, depending on the
classes of coefficients, for a classical 1/3 rate turbo code with two recursive systematic convolutional
(RSC) component codes having generator matrix G = [1,15/13] in octal form.

Theorem 1. Let the interleaver length be of the form given in (5). Then, the minimum distance of the classical
nominal 1/3 rate turbo code with two RSC codes parallel concatenated having the generator matrix G =
[1,15/13] (in octal form) and 4-PP interleavers—fulfilling conditions (6) when 3 1 (p; — 1), with coefficients
fa=Y fs=ksp-2%¥ ksy € {1,3}, o= (2kp -k —1) ¥, ko € {1,2,3,4}, and k1, € {1,3}—is upper
bounded by the value of 36.

Proof. We consider the interleaver pattern of size twelve shown in Figure 1.

YA VAV

X X%+l x+5 X X +1 X, +5 X X +1 X +5 X, %, +1

7(%) 7(%)+2 7(x) % )+8 7 ( X1+5 % +5)+4  7(x+5) +8;;x1+1 x1+1 )+4 7(x+1)+

Figure 1. Critical interleaver pattern of size twelve for 4-PP-based interleavers.

The twelve elements of permutation 77(+) indicated in Figure 1 are written in detail below.
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x1 — 7(x1)

x1+1— m(xg+1) (mod L)

x1+5— 7(x; +5) (mod L)

Xy — m(xp) = m(x1) +2 (mod L)
v+1—=m(x+1)=7m(x;+1)+2 (mod L)
xp+5— m(xp+5) =m(x;+5)+2 (mod L)
x3 — 1t(x3) = 7t(x1) +4 (mod L)
x3+1—=m(xs+1)=7m(x;+1)+4 (mod L)
x3+5— m(x3+5) = t(x1 +5)+4 (mod L)
x4 — 70(x4) = 71(x1) + 8 (mod L)
x4+1—=m(xg+1)=7m(x1+1)+8 (mod L)
x4+5— m(xg+5) =7m(x;+5)+8 (mod L)

(17)

Writing xp = p(71(x2)) = p(7t(x1) + 2) in the fifth and sixth equations from (17), x3 = p(7t(x3)) =
p(7(x1) +4) in the eighth and ninth equations from (17), and x4 = p(7t(x4)) = p(7t(x1) + 8) in the
eleventh and twelfth equation from (17), with x; = x, we have

m(o(rt(x)+2)+1) =m(x+1)+2 (mod L)
m(p(rt(x) +2)+5) = m(x+5)+2 (mod L)
m(p(rt(x)+4)+1) =m(x+1)+4 (mod L) (18)
n(p(rt(x) +4)+5) =m(x+5)+4 (mod L)
m(p(rt(x)+8)+1) =m(x+1)+8 (mod L)
(p(rt(x) +8)+5) = m(x+5)+8 (mod L)
Taking into account that
n(a+b) =7m(a) +7(b) +a-b- (2fs- (2a° +3ab +2b%) +3f3 - (a +b) +2f2), (19)

equations from (18) are equivalent to

p(m(x) +2) - (2fs - (20%(r(x) +2) + 3p(7(x) +2) +2)+
+3f3 - (o(7t(x )+2)+1)+2f2)—x (2fs- (2x2+3x+2) +3f3- (x + 1) +2f,) (mod L)
5-p(r(x) +2) - (2fs- (20%(7(x) +2) +3-5-p(m(x) +2) +2-52)+
+3f3 - (p(7(x) +2) +5) +2f2) =
=5-x-(2fs- (2x*+3-5-x+2-52) +3f3- (x+5) + 2f2) (mod L)
p(7t(x) +4) - (2fs- (20*(7(x) +4) +3p(7(x) +4) +2)+
+3f3 - (p(rt(x )+4)+1)+2f2) =x-(2fs- (22> +3x+2) +3f3- (x +1) +2f;) (mod L)
5-p(m(x) +4)- (2fs- (20°((x) +4) +3-5-p(7(x) +4) +2-5%)+ (20)
+3f3 - (o(7(x) +4) +5) +2f2) =
(2x2+3-5-x+2-52) +3f3- (x+5) +2f») (mod L)
§2f4 (20%(72(x) +8) +3p(7(x) +8) +2)+
8) -
)

=2 D

=5-x- (2f4
p(m(x) +8)-
+3f3 - (o(7t(x +8)+1)+2f2)—x (2fs- (2x*+3x+2) +3f3- (x + 1) +2f,) (mod L)
5-p(m(x) +8) - (2fs- (20*(7r(x) +8) +3-5-p(7(x) +8) +2-5)+

+3f3 - (p(70(x) +8) +5) +2f2) =

=5-x-(2fs- (2x*+3-5-x+2-52) +3f3- (x+5) + 2f2) (mod L)
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or

(x) +2) + (6fs +3f3) - p*(70(x) +2) + (4fa +3f3+2f2) - p(7r(x) +2) =

2x3 +3x2 +2x) +3f3 - (x2 +x) +2f> - x (mod L)

(7t(x) +2) + (150fy + 15f3) - p*(7t(x) +2) + (500f5 + 753 + 10f>) - p(7r(x) +2) =
(2x3 +15x2+50x)+15f3 (x% +5x) +10f, - x (mod L)

4fy-p(m
=2fy-(
20y - 0°
—10f4
dfy- > (r(x) + ) (6fs+3f3) - p*(7t(x) +4) + (4fs +3f3+2f2) - p(m(x) +4) =

—2f4 (2x3 + 3x% +2x) + 3f3 - (x +x)+2f, - x (mod L) (21)
20fy - p*(7(x) +4) + (150fs +15f3) - 0> (7r(x) +4) + (5004 + 753 +10f2) - p(7t(x) +4) =

_10f4 2x3 + 15x2 +5Ox)+15f3 (x% +5x) +10f, - x (mod L)

Afy - p*(7(x) +8) + (6fs +3f3) - p*(70(x) +8) + (4fs +3f3 +2f2) - p((x) +8) =

:2f4 (2x3 + 3x% +2x) + 3f3 - (x +x)+2f,-x (mod L)

20fy - p3(7(x) +8) + (150f5 + 15f3) - p2(7w(x) + 8) + (500f4 + 75f3 + 10f,) - p(7r(x) + 8) =

=10f; - (223 + 15x% +50x) + 15f3 - (x? + 5x) + 10f, - x (mod L).

For L =16 -k - Y, f4 =Y, f3 = k3,f - 29, k3,f € {O, 1,2,3}, fz = (2k2,f -kp — 1) -, k2,f €
{1,2,3,4}, ki € {1,3}, equations from (21) become

4Y - p3(m(x) +2) + 2% - (3+3kz p) - p*(71(x) +2) +2¥ - (2+3ks p + 2kp p -k — 1) - p(7t(x) +2) =
:2\1!-(2x3+3x2+2x)+2l1f.3k3,f-(x2+x)+2‘1f-(2k2,f-kL—1)-x(mod16-kL-T)

20¥ - 0> (7t(x) +2) +2¥ - (75 + 15k3 ) - 2(n( X) +2) + 29 - (250 + 75k3 s+

+5 (2kyf -k —1)) - p(7(x) +2) = 10¥ - (22 + 15x% +50x) + 2 - 15k3 f - (x* + 5x)+

(Zsz Lil) 2‘I’~x(mod16-kL )

Y- p3(m(x )+4)+2‘¥ (3+3ks f) - p*(7t(x) +4) +2¥ - (24 3ks s +2f2) - p(7(x) +4) =

AR (2x + 3x2 +2X)+2‘Y 3k3f (x2+x)+2‘}’-(2k2,f'kL—1)'x(mod16-kL-‘F)

20¥ - (71(x) +4) + 2% - (75 + 15ks ¢) - p*(70(x) +4) +2'¥ - (250 + 75k, s +5 - (2kp p -k —1))- (22)
p(7(x) +4) = 10¥ - (2x° + 1552 + 50x) + 2¥ - 15k3 ¢ - (x* + 5x)+
+5-(2k2,f-kL—1)-2‘F-x(mod16-kL-‘I’)

4Y - p?((x) +8) +2¥ - (3+3ks f) - p*(71(x) +8) +2¥ - (2+ 3k f +2f2) - p(71(x) +8) =

=2¥ - (20 +3x% 4+ 2x) +2¥ - Bkz s - (x? + x) +2¥ - (2kpp - kp — 1) - x (mod 16 -k - ¥)

20¥ - > (71(x) 4 8) +2¥ - (75 + 15ks ) - p*(7r(x) +8) +2'¥ - (250 + 75k, s +5 - (2kp p -k — 1))-
p(7(x) +8) = 10¥ - (2% + 15x? 4 50x) + 2% - 15k3 ¢ - (x* 4 5x)+

+5- (2kpp-kp —1)-2¥ - x (mod 16 - k1 - ¥).

Equations from (22) are fulfilled if and only if

2-03(7(x) +2) +3- (ks p +1) - p*(70(x) +2) + (3ks, s + 2k e +1) - p(7t(x) +2) =

= 3k3,f . (x2 + x) + (2k2,f . kL — 1) - X+ (2x3 + 3x2 + ZX) (mod 8- kL)

10-p3(7t(x) +2) +15- (ks s +3) - p?(70(x) +2) +5- (15ks f + 2k ¢ - kp —1+50) - p(71(x) +2) =
=15k f - (x* +5x) +5- (2ky r -kp — 1) - x +5- (2% + 15x% 4 50x) (mod 8 - k)

2-03(7(x) +4) +3- (ks p+1) - p*(7t(x) +4) + (ks f +2ky -k +1) - p(7(x) +4) =

=3ksf - (¥ 4+ x) + (2kp,p -k — 1) - x + (2% +3x% +2x) (mod 8 - k1) 23)
10- p3(7r(x) +4) +15- (k3 f +3) - p?(71(x) +4) 4 (250 + 75k s +5 - (2ko p -k — 1)) - p(7(x) +4) =
=15ks f - (¥ +5x) +5- (2kpr -kp —1) - x+5- (2% + 15x% 4 50x) (mod 8 - ki)

2-03(7(x) +8) +3- (ks s +1) - p*(7t(x) +8) + (3ks p +2kp r - ki +1) - p(7(x) +8) =

= 3k3,f . (x2 + x) + (Zkg/f . kL — 1) - X+ (2x3 + 3x2 + 2x) (mod 8- kL)

10 p3(7(x) +8) +15- (ks s +3) - p?(7(x) +8) +5- (15ks f + 2k - kp —1+50) - p(71(x) +8) =
=15k f - (x* +5x) +5- (2kp s -kp — 1) - x +5- (2% + 15x? 4 50x) (mod 8 - k).

For x = 0, equations from (20) become

2:03(2) +3- (kg p +1)-p*(2) + (3k3,f+2k2,ka+1) -p(2) =0 (mod 8 - k)
10-0%(2) +15- (ks s +3) - p*(2) +5 - (15k3 s + 2kp ¢ -k —1+50) - p(2) = 0 (mod 8- k)
2~p3(4)+3-(k3/f+1) 2(4) (3k3f+2k2f kLJrl) p(4):0(m0d8-kL)
10-03(4) +15- (ks s +3) - p?(4) + (250 + 75k3 s +5- (2kp, ¢ -k — 1)) - p(4) = 0 (mod 8 - k)
2:07(8)+3- (ks p+1)- 2(8)+(3k3f+2k2f kp +1)-p(8) =0 (mod 8 - ki)

10-0%(8) +15- (ks s +3) - p*(8) +5- (15k3 s + 2kp ¢ - k. — 1+ 50) - p(8) = 0 (mod 8- k)

(24)
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or

0(2)/2- (202(2) +3p(2) +1+3ks s (0(2) +1) +2ky - kr) = 0 (mod 4 - k)
5-0(2)/2 (202(2) +3-5-p(2) + 49+ 3ks - (0(2) +5) + 2ky s -kp.) = 0 (mod 4 k)
p(4)/4- (20%(4) +3p(4) + 14 3ks ¢ - (0(4) +1) +2kp 6 - k) =0 (mod 2-kp)

5. p(4)/4 . (2p2(4) +3-5- p(4) + 49 +3k3,f . (p(4) + 5) + 2k2,f . kL) =0 (mod 2- kL)
0(8)/8- (20%(8) +3p(8) + 1+ 3ks s - (0(8) +1) + 2k ¢ - k1) = 0 (mod k)
5-0(8)/8 (20%(8) +3-5- p(8) + 49+ 3ks s - (0(8) + 5) + 2ky s - ki) = 0 (mod k).

(25)

For k; =1 and k/2, = 2k r — 1, equations from (25) are fulfilled if and only if

30(2) +2) +3ks - (p(2) +1) +k’2,f =0 (mod 4)
3-5-p(2) +2-5%) +3ks - (0(2) +5) +ky =0 (mod 4)
30(4) +2) +3ks - (p(4) +1) +kj ; = 0 (mod 2)
3:5-p(4) +2-5%) +3ks s - (p(4) +5) + Ky p =0 (mod 2)

(26)

or

/ —
{ 201 +2+2k3 - p1 + 3k ¢ + k) - = 0 (mod 4) )

ks,f +ky =0 (mod 2)
or

A
{ 201 - (ks,f +1) +2+8ks s +k . =0 (mod 4) -

ks, ¢ +k/2,f =0 (mod 2).

Equations from (28) are fulfilled if and only if k3 = 1 and klz, ;€ {3,7}, or k3 s = 3 and
ky ;€ {1,5}.
For k;, = 3, equations from (25) are fulfilled if and only if

0(2)/2-(20%(2) +3p(2) + 143k ¢ - (0(2) +1) + 6ky ¢) = 0 (mod 12)
p(4)/4- (20*(4) +3p(4) +1+ 3ks,f - (0(4) +1) + 6k, r) = 0 (mod 6) (29)
0(8)/8 - (20%(8) +3p(8) + 14 3ks ¢ - (0(8) + 1) + 6ky ¢) = 0 (mod 3)

> 0(2)/2-(20%(2) +3p(2) + 143k ¢ - (0(2) +1) + 6ky f) = 0 (mod 12)
p(4)/4- (20%(4) + 143k ) = 0 (mod 6) (30)
p(8)/8- (20*(8) +1) = 0 (mod 3).
)

With pp = (6kap — 1) - ¥, p3 = k3 - 2%, and p4 = ¥, we have

p(4)/4=p1+2 kzp- ¥ (mod6) (31)

0

Y

p(2)/2=p1+8 k3p-¥+6-¥ (mod12)
p(S)/8=p1+2~k3,p-‘P (mod 3)

and
2-0p%2) =8-(p1+8 k3o ¥ +6-¥)* (mod 12)
2-0%(4) =2 (p1+2-kzp - ¥)? (mod 6) (32)
2-0%(8) =2 (p1+2-k3p - ¥)? (mod 3).

With (31) and (32), (30) is equivalent to

8-(p1+8 ksp ¥+6-¥)>+6-(kss+1) (p1+8ksp ¥+6-¥)2+
+(Bks f + 6ky r+1) - (01 +8-kzp- ¥ +6-¥) =0 (mod 12)
2-(p1+2ksp-¥)>+ (Bks s+ 1) (01 +2-k3p-¥) =0 (mod 6)

2 (0142 ksp-¥)3+ (p14+2-ksp - ¥) =0 (mod 3).

(33)
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By exhaustive searching by means software programs, it can be verified that equations from (33)
are fulfilled if and only if k3 y = 1and k s € {2,4}, or k3 s =3 and kp ¢ € {1,3}.
For x = 1, equations from (20) become

p(m(1) +2) - (2fi - (20%(m(1) +2) +3p(n(1) +2) +2)+
% +2) +1) +2f2) =14f4 + 6f3 + 2f, (mod L)
“(2fs- (20%(7(1) +2) +3-5- p(r(1) +2) +2-5%)+
+ )+5)+2f2) =5 (134f5 + 183+ 2f>) (mod L)
2fy - (202(7(1) +4) +3p((1) +4) +2)+
+4) +1) +2f2) = 14f4 + 6f3 + 2f, (mod L)
-(20%(m(1) +4) +3-5-p(r(1) +4) +2-5%)+

p(re(1) +4) -
NG (34)

+ 5)+2f2) =5- (134f4 +18f3 +2f,) (mod L)
2fy- (20%(7(1) +8) +3p(7(1) +8) +2)+
+8)+1)+2f;) =14fs +6f3+2f, (mod L)
(2fs- (20*(7t(1) +8) +3-5-p(7(1) +8) +2-5%)+
)+2f) =5 (134f4 + 183 +2f>) (mod L).

For L =16 -k - Y, f4 =Y, f3 = k3,f -2V, k3,f € {O, 1,2,3}, f2 = (2k2,f -kp — 1) -, kzlf €
{1,2,3,4}, ki € {1,3}, equations from (34) become

p((1) +2)-2¥ - (20%(7
+3k3 - (p(7(1) +2) +1
5-2% - p(r(1) +2) - (20°
+3ks - (p(7(1 ) 2)+5
o((1) +4)-2¥ - (20*(7
+3kz,f - (p(7(1) +4) + 12

(1) +2) +3p(rr(1) +2) + 1+
)+ 2ko pkp) — 2% - (6 + 6k + 2ky sk ) = 0 (mod 16 -k - ¥)
((1) +2)+3-5-p(rr(1) +2) +2-5* — 1+

+2k2ka) —-5.2¥. (66+ 18k3,f+2k2,ka) =0 (mod 16kL ‘I'r)
(1) +4) +3p(m(1) +4) + 1+

+2k2ka) 2% . (6+6k3/f +2k2,ka) = 0 (mod 16kL ‘Y)

(7
(1
(7

)
) (35)
5-p(r(1)+4)-2¥- (20*((1) +4) +3-5-p(n(1) +4) +2-5* — 1+
+3k3,f (p( ( ) ) 5) + 2k2ka) —-5.2¥. (66 + 18k3/f +2k2,ka) =0 (mod 16 - kL . III)
p(r(1) +8) -2 - (20%(7e(1) +8) + 3p((1) +8) + 1+
+3k3,f (p( ( ) ) 1) + 2k2ka) —-2¥ . (6 + 6k3,f +2k2,ka) =0 (mod 16 -k - 11;)
5-p(r(1) +8)-2¥ - (20*(7(1) +8) +3-5-p((1) +8) +2-5* — 1+
+3k3 ¢+ (0(70(1) +8) +5) +2ky pkr) —5- 2% - (66 + 18ks £ + 2ky pkr) = 0 (mod 16 - kp, - ¥).
Equations from (35) are fulfilled if and only if
p(m(1) +2) - (202(7(1) +2) +3p(7w(1) +2) + 14 3ks p - (o(71(1) +2) + 1) + 2k, k1) —
— (6 + 6k3 f +2kp k) = 0 (mod 8 - kp)
5-p(m(1) +2) - (20*(7(1) +2) +3-5-p(7(1) +2) +2-5 — 1+
p(r(1) +4) - (20%(7(1) +4) +3p(7w(1) +4) + 1 +3ks ¢ - (0(7w(1) +4) + 1) 4 2k; k1) —
—(6+6k3,f+2k2,ka) =0 (modS-kL) (36)

5-p(m(1) +4)- (20*(7(1) +4) +3-5-p((1) +4) +2-5 — 1+

+3ks - (o(7(1) +4) +5) +2k2,ka) —5- (66 + 18k3, ¢ +2k2,ka) =0 (mod 8- ki)
p(7r(1) +8) - (20%(7(1) 4 8) +3p(7t(1) +8) + 1+ 3ks ¢ - ((7r(1) +8) + 1) 4 2k; k1) —
*(6 + 6k3,f + 2k2,ka) =0 (rnod 8- kL)

5-p(r(1) +8) - (202(m(1) +8) +3-5-p(r(1) +8) +2-52 — 1+

+3k3,f . (p(ﬂ’(l) + 8) + 5) +2k2,ka> —5. (66 + 18k3,f + 2k2,ka) =0 (rnod 8- kL)
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Fork; =1and k’2, = 2k; r — 1, equations from (36) are fulfilled if and only if

p(m(1) +2) - (202(7(1) +2) +3p(7(1) +2) + 2+

+3ks p - (p(7(1) +2) +1) + K () + (1+2ks f +7k) ) = 0 (mod 8)
5-p((1) 4+2) - (20%(7(1) +2) + 7 p(7(1) +2) + 2+

+3ks, - (p(7r(1) +2) +5) + k’2,f) + (14 6ks ¢ +3k’2,f) =0 (mod 8)
p(rt(1) +4) - (202(7(1) +4) +3p(7(1) +4) + 2+

+3kap - (p(mr(1) +4) +1) +kj () + (1+ 2ks f +7k; ) = 0 (mod 8)

5-p(m(1) +4) - (20%(r(1) +4) +7- p(7(1) +4) + 2+ (37)
+3ks - (p(7r(1) +4) +5) + k3 ) + (14 6ks s +3k; () =0 (mod 8)
p(rt(1) +8) - (202(7(1) +8) + 3p(7(1) + 8) + 2+
+3ks,f - (p(70(1) +8) +1) +kj ) + (1 + 2k3 ¢ +7k; ) = 0 (mod 8)
5-p(7(1) +8) - (20%(7(1) +8) + 7 - p(7(1) + 8) + 2+
+3ks,f - (0(70(1) +8) +5) +kj ) + (1 + 6ks  +3k) () = 0 (mod 8).
We have
p(rt(1) +2) (mod 8) =1+ p(2) +2- (1) - (204 - (277> (1) +2-22 +3-2-7(1))+
+3p3 - (1(1) +2) +2p3) (mod 8) =
=142 (01+202) +603- (fi+fa+ fa+ fa)* + (403 + 402) - (i + fa+ f3+ fa) (mod 8) =
=142 (o1 + 2kapky) + ks ok - (fi + ko phw + kw)? + 4ks pk - (f1 + K5 gk + ky) (mod 8) =
=142 (o1 + 2ka pky) + ks pky - (1+ (K 1)> + 14 2f1K) chw + 2 frky + 2Kk, )+
+4f1k2,pk\y + 4k2,p . (klz,f + 1) (mod 8) =
=1+ 201 + 4k (K) )2k + 4ks, - (K, ¢ +1) (mod 8), (38)
p?(7t(1) +2) (mod 8) = 5 +4p; (mod 8), (39)
> (7r(1) +2) (mod 8) = 5+ 601 + 4ks (k5 r)*ky +4kap - (K5 +1) (mod 8), (40)
p(t(1) +4) (mod 8) =1+ p(4) +4-7(1) - (204 - (27%(1) +2-4% +3-4- (1)) +
+3p03 - (71(1) +4) +2p2) (mod 8) =1+ 4p; (mod 8), (41)
p?(71(1) +4) (mod 8) = 1 (mod 8), (42)

p(7(1) +8) (mod 8) =1+ p(8) +8- (1) - (204 - (277*(1) +2-8% +3-8-7(1))+
+3p3 - (71(1) + 8) +2p2) (mod 8) =1 (mod 8). (43)
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Thus, equations from (36) are equivalent to

20%(7(1) +2) +3 (ks p +1) - p*(7r(1) +2)+

(2+3k3f+k2f) p(rr(1) +2) + (1+ 23 +7k; ;) = 0 (mod 8)

20°(7(1) +2) + Tk +3) -9 (m(1) +2)+ “
T(2+43ksf+k; ) - p( ()+2)+(1+6k3f+3k’/f):0(m0d8) (44)
(1+4p1) - (2+3k3f+k f)+(6+5k3f+7k ) =0 (mod 8)

(14 4p7) - (2+3k3f+5k2f) (6 + 5ks,f +3k; () = 0 (mod 8)

or

20%(r(1) +2) +3- (k3f+1) p*(7(1) +2)+

+(2+3ks p+ky ) - p((1) +2) + (1+ 2k3 ¢+ 7k3 ) = 0 (mod 8)

20%(m(1) +2) + (7k3f+3) PP (mr(1) +2)+ (45)
+(2+4 8k r +ky ) - p(7(1) +2) + (1 + 6k ¢ +3k; ) = 0 (mod 8)

4p1 - (ks s+ k2,f) =0 (mod 8).

The third equation from (45) is fulfilled if and only if k3 y = 1 and k/, s {1,5}, ork3 s = 3 and
K € {3,7}. It can be verified that these values also fulfill the first two equations from (45).
For k, = 3, equations from (36) are fulfilled if and only if

p(rr(1) +2) - (20%(7(1) +2) +3p(7t(1) +2) + 1+ 3ks ¢ - (0(7w(1) +2) +1) + 6ky )+
+18 - (1+k3f+k2f): (mod 24)

5-p(m(1) +2) - (20%(72(1) +2) +15- p(7(1) +2) + 1+

+3ks,f - (0(7t(1) +2) +5) + 6k f) +6- (1 +k3 5 +3ky ) = 0 (mod 24)

p(7(1) +4) - (20%(7(1) +4) +3p(7(1) +4) + 1 +3ks - (p(r(1) +4) +1) +6k2/f)+
+18 - (1 + k3 s + ko r) = 0 (mod 24)

5. p(n(1) +4) - (202(re(1) +4) +15- p((1) +4) + 1+ (46)
p(r(1) +8) - (20%(7(1) +8) +3p(7(1) +8) + 1+ 3ks ¢ - (p(7w(1) +8) + 1) + 6ky )+
+18 - (1 + k3 r + ko r) = 0 (mod 24)
5-p(7(1) +8) - (20?(7(1) +8) +15- p(7(1) +8) + 1+
+3ks - ((7(1) +8) +5) + 6ky, s) +6- (1+ksp 4 3kyr) = 0 (mod 24).
With
(1) (mod 24) = (f1 + 6k, sky + 2k3 rky) (mod 24), (47)
we have

p(7t(1) +2) (mod 24) =14 p(2) +2- (1) - (204 - (27*(1) +2-22 +3-2-71(1))+
+3p3 - (7(1) +2) +2p2) (mod 24) =
=1+2-(p1+ 202 + 403 + 804) + 804 - 71°(1) + 6037 (1) + (8p4 + 1203 + 4p2) - 71(1) =
=1+ 2p; + 16k3 pky + 12ky + 8ky - 707 (1) + 12k3 pky - 7% (1) + 4ky - (f1 + 2k3 pky) (mod 24), (48)

0*(7(1) +2) (mod 24) = 1+ 4p; - (o1 + 1) + 8k pky - (2ks gy + 201 + 1)+
+16k3, - 7°(1) + 16ky - 71* (1) + 8ky - (24 p1 + 2ks pky ) - 77 (1) + 16k - 77 (1) +
+ 8ky - (1+ 201 + kg,,pkq/) . (f1 + Zkg,fk\{l) mod 24), (49)

0> (72(1) +2) (mod 24) = 1+ 20; - (407 + 601 + 3) + 4k - (4k3 k& +3)+
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+ 8k - 717 (1) + 16ky, - 71 (1) + 12k3 oky - 712(1) + 12ky f; (mod 24), (50)

p(7(1) +4) (mod 24) =1+ p(4) +4- (1) - (204 - 27%(1) +2-4%> +3-4-77(1))+

+3p3 - (11(1) +4) + 2p2) (mod 24) =
=1+ p(4) +16p4 - (1) + 1203 - (1) + (16p4 +802) - (1) (mod 24) =
=1+4- (01 +402 +16p3 +1604) + 1604 - (f1 + fo + f3 + fa)* + 1203 (f1 + fo + f3 + fa)*+
+(1604 +802) - (fi + fa + f3 + fa) (mod 24) =
=144 (p1 +8kapky) + 16ky - (f1 + 6ko tky + 2k ky)>+
+ 8ky - (f1 + 2k fky) (mod 24), (51)

pz(ﬂ(l) +4) (rnod 24) =1+ 8p1 . (Zpl + 1) + 16k3/pk\}f . (kg/pk\{f +P1 + 1)+
+16k3, - 71°(1) + 16k - 71*(1) + 8ky - (14 p1 + 2k3 pkyy ) - 77°(1) + 16k§ - 77°(1)+
+ 8ky - (2 + 201 + k3,pkqf) . (fl + 2k3,fk1}f) mod 24), (52)

0> (70(1) +4) (mod 24) = 1+ 4p; - (407 +3) + 8kyh3 , + 16k - 77 (1) + 8k - 7°(1) (mod 24), (53)

p(7(1) +8) (mod 24) =14 p(8) +8- (1) - (204 - (277*(1) +2-8>+3-8-7(1))+

4303 - (71(1) 4+ 8) +202) (mod 24) =1+ p(8) + 804 - 7>(1) +8 - (202 + p4) - 71(1) =
=148 (p1 + 2k pky) + 8ky - (f1 + 6ky sk + 2ks k) >+
+ 16k\1-f : (f] + 2k3,fk\1/) (mod 24), (54)

p*(70(1) +4) (mod 24) = 1+16p; - (01 + 1) + 8ks pky - (2k3 pky + 201 + 1)+
+16k3, - 7T(1) + 16k - 71*(1) 4 8k - (2 + p1 + 2k pky) - 70 (1) + 16k% - 77 (1)+
+ 8ky - (1+ 201 + k3 pky) - (f1 + 2k3 sky) mod 24), (55)

0°(72(1) +8) (mod 24) = 1+ 807 + 16kyk3 , + 8k - 77 (1) + 16ky - 71°(1) (mod 24).  (56)

Taking into account Equations (47)—(56), it can be verified, by exhaustive searching by means of
Matlab that equations from system (46) are fulfilled if and only if k3 y = 1 and k € {1,3}, 0r k3, F=3
and k¢ € {2,4}.

From solutions of (28), (33), (45), and (46), it results that the interleaver pattern from Figure 1
always appears for x; = 0 or x; = 1, when k3,f € {1,3} and kz,f € {1,2,3,4}. For an interleaver
pattern as in Figure 1, the weight of the codeword for classical nominal 1/3 rate turbo codes with two
RSC codes having generator matrix G = [1,15/13],isequal to 12 +4 - 3 + 3 - 4 = 36, because each of
the four error patterns with a weight of three leads to a parity weight of three, and each of the three
error patterns with a weight of four leads to a parity weight of four. Because the interleaver pattern
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from Figure 1 always appears in the previous conditions, it results that the minimum distance is upper

bounded by the value of 36. O

Theorem 2. Let the interleaver length be of the form given in (5). Then, the minimum distance of the
classical nominal 1/3 rate turbo code—uwith two RSC codes concatenated in parallel, having the generator
matrix G = [1,15/13] (in octal form), 4-PP interleavers, and fulfilling conditions (6) when 3 1 (p; — 1),
with coefficients fy =¥, f3 = k3 ¢ -2¥, fo = (2kgp-kp —1)-¥, kp € {1,3}, when k3 ¢ € {0,2} and
kar € {1,2,3,4} or when ks ¢ € {1,3} and ky ¢ € {2,4}—is upper bounded by the value of 28.

Proof. We consider the interleaver patterns of size four shown in Figures 2 and 3.

\J&

Figure 2. Critical interleaver pattern of size four for 4-PP-based interleavers.

+7) x1+7

The four elements of permutation 77(-) indicated in Figure 2 are written in detail below.

x1 — 7(x1)

x1+7— m(x1+7) (mod L)

xp — 7t(xp) = 7t(x1) +7 (mod L)

xp+7 = m(xp+7) =7m(x1+7)+7 (mod L).

(57)

Writing xp = p(71(x2)) = p(7t(x1) + 7) in the fourth equation from (57), with x; = x, we have
m(o(7e(x) +7) +7) = w(x +7) +7 (mod L). (58)
Equation (58) is equivalent to
7-p((x) +7) - (2fa- (0% ((x) +7) +3-7-p(r(x) +7) +2-7%) +3f3 - (p(7r(x) +7) +7) +2f2) =
=7-x-(2fs- (2¥* +3-7-x+2-72) +3f3- (x +7) +2f») (mod L) (59)
or
28fy - 02 (7t(x) +7) + (294fy + 21f3) - p*(7r(x) +7) + (1372f4 + 147f3 + 14f2) - p(7(x) +7) =

= 14x - (262 4 21x +98) - fy +21x- (x +7) - f3 +14x - fo (mod L). (60)

For L = 16- kL ‘Y, f4 =Y, f3 = k3,f -2Y, k3,f € {0, 1,2,3}, f2 = (2k2,f . kL — 1) - Y, k2,f €
{1,2,3,4}, k; € {1,3}, Equation (60) becomes

14-2¥ - p°(r(x) +7) + 2¥ - (147 + 21k 5) - p*(7t(x) + 7)+
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+2¥ - (686 + 147ks s +7 - (2ky s -k — 1)) - p((x) +7) =
=7x-(2x* +21x +98) - 2¥ +21x - (x +7) - k3 - 2¥+
+7x - (2kpp -k — 1) - 2% (mod 16 - kr - ¥). (61)
Equation (61) is fulfilled if and only if
14 p°(7t(x) +7) + (147 + 21ks ) - o> (72(x) + 7)+
+(686 + 147k  + 7 - (2kp, -k — 1)) - p(m(x) +7) =
=7x- (26> +21x+98) +21x - (x +7) - ks s+ 7x - (2kp ¢ - kp — 1) (mod 8 - k1), (62)
where
p(mr(x)+7) (mod 8 k) = x+p(7) +7-m(x) - (204 - (2% (x) +2-72 +3-7 - 7(x))+
+303 - (71(x) +7) 4 202) (mod 8 -kr) = x + p(7) + 2804 - 70> (x)+
+21 - (14p4 + p3) - 7T2(x) + 7 - (196p4 + 21p3 +202) - 7(x) (mod 8 - kr). (63)
For x =0, x =1, and x = 3, Equation (62) becomes
14-p%(7) + (147 + 21ks 5) - p*(7)+
+ (686 + 147ks s + 7 - (2kp s -k — 1)) - p(7) = 0 (mod 8 - kp), (64)
14-p3(7(1) +7) + (147 + 21ks ) - (7 (1) + 7)+
+(686 + 147ks ¢ + 7 - (2kp p -k, — 1)) - p(7(1) +7) =

=847 +168 - k3 f + 7 (2ko,r -k — 1) (mod 8 -kp), (65)
and
14-p°(7(3) +7) + (147 + 21ks ¢) - p*(7(3) + 7) +
+(686 + 147k s +7 - (2kyr -k — 1)) - p(71(3) +7) =
= 3759 + 630 - k3 s +21 - (2kp f - kp — 1) (mod 8 - k), (66)
respectively.

Fork; =1, k/2, F= 2ky s — 1 and k/2,p = 2k, , — 1, Equation (63) becomes
0(e(x) +7) (mod8) = x-+0(7) + 404 7(x) + (693 +5p5) - 72(x) + (4ps + 3p3 + 6p2) - 7(x) (mod 8) =
= X+ 701+ ky - (6ksp + Ky, +1) + 4ky - 77 (x)+

+ 2ky - (k3,p +3) - 7T (x) + 2k - (3ks,p + 3k , +2) - 71(x) (mod 8), (67)

and Equations (64)—(66) become
6-0°(7) + (5ks ¢ +3) - 0*(7) + (3ks,f + 7k s +6) - p(7) = 0 (mod 8), (68)

where
p(7) (mod 8) = 7p1 + ky - (6k3 , + k’2,p +1) (mod 8), (69)

6-03(m(1)+7) + (5ks,f +3) oA (1) +7)+
+ (Bks s + 7k’2,f +6)-p(m(1) +7)+ klz,f +1 =0 (mod 8), (70)
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where
p(7(1) +7) (mod 8) =1+ 7p1 +ky - (6kz o +kp, + 1)+

+4ky - (f1 + klzlfk\y + kg,f - 2ky + k\}/)B + 2k - (k3fP +3)- (fl + klz,fk‘l’ + k3,f 2k + k\y)z—i-

+2ky - (3ksp + 3Ky, +2) - (fi + ko tkw + ks - 2ky + ky) (mod 8), (71)

and
6-03(m(3) +7) + (5k3,f +3) X ((3) +7)+

+ (3ks f +7ky ; +6) - p(70(3) +7) + 2ks s +3ky ; +1 =0 (mod 8), (72)

where
p(7(3) +7) (mod 8) = 3+ 701 + ky - (6k3p + Ky, + 1)+
Haky - (3f1 + Ky choy + 6k3 phy + Ky )® + 2k - (ks +3) - (3f1 + Ky thw + 6ks phy + ky ) >+

+ 2ky - (3ks,p +3k5, +2) - (Bf1 + Ky tky + 6k tky + ky) (mod 8), (73)

respectively.

For k;, = 3, Equation (63) becomes
o(rt(x)+7) (mod 24) = x + p(7) +4py - ng(x) +3- (204 +7p3) - nz(x)+
+(4p4 + 3p3 + 14p2) - 71(x) (mod 24) =
= x +7p1 + 2ky - (7kz o + 3ko,p) + 4k - 710 (x) + 6k - (Tksp + 1) - 7% (x)+
+ 2k1{; . (3k3’p -+ 6k2,P =+ 7) . 7'c(x) (mod 24) (74)
and Equations (64)—(66) become

14-03(7) 43+ (7Tks s +1) - p*(7) + (ks s + 18kp s +7) - p(7) = 0 (mod 24), (75)
where
p(7) (mod 24) = 7p1 + 2ky - (7k3 p + 3kz,) (mod 24), (76)
14-p°(m(1) +7) +3- (Tha s+ 1) - p*(m(1) +7)+
+ (3ks p + 18ky +7) - p(7(1) +7) + 6k ¢ = 0 (mod 24), (77)
where
p(mt(1) +7) (mod 24) = 1+ 7p; + 2ky - (Tks o + 3kap)+
kg - (f1 + 6ko phy + 2k3 tky ) + 6ky - (Thks,p + 1) - (fi + 6k, ty + 2k3 ko )+
+ 2ky - (3kz,p + 6kap +7) - (f1 + 6ky sk + 2k3 cky) (mod 24), (78)
and
14-p°(m(3) +7) +3- (ks s +1) - p*(m(3) +7)+
+ (3ks p + 18k +7) - p(71(3) +7) + 6 - (3k3 r + 3kp r +1) = 0 (mod 24), (79)
where

p((3) +7) (mod 24) = 3+ 7p; + 2ky - (Tks o + 3k )+
+aky - (3fy + 6ko tky + 6ks sy ) + 6ky - (Thz o + 1) - (31 + 6ko sy + 6ks sy ) >+
+ 2ky - (3k3/p + 6k2/p +7)- (3f1 + 6k2,fk\1! + 6k3,fk\y) (mod 24), (80)

respectively.
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X, X +7 X, X, +7

7(%,+7) (X +7)+7 7(%,) 7(%)+7

Figure 3. Critical interleaver pattern of size four for 4-PP-based interleavers.

The four elements of permutation 77(-) indicated in Figure 3 are written in detail below

Xy — H(XQ)

Xp+7 — m(xp +7) (mod L)

x1 — m(x1) = m(xp) + 7 (mod L)
x1+7=>n(x1+7)=mn(xx+7)+7 (mod L).

(81)

Writing x, = p(7t(x2)) = p(7(x1) — 7) in the fourth equation from (81), with x; = x, we have
m(o(rt(x) —=7)+7)=mn(x+7)—7 (mod L). (82)

ForL = 16- kL ‘Y, f4 =Y, f3 = k3,f -2V, k3,f € {0, 1,2,3}, fz = (Zkz’f . kL — 1) - Y, kzrf €
{1,2,3,4}, ki € {1,3}, Equation (82) is fulfilled if and only if

14-p*(m(x) = 7) + (147 + 21ks ) - p* (71 (x) = 7)+
(686 + 147k s +7 - (2K s -k — 1)) - p(7t(x) = 7) =
=7x-(2x° +21x +98) + 21x - (x +7) - k3 s + 7x - (2kp f -k — 1) (mod 8 - ky), (83)
where
p(rt(x) —7) (mod 8-kp) = x+p(—7) —7-7w(x) - (204 - (27*(x) +2-72 —=3-7 - 71(x))+
4303 - (71(x) —7) +202) (mod 8 - ki) = x + p(—7) — 2804 - T2 (x) + 21 - (1404 — p3) - T2(x)+
—7-(196p4 — 21p3 + 203) - 7(x) (mod 8 - k). (84)
For x =0, x =1, and x = 3, Equation (84) becomes
14-0°(=7) + (147 + 21ks ) - p*(=7)+
+ (686 + 147k ¢ +7 - (2kyf -k, — 1)) - p(~7) = 0 (mod 8 - kr), (85)
14-p3(7(1) = 7) + (147 + 21ks f) - p*(7(1) = 7)+

+(686 + 147k3 f +7 - (2ky s -k — 1)) - p(7(1) = 7) =
=847+ 168 ks s +7- (2ky s -k — 1) (mod 8- k), (86)
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e 14-p°(m(3) = 7) + (147 + 21k3 ¢) - p*(7(3) = 7)+
+(686 +147k3 r +7 - (2ky,r -k — 1)) - p(7(3) = 7) =
= 3759 + 630 - k3 s + 21 (2ky ¢ - kp — 1) (mod 8 - k1),

respectively.

Fork; =1, k/2, I 2ky f —1,and ky » = 2kz,, — 1, Equation (84) becomes
p(7(x) =7) (mod 8) = x +p(1) +4ps - 7°(x) +3- (204 + p3) - 7T () +

+(4p4 + 303 +202) - 71(x) (mod 8) =
= x+p1+ky - (2ksp+ Ky, +1) +dky - 70 (x) + 6ky - (kzp +1) - 7 (x)+
+ 2ky - (3kz,p + k’z/p +2)-7t(x) (mod 8),
and Equations (85)—(87) become

6-0(1) + (5ks ¢ +3) - 0*(1) + (3ks s +7 - kj s +6) - p(1) = 0 (mod 8),

where
p(1) (mod 8) = p1 +ky - (2k3p +kap +1) (mod 8),
6-0°(m(1) = 7) + (5ks s +3) - p*(7(1) = 7)+
+ (Bkap +7-kyp+6)-p(r(1) =7) +ky;+1=0(mod8),
where

26 of 39

(87)

(88)

(89)

(90)

1)

p(rt(1) =7) (mod 8) =1+ p1 + kzrpk\f + k3,p 2ky + ky + 4ky - (f1 + k’z’fk\{f + k3,f 2ky + k\y)3+

+6ky - (k3,p + 1) . (fl + klzrfk\{f + kgrf - 2ky + k\y)z—l-
+ 2ky - (3k3,p + k2,p + 2) . (f1 + klzrfk\}f + k3’f 2ky + k\}’) (mod 8),

and

6-0>((3) =7) + (5ks s +3) - 0*(7(3) = 7) + (Bkz s +7-ky p +6) - p(m(3) = 7)+

+2ks f + 3k f +1 =0 (mod 8),

where

(92)

(93)

p(ﬂ(3) —7) (mod 8) =3+ o1+ ky - (2k3/p + kz/p +1) + dky - (f1 + 3k/2’fk\{f + k3’f 2k + 3kqf)3+

+6ky - (kglp + 1) . (f1 + 3k/2’fk\{f + k3,f - 2ky + 3k\y)2—l—
+ 2ky - (3k3,p + k2,,0 + 2) . (f1 + 3k’2’fk\}f + k3,f 2ky + 3k\y) (mod 8),

respectively.
For k;, = 3, Equation (84) becomes

p(7t(x) = 7) (mod 24) = x + p(=7) +20p4 - 70 (x) + 3 (204 + p3) - 7T (x)+

+(2004 + 3p3 + 10p2) - 77(x) (mod 24) = x 417 - (1 + 6ko pky + 10k3 pky )+

+20ky - 7 (x) + 6ky - (ks + 1) - 7% (x) + 2ky - (3ks o + 6kpp +5) - 7r(x) (mod 24),

(94)

(95)
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and Equations (85)—(87) become

14-0°(=7)+3- (Thy g+ 1) - p*(=7)+

+ (3k3 p + 18ky  +7) - p(—7) = 0 (mod 24), (96)
where
p(=7) (mod 24) = 17 - (p1 + 6ka pky + 10k3 pky) (mod 24), (97)
14-0°(m(1) = 7) + 3 (Tks s + 1) - p*(m(1) = 7)+
+ (3ks f + 18ky  +7) - p(7t(1) — 7) + 6ky s = 0 (mod 24), (98)
where
p(7r(1) = 7) (mod 24) = 1417 - (p1 + 6ka pky + 10k3 sk )+
+20ky - (f1 + 6ko tky + 2kt )® + 6k - (kp + 1) - (fi + 6k, py + 2k3 phy )+
+ 2ky - (ko + 6kap +5) - (f1 + 6k, tky + 2k3 sky) (mod 24), (99)
and
14-03((3) = 7) + 3+ (Thy p + 1) - p*((3) = 7)+
+ (3ks,f + 18ky s +7) - p(71(3) = 7) +6 - (3ks f + 3ko s + 1) = 0 (mod 24), (100)
where
p((3) —7) (mod 24) = 3 + 17 - (p1 + 6ko pkw + 10ks ok )+
+12ky - (fi + 2ko sy + 2k ey )® + 6ky - (ks + 1) - (fi + 2Ky, thy + 2ks ko )+
+ 6ky - (3k3 o + 6kap +5) - (f1 + 2k, sk + 2k3 pky) (mod 24), (101)
respectively.

Solutions of Equations (68), (70), (72), (89), (91), and (93) for variables k3 ¢, klz, fr and f; (mod 8),
which fulfill the results from Lemma 2, are given in Tables 9 and 10. It can be observed that they can be
summarized as in Table 11.
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Table 9. Solutions of Equations (68), (70), (72), (89), (91), and (93) for k3 s € {0,2}.

Equation

ky

ks, ¢

k;, 7

f1 (mod 8)

(68)

1

0

lorb
3or7
lor3or5o0r7

3

lor3or5o0r7
lorb
3or7

(70)

lor5
3or7
lor3or5o0r7

lor3or5o0r7
lor5
3or7

(89)

lor3or5o0r7
lorb
3or7

lor5
3or7
lor3or5o0r7

©1)

lor3or5o0r7
lorb
3or7

lorb
3or7
lor3or5o0r7

(93)

lor3or5o0r7
lor5
3or7

N O ONNONOOINDNONOOINDNONNONOOINDNONO

lorb
3or7
lor3or5o0r7

=W NN W WWN WWNNO- Ol = = O = =0 = OW N W

Table 10. Solutions of Equations (68), (70), (72), (89), (91), and (93) for k3 s € {1,3}.

Equation

ky

ks,f Kk

2,f

f1 (mod 8)

(68)

lor3

W =

7

lor3or5o0r7
3or7
lorb

(70)

lor3

lorb
3or7
lor3or5o0r7

(89)

lor3

lor3or5o0r7
lorb
3or7

©1)

lor3

3or7
lorb
lor3or5or7

(93)

lor3

W =W =W WRWRE =W

W N WOINN WN WNNNY WY W

lorb
3or7
lor3or5o0r7
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Table 11. Solutions of Equations (68), (70), (72), (89), (91), and (93) summarized from Tables 9 and 10.

ks f ké’f f1 (mod 8)
Oor2 1lor3or5or7 1lor3orb5or7
lor3 3or7 lor3or5o0r7
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Solutions of equations (75), (77), (79), (96), (98), and (100) in variables k3 r, k¢, f1 (mod 48), which
fulfill the results from Lemma 2, are given in Tables 12 and 13. It can be observed that they can be

summarized as in Table 14.

Table 12. Solutions of Equations (75), (77), and (79).

Equation ky € kzr kyy f1 (mod 48) €
75) (1,5, 0 Tor3 {11,19] forky € {1,5}, {7,253} for ky € {7,11}
7,11} 2or4 (7,23}
1 1 {3,5,9,11,15,17,21,23} for ky € {1,7},
{1,3,7,9,13,15,19,21} for ky € {5,11}
2 lor3 {3,19} forky =1, {3,11} for ky =5,
{7,15} for ky =7, {15,23} for k¢ =11
2or4  {3,19} forky € {1,7}, {3,11} for ky € {5,11}
3 2 {7,11,19,23}
1 {1,5,13,17}
(77) {1,5, 0 1lor3 {513} forky € {1,5},{1,17} for ky € {7,11}
7,11} Zord 1,17}
T 2 {5,9,17,21} for ky € {1,7},
{1,9,13,21} for ky € {5,11},
} {3,11,15,23} for ky € {1,7},
{3,7,15,19} for ky € {5,11}
2 lor3 {13,21} for ky =1, {5,21} for ky =5,
{1,9} for ky =7,{9,17} for k¢ =11
2or4 {13,21} for ky € {1,7}, {5,21} for ky € {5,11}
3 4 {1,5,7,11,13,17,19,23}
79) (1,5, 0 Tor3 {1,17) forky € {1,5}, (5,13} forky € {7, 11}
7,11} 2or4 {5,13}
1 2 {3,11, 15,23} for ky € {1,7},
{3,7,15,19} for ky € {5,11},
1 {5,9,17,21} for ky € {1,7},
{1,9,13,21} for ky € {5,11}
2 lor3 {1,9} forky =1, {9,17} for ky =5,
{13,21} for ky =7, {5,21} for ky =11
2ord  {1,9}forky € {1,7},{9,17} for ky € {5,11}
3 2 {1,5,7,11,13,17,19,23}
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Table 13. Solutions of Equations (96), (98), and (100).

Equation ky € k3 kyy f1 (mod 48) €
©6)  {1,5, 0 1Tor3 {1,17)forky € {1,5}, {513} forky € {7,11}
7,11} 20r4 {5,13}
1 1 {3,5,9,11,15,17,21,23] for ky € {1, 7},
{1,3,7,9,13,15,19,21} for ky € {5,11}
2 lor3 {13,21} for ky =1, {5,21} forky =5,

{1,9} forky =7,{9,17} for ky = 11
20or4 {13,21} for ky € {1,7}, {5,21} for ky € {5,11}

3 2 17,11,19, 23}
1 11,5,13,17}
©8) 11,5, 0 1lor3 {7,23) forky € {1,5}, {11,19] for ky € {7,11]
7,11} Zord 17,23}
1 2 13,11, 15,23} for ky € {1, 7},
{3,7,15,19} for ky € {5,11},
1 15,9,17,211 for ky € {1, 7},
{1,9,13,21} for ky € {5,11}
2 lor3 {7,15} for ky =1, {15,23} for ky =5,

{3,19} for k¢ =7, {3,11} for ky =11
2or4d  {3,19} forky € {1,7}, {3,11} for ky € {5,11}

3 4 {1,5, 7,11,13,17,19, 23}
(100)  {1,5, 0 1or3 {11,19] forky € {1,5},{7,23] for ky € {7,11}
7,11} Zord {11,197
1 2 {5,9,17,21] for ky € {1,7},
{1,9,13,21} for ky € {5,11},
1 {3,11,15,23] for ky € {1, 7},
{3,7,15,19} for ky € {5,11}
2 lor3 {3,19} forky =1, {3,11} for ky =5,

{7,15} for k¢ =7, {15,23} for ky = 11
2or4 {7,15} forky € {1,7}, {15,23} for ky € {5,11}
3 2 {1,5,7,11,13,17,19,23}

Table 14. Solutions of Equations (75), (77), (79), (96), (98), and (100) summarized from Tables 12 and
13.

k3,f kZ,f f1 (mod 48) €
0 lor2or3ord {1,5,7,11,13,17,19,23}
1,3,7,9,13,15,19,21} for ky € {1,7},
2 lor2or3ord {g, 5,9,11,15, 17,21,23}} for ky € {{5, 1}1}
) > ord {3,5,9,11,15,17,21,23} for ky € {1,7},
{1,3,7,9,13,15,19,21} for ky € {5,11}
3 2or4 {1,5,7,11,13,17,19,23}

From Tables 11 and 14, it results that an interleaver pattern as in Figure 2 or Figure 3 always
appears for x; = 0 or x; = 1 or x; = 3, when k3 r € {0,2} and ky € {1,2,3,4} or when k3 € {1,3}
and ky ¢ € {2,4}. For an interleaver pattern as in Figure 2 or Figure 3, the weight of the codeword for
classical nominal 1/3 rate turbo codes with two RSC codes having generator matrix G = [1, 15/ 13},
is equal to 4 + 4 - 6 = 28, because each of the four error patterns with weight of 2 lead to parity weight
of 6. Because an interleaver pattern as in Figure 2 or Figure 3 always appears in the previous conditions,
it results that the minimum distance is upper bounded by the value of 28. [J

Combining the results from Theorems 1 and 2, it results that the upper bound of 36 is reached
only for k3 ¢ € {1,3} and ky ¢ € {1,3}, Vk; € {1,3}. Thus, the task for finding good 4-PPs is facilitated
with this result, because coefficients fs, f3, and f» have only four possible combinations.

We note that from the LTE interleaver lengths [13], there exist 25 lengths of the form (5); namely
48, 80, 112, 176, 208, 240, 272, 304, 336, 368, 464, 496, 528, 560, 592, 624, 656, 688, 752, 816, 848,
880, 912, 944, and 976. From these, for the lengths 40, 208, 304, 496, 592, 624, 688, 912, and 976,
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restriction conditions (6) on coefficients are not required, and thus, the result in the paper is fully
general. Examples of 4-PP interleavers that reach the upper bound of 36 are those from [17] for the
interleaver lengths 368, 464, and 496, when dual trellis termination [31] is used.

4. Remarks and Examples

4.1. Remarks

In this subsection, we make some remarks regarding the upper bounds on the minimum distance
derived in [19] and those on the minimum distance derived in this paper. From Lemma 3.2 and Table 2
in [19], it results that an upper bound on minimum distance for turbo codes with any degree PP
interleavers is equal to 36 in the following conditions:

(1) The PPs can be represented by a parallel linear PP (PLPP) with the minimum number of linear
PPs (LPPs) from the PLPP representation equal to two or 14.

(2)  The coefficients of the first degree term of LPPs from the PLPP representation are all equal to each
other. We denote by D,; the minimum number of LPPs from the PLPP representation fulfilling
this condition.

In the following, we prove that 4-PPs fulfilling the conditions from Theorem 1 can be represented
by PLPPs with the value of D,, greater than two. For this task, it is enough to prove that these 4-PPs
do not allow a PLPP representation with D,y = 2 LPPs. A 4-PP allows a PLPP representation with D,
component LPPs if and only if the following condition is fulfilled

f(Deq -y + Deg+1) = f(Deq -y +1) = f(Deg +1) — f(i) (mod L),
Vie {0,1,...,Deg —1},Vy € {1,2,...,L/Deg — 2}. (102)

With f(x) from (1) fulfilling conditions (6) when 3 { (p; — 1) and with L as in (5), Equation (102)
is equivalent to

Y- (2Dgy - (2y* + 3y +2) + 12D iy - (y + 1) + 12D5i%y) + 2ks f¥ - (3D5yy - (v + 1) + 6Dz iy) +
+ky (¥ - D7 -2y = 0 (mod 16k ¥), Vi € {0,1,..., Dy — 1}, ¥y € {1,2,..., 16k, ¥ /Dy — 2}, (103)
or

Dypy - (207 +3y +2) +6Diy - (y+1) + 6D%,i%y + ks r - 3D%y - (Deg - (v + 1) +2i) + k’zrngq Y=

— 0 (mod 8k.),Vi € {0,1,...,Dey — 1}, Vy € {1,2,...,8k — 1}. (104)

Because ki € {1,3}, we can write 3 = k. - (kp — 1). Thus, Equation (104) is equivalent to
Dy (2y* +3y+2)+2-kp - (kp —1) - Dajiy - (y+1) +2 -k - (kp — 1) - DZi%y+
+kap-kp - (ke —1)-DZy - (Deg- (y+1) +2i) + k/zlfoq -y = 0 (mod 8kp),
Vi€ {0,1,...,Deq — 1}, ¥y € {1,2,...,8k; — 1}. (105)
For D.; = 2, Equation (105) is equivalent to
8y’ +4- (ky;+2) -y =0 (mod8k.),Vy € {1,2,...,8k — 1}, (106)

or
2% + (kyp +2) -y = 0 (mod 2kz), ¥y € {1,..., 2k, —1}. (107)
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For the coefficients of 4-PPs given in Theorem 1 we have & £ (mod 2) = 1 when ki, = 1 and
K f (mod 6) = 5 when k; = 3. Thus (107) is equivalent to

y=0(mod?2), fory=1, (108)
when k; = 1, and to
2y +y =0 (mod 6),Vy € {1,2,...,5}, (109)

when k; = 3.

It is clear that equalities (108) and (109) are not fulfilled for y = 1. Therefore, it results that the
4-PPs given in Theorem 1 do not allow a PLPP representation with Dy = 2 component LPPs.

We can have D,; = 3 only when k; = 3, because 3 { L for kp = 1. For Deg = 3and k; = 3,
Equation (105) is equivalent to

18y” +3y* - (14 6i + 2% + 3ka f) + 3y - (6 + 6i + 3ks, ¢ + 2iks ¢ +3kj ;) = 0 (mod 24),

vi e {0,1,2},vy € {1,2,...,23}, (110)

or
6y° +y* - (14 6i+ 2% +3k3 ¢) +y - (6+6i +3ks s + 2iks s +3kj ;) = 0 (mod 8),

vi e {0,1,2}, vy € {1,2,...,7}. (111)

Because there is no cubic null polynomial modulo 8 with the coefficient of the third term degree
equal to six, it results that the 4-PPs from Theorem 1 can not be represented by a PLPP with three
component LPPs.

For D,; = 4, Equation (105) is equivalent to

8y’ +8- (2K, +1) -y = 0 (mod 8k), ¥y € {1,2,..., 8k, — 1}, (112)

or
v+ (2K +1) -y =0 (mod kp), ¥y € {1,... Kk —1}. (113)

For k; = 1, Equation (113) is, obviously, fulfilled. For k; = 3, because klz,f (mod 3) = 2,
Equation (113) becomes
y> +2y = 0 (mod 3),Vy € {1,2}. (114)

It can be easily verified that the equality from (114) is fulfilled for y € {1,2}.

To show that the 4-PPs established in Theorem 1 can be represented by a PLPP with D,y = 4 LPPs,
we still have to prove that all the coefficients of the first term degree of the four LPPs are equal to each
other. For that, we have to show that

fly+4)—f(y) = f(4) - f(0) (mod L), Vy € {1,2,3}. (115)

Equation (115) is equivalent to
fao-(4-yP44+6-y7 4244y 48+ -3 y*4+3.y-4)+f-2-y-4=0(mod L),Vy € {1,2,3}; (116)

or,with fy =¥, f =k3 r-2¥, fo = k/2,f -¥,and L = 16k, ¥,

2% +3ks sy + (ky p +2) -y = 0 (mod 2k ), Vy € {1,2,3}. (117)
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For the 4-PPs established in Theorem 1, we have 3k3 ¢ (mod 2kr) = ki and (k) 2t 2) (mod 2kp) =
1, Vk; € {1,3}. Then, for k; = 1 and k; = 3, Equation (117) becomes

y? +y =0 (mod2),Vy € {1,2,3} (118)

and
2y3 +3y> 4y = 0 (mod 6), Yy € {1,2,3}, (119)

respectively. It can be easily verified that the equalities from (118) and (119) are fulfilled fory € {1,2,3}.
Thus, the 4-PPs established in Theorem 1 always allow a PLPP representation with D,; = 4 LPPs.
Therefore, from Table 2 in [19] it results that the tightest upper bound derived in [19] is equal to 52.
Thus, the upper bound of 36, derived in Theorem 1, is much tighter. The examples of 4-PPs given in
the next subsection show that this upper bound can be reached.

4.2. Examples

Table 15 shows some CPPs and 4-PPs with optimum minimum distance for several LTE interleaver
lengths of the form given in (5). We note that for all these 4-PPs we have ng = 4, and thus, the best
upper bound derived in [19] is equal to 52. Minimum distances (d,,;;,) and corresponding multiplicities
(Na,,;,), spread factors (D), nonlinearity degrees ({), and refined nonlinearity degrees (Z") for each
CPP and each 4-PP are also given in Table 15. As it can be observed, CPPs have optimum distances
greater than those of 4-PPs (38 compared to 36) and the corresponding multiplicities for CPPs are
equal to about a half of those for 4-PPs. These relation between the multiplicities for CPPs and 4-PPs
with optimum distances is explained by means of nonlinearity degrees. In [21], it was proven that
CPPs with optimum distance have the nonlinearity degree equal to {cpp4,,,—opt = 8- In Appendix A,
it is proven that the nonlinearity degree of 4-PPs for interleaver lengths of the form (5), fulfilling
conditions (6) when 3 t (p; — 1), is equal to

_J 4whenksf € {1,3}
Ca—pp = { 8 when k3 s € {0,2}, (120

where the coefficient of the third term of 4-PP is f3 = k3 ¢ - 2'¥. Because 4-PPs with optimum distance
have k3 ¢ € {1,3}, it results that their nonlinearity degree is equal to {4 pp, /2.
Thus, the result for the multiplicities is explained.

We also note that the good QPPs reported in Table XIII from [21] have the minimum distance
equal to 38 and the corresponding multiplicities are approximately equal to those for 4-PPs from
Table 15 in this paper. The results for multiplicities are explained by the fact that QPPs given in [21]
have the nonlinearity degree {opp J— =4=7{_4 pp o —opt”

Taking into account the above, it is expected that CPPs and QPPs for these interleaver lengths to
lead to better error rate performances compared to 4-PPs.

An estimation of asymptotic improvement in terms of the error rate for CPP and QPP interleavers
compared to 4-PP interleavers can be given if we compare the upper bounds on error rates for distance
spectra of the turbo codes truncated at the first term. For an additive white Gaussian noise (AWGN)
channel with the signal to noise ratio SNR, the frame error rate (FER) for a block code with coding
rate Re, minimum distance dmin, and the corresponding multiplicity Ny _; , is upper bounded by

min —OPt =4= é'Cppdminff’lgt

FER < TUB,,.(FER) < TUBey,(FER), (121)

where

+o0
TUBe,fC(FER):0.5~Ndmm-erfc( dmin - SNR ) Ny : / e Pdt (122)

Re-dmin-SNR

Bl

min
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and
TUBexy(FER) = 0.5 N, - e~ RedminSNR, (123)

From Table 15 it results that the multiplicity of the codewords of weight dp, is approximately
equal to L for CPP interlevears and to 2L for 4-PP interleavers. From the QPPs reported in Table XIII
from [21], it results that for QPPs, the best minimum distance is equal to 38 and the corresponding
multiplicity is approximately equal to 2L. Thus, if we use the upper bounds with TUBey,(FER) from
(123), the FER for QPP, CPP, and 4-PP interleavers, is approximately upper bounded by

FERgpp < 0.5-2L - ¢ Re38-SNR, (124)
FERcpp < 0.5- L - ¢ Re:38SNR) (125)
and
FERy_pp < 0.5-2L - ¢ Re:36-SNR (126)
respectively.

Table 15. Minimum distances (d,,;,) and corresponding multiplicities (N, ), spread factors (D),
nonlinearity degrees ({), and refined nonlinearity degrees ({’) for cubic permutation polynomials
(CPPs) and for fourth degree permutation polynomials (4-PPs) with optimum minimum distance.

L CPP din Ndmin 4 gl D 4-PP dinin Ndmin 4 (,I D
Vs 3
T2 a0 4 4 30

592  222x3 + 148x2 4 39x 38 625 8 5 20

+37x% +393x
e 8% (jfLrifr%J[fsj]L) 185 38 g0 8 5 2 4iﬁ;; Tgi;ﬁ 3 1230 4 4 32
688  86x3+0x2+2lx 38 652 & 5 24 43;;2 25?’;371 3 1204 4 4 32
75 O (Jlfrcljf’[‘i 8J]r) Y 5s 716 8 5 26 43;;2 isiz;r 36 142 4 4 32
816  34x340x:24+19x 38 782 8 7 28 lix;;ﬁx;; 3 1556 4 4 30
gag 218 (ft j;zﬁzﬁ B7x 38 812 8 5 28 Si;;; Tﬁ’ggj 36 1614 4 4 32
oy 114 &:;4["125 WX 33 s;8 8 4 30 11"94 5123?53 A VZ P R
944 354"(3&*01?1"[2];])179" 38 910 8 5 3 5?5‘:; 15‘;’1‘37: 3 1806 4 4 38
976 122";:;1?1"[2 1:])307" 3 42 8 5 6}:66‘;;2 i’fg’ggj 3 1870 4 4 38

From (124)—(126), it results that when considering the interleaver lengths of the form given
in (5) and turbo codes of nominal 1/3 coding rate with RSC component codes with generator matrix
G = [1,15/13], the asymptotic coding gain for QPPs compared to 4-PPs, is equal to

38

Geoppa_pp(TUBexy(FER)) = 10 - logy (36> 2 0.235 dB (127)

and the asymptotic coding gain for CPPs compared to 4-PPs, for a given FER value, is equal to

38 l0g14(2)
Geeppa_pp (TUBexp(FER)) = 10 - logy <36> —10-logy (1 + bgm%%R/L)). (128)

For example, for a target FER = 3-107° and for interleaver length . = 656, the coding
gain from (128) becomes Gecpp pp(TUB,xp(FER)) = 0.395 dB. Increasing the interleaver length,

Geeppapp (TUBexp(FER)) resulting from (128) decreases easily. For an increase of interleaver length
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with a factor of approximately 25 compared to 656, the coding gain from (128) decreases with about
0.023 dB.

In Figure 4, the FER, TUBerfC(FER), and TUBeyxy(FER) curves for 4-PP, CPP, and QPP of
interleaver length L = 656 are shown. The 4-PP and the CPP are those from Table 15, and the QPP is
246x2 + 21x (mod 656) given in [21]. For FER curves, the Max-Log-MAP algorithm with a scaling
coefficient of the extrinsec information of 0.75 was used. We note that the considered multiplicities
for TLIBerfC(FER) and TUB,,,(FER) curves are the estimated ones; i.e., 2L, L, and 2L, for 4-PP, CPP,
and QPP, respectively. For FER =3 - 107°, from Figure 4, it results that

(1) The coding gains resulting from FER curves are Ge.p, ,,(FER) = 0.393 dB and
Gegrps_pp(FER) = 0.229 dB and

(2)  The coding gains resulting from TUB,, r.(FER) curves are Gecpp, pp (TUBerrc(FER)) = 0.409 dB
and Geopp, pp(TUBy s (FER)) = 0235 dB.

We observe that these coding gains are very close to those previously estimated by the
TUBexp(FER) upper bounds.

FER /| TUB(FER) curves for interleaver length L=656

107

—- FER for CPP
- TUBe..(FER) for CPP
X TU B,y (FER) for CPP
—-©- FER for QPP
=@ TUB,,;.(FER) for QPP
@+ TUB,,,(FER) for QPP
FER for 4-PP
TUBes.(FER) for 4-PP
TUB,.,(FER) for 4-PP

FER / TUB(FER)

SNR [dB]

Figure 4. Frame error rate (FER) and truncated upper bound of FER (TUB(FER)) curves for interleaver
length L = 656.

5. Conclusions

In this paper, we obtained the upper bounds of the minimum distance for turbo codes when
using 4-PP interleavers. The component RSC codes were those from the LTE standard and 1/3 nominal
coding rate. The interleaver lengths in question were of the form (5), and condition (6) was applied for
4-PP coefficients when for a prime p;, 31 (p; — 1). The two obtained upper bounds have the values of
28 and 36 for different classes of 4-PP coefficients. The result obtained in this paper has theoretical
importance. The highest upper bound for 4-PPs (i.e., 36) is smaller than that for CPPs or QPPs (i.e., 38),
while the corresponding multiplicities are about twice as high as those for CPPs and approximately
equal to those for QPPs. Thus, it is expected that CPPs and QPPs for the interleaver lengths in question
are better compared to 4-PPs.
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Appendix A

In [32], an efficient algorithm for the computing nonlinearity degree of a 4-PP was given.
We remember that for interleaver lengths of the form (5), the coefficients of 4-PPs fulfilling conditions (6)
when 3 1 (p; — 1), are equivalent to the following ones: fy =¥, f3 = k3, 7 2¥, with ks s € {0,1,2,3},
fo = (2kpky s —1) - ¥, with ks € {1,2,3,4} and k. € {1,3}. Then, we have

gcd(4fy, L) = 4Y, (A1)
ged(6,L) = 2kg, (A2)
ged(2,L) = 2. (A3)

ged(4fs, L
-1
_[4Y 8Y - 13 16k Y\ _
= (411]> T (mod 9 ) = 273 (mod 4k; ) = 213. (A4)
For
ko = k01f4 + L/ ged(4fy, L) i =213 +4kp - i, (A5)
we have

3fskg — 6f4k3 (mod L) = 3ks ¢ - 2% - (213 + 4ky - 1) — 6% - (213 + 4Ky - i)? (mod 16k, ¥) =
0 f

=12%Y . (T3 + ZkL : Z) . (k3,f — 213 — 4kL . Z) (mod 16k[}1’r), (A6)

L/gcd(2,L) -1 (mod L) =8k ¥ 1 (mod 16k ¥), (A7)

2foko — 33k} +4faky (mod L) =2 (2kpkyr — 1) ¥ - (213 + 4k, - i) — Bks p - 2 - (213 + 4k, - i)+

+4Y - (213 + 4kp - i)® (mod 16k, ¥) = 4 - (13 + 2k - 1)-
(2kpky f—1—3ks ¢ - (273 + 4kp - i) + (273 + 4kp - 1)?) (mod 16k, ¥ (A8)
f f

(—=L/ged(6,L)-13—L/ged(2,L) 1) (modL) =
= —8Y. (T3 + kL . Tz) (mod 16kL‘Y). (A9)
Then condition 3f3kg — 6fsk3 (mod L) = L/ gcd(2,L) -7 (mod L) is equivalent to

12Y - (13 + 2kp, - 1) - (k3 f — 273 — 4k, - i) (mod 16k.¥) = 8k, ¥ - T2 (mod 16k, Y)

or
3- (T3 + 2kL . Z) : (kS,f - 2T3 — 4kL . l) (mod 4kL) = ZkL ) (mod 4kL)
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or
3 (13 +2kp i) (k3 r — 273) (mod 4k ) = 2k - T» (mod 4k ); (A10)

and condition 2f,kg — 33k + 4fskj (mod L) = (—L/ged(6,L) - 13— L/ ged(2,L) - ) (mod L) is
equivalent to

4F - (13 +2kp, i) - (2kpko s — 1 —3ks s - (273 + 4kp, - i) + (273 + 4kp, - 1)?) (mod 16k, ¥) =

= -8Y- (T3 + kg - Tz) (mod 16kL‘Ij)

or
(134 2k - 0) - (2kLk2,f o 3k3,f . (21’3 +4kyp -i) + (21’3 + 4kp - 1)2) (mod 4kL> =

=-2- (T3 + kg - Tz) (mod 4kL)
or
(T3 + 2kp - 1) - (2kpky,p — 1 — 6k3 f - T3 + 87%) (mod 4k;) = —2- (13 + k1 - 2) (mod 4kz).  (A1l)

Because L/ ged(6,L) - 73 = 8Y - 13, we have ged(4fs, L) | L/ ged(6,L) - 13, V13 € {0,1,...,2k —
1}. Then, with Equations (A1)—-(A11), Algorithm 2 from [32] becomes Algorithm Al in this paper.
Run Algorithm Al for every k3 ¢ € {0,1,2,3}, ky s € {1,2,3,4}, and k1. € {1,3}, (120) result.

Algorithm A1: Algorithm for computing the nonlinearity degree { for a 4-PP for interleaver
lengths of the form (5) and the coefficients of 4-PP fulfilling conditions (6) when 3 { (p; — 1).
input :Values k; for the interleaver length, and k3, r ko, f for the 4-PP.
output:Nonlinearity degree { for the 4-PP.

ng < 0; for 13 =0:2k; —1do
fori =0:3do
forp, =0:1do
if 3- (T3 + 2kg - Z) . (k3,f — 2T3) (mod 4kL) =2k D (mod 4kL) then
if (134 2kp - i) - (2kpkyp — 1 — 6k ¢ - 734 877) (mod 4k ) =
—2- (3 +kr - ) (mod 4kr) then
‘ Nko — (Nko + 1), break;
end

end
end

end
end
g < 16kL/NkO,‘
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