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Abstract: Induction motors (IM) are key components of any industrial process; hence, it is important
to carry out continuous monitoring to detect incipient faults in them in order to avoid interruptions
on production lines. Broken rotor bars (BRBs), which are among the most regular and most complex
to detect faults, have attracted the attention of many researchers, who are searching for reliable
methods to recognize this condition with high certainty. Most proposed techniques in the literature
are applied during the IM startup transient, making it necessary to develop more efficient fault
detection techniques able to carry out fault identification during the IM steady state. In this work, a
novel methodology based on motor current signal analysis and contrast estimation is introduced
for BRB detection. It is worth noting that contrast has mainly been used in image processing for
analyzing texture, and, to the best of the authors’ knowledge, it has never been used for diagnosing
the operative condition of an induction motor. Experimental results from applying the approach
put forward validate Unser and Tamura contrast definitions as useful indicators for identifying and
classifying an IM operational condition as healthy, one broken bar (1BB), or two broken bars (2BB),
with high certainty during its steady state.

Keywords: contrast estimation; broken rotor bars; fault diagnosis; fuzzy logic; induction motors;
steady state

1. Introduction

Rotary machines, such as induction motors (IM), have become essential tools for
industrial processes due to their low cost and ruggedness [1]. These machines undergo
different types of failures associated with the rotor, the stator, or the bearings due to
distinct operational circumstances. An incipient fault in an IM is usually silent, and it can
generate distinct types of problems, such as interruption of a production line and damage
to surrounding machinery, and, in the worst scenario, it might cause a total collapse of the
system, which would provoke significant economic losses for an industry [2,3]. Hence,
continuous monitoring of IM is essential for detecting incipient faults in a timely manner
and keeping the industrial processes working properly [4].

The presence of broken rotor bars (BRBs) is quite a difficult condition to detect, since
an IM with this problem continues working without giving any hint about failure. A BRB
starts as a simple crack and evolves until the bar is completely broken [5]. At this point,
the IM power consumption increases; therefore, production costs also rise [6]. Hence,
BRB detection has remained a subject of interest for researchers and, consequently, a
considerable number of new approaches to BRB identification have emerged in recent
years. These approaches look toward reliable, automatic methods of recognizing this
condition with high certainty and diminishing false alarms [7]. However, many techniques
proposed in the literature are invasive, and they require the IM to stop operating, making
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it necessary to develop more efficient fault detection techniques. These should enable
fault identification during the IM steady state, without requiring to stop it to analyze the
acquired data. Diverse methodologies that employ common approaches, such as motor
current signature analysis (MCSA), vibration signal inspection, and voltage or magnetic
flux examination, have been proposed, and they apply distinct signal processing methods,
such as wavelet transform, fast Fourier transform (FFT), and entropy analysis, among
many others [2].

The analysis of electric current supply to the motor is the most widely adopted and
effective technique used for fault detection, since it provides cost-effective, selective, and
simple means for online monitoring of electric rotary machines [8]. Hence, many method-
ologies based on electric current supply analysis have reported satisfactory results for fault
detection in IM [9–12]. For instance, in [13], an approach based on motor current signa-
ture analysis (MCSA) is proposed for detecting BRBs in an IM by applying independent
component analysis to current signal autocorrelation in the frequency domain. In [14], an
approach for BRB diagnosis utilizing the third-order energy operator demodulated current
signals is introduced. The adverse influence of fundamental supply frequency leakage
is reduced by applying the third-order energy operator method, allowing the enhance-
ment of characteristic BRB frequency components. In [2], the MCSA and mathematical
morphology are utilized for detecting BRBs under different mechanical load conditions. A
methodology for BRB detection is introduced in [6], which uses homogeneity as an index
to identify the fault severity by analyzing one phase of the startup current signal supplied
to the IM. In [15], a method using electric current signal fed to an IM is implemented for
detecting BRBs through two Taylor–Kalman filters, in combination with a subsampling
scheme, to estimate low frequencies. The analysis of the electric current signal through
the Hilbert spectrum is employed in [16] for detecting incipient BRBs, considering a rotor
with different levels of damage. A method for BRB detection is proposed in [17], which
considers that the rotor speed varies continuously, and the supplied electric current signal
is analyzed through discrete wavelet transform. In [18], a model-based support vector
classification for BRB detection in an IM under full mechanical load condition is proposed;
the approach extracts the used features through spectral analysis of the steady-state stator
current. BRBs are detected in [19] by applying a time domain current signal analysis that
consists of an oriented gradient histogram computation, an intensity gradient and an edge
direction extraction from the current signals. Other techniques using distinct signal analy-
ses, or particular examination approaches, have also been proposed. For instance, in [20],
a methodology for BRB detection in IM through spectral analysis of vibration signals is
presented. In [21], cyclic modulation spectrum and fast spectral correlation are combined
with the Teager–Kaiser energy operator in the frequency domain for diagnosing BRBs. The
method computes the time–frequency representation of the vibration signal, utilizing the
short-time Fourier transform. The Teager–Kaiser energy operator is utilized for enhancing
fault features, which are further intensified by calculating the spectral coherence and the
enhanced envelope spectrum. BRBs are detected in [22] through the spectral analysis of
the transient stator current signal during the counter-current braking. In [23], BRBs are
detected by analyzing the air-gap rotational magnetic field measured in distinct stator
regions. Fundamental components of differential voltages detect variations in the magneto-
motive force due to rotational magnetic field distribution under the BRB condition. In [24],
a technique based on the Hilbert transform and a neural network is presented for BRB
diagnosis in IM; the Hilbert transform extracts the stator current envelope, which is used
as an input to the neural network for diagnosing BRBs. In [25], a method for broken bar
detection is proposed based on convolutional neural networks and the time–frequency
representation of the motor current signals during the IM startup transient through the
short-time Fourier transform. Many of the above-mentioned techniques offer high effi-
ciency for BRB identification; however, their computational complexity prevents them
from being utilized on online applications [26]. Furthermore, most of these techniques are
used during the IM startup transient, since under this regime, the BRBs are easier to detect,
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despite an IM usually operating under a steady-state condition. Hence, BRB detection is
still an open issue for researchers searching for highly accurate techniques, as BRBs are
some of the most frequent and hard to detect faults in IM. BRB detection is even more
difficult to perform during the steady state and under low mechanical load [27,28].

In this investigation, a strategy based on the analysis of the steady-state electric
current signal fed to an IM, by estimating its contrast, is presented as a novel, low-cost
computational technique for BRB recognition on the fly. The main contribution in this
paper is the use of electric current signal contrast as an indicator for determining BRB
presence and fault severity in an IM, since contrast has never been used as a marker for
diagnosing IM to the best of the authors’ knowledge. However, it is worth noting that
contrast has been largely and mainly used in image processing for analyzing texture [29,30].
From its meaning in vision, contrast provides information about abrupt variations in
color and brightness among the objects within the same field of view. For a gray-level-
scale image, the contrast is at its maximum when a purely black point is clearly different
from a purely white point. Hence, considering that a faulty condition can modify some
features of the current signal fed to the IM, by adding some low-frequency components that
change the signal waveform shape in time and frequency, contrast should be suitable for
identifying these fault-related variations on the waveform of the steady-state current signal
fed to an IM. These changes should help to identify and discriminate among different IM
states: healthy (HLT), one broken bar (1BB), and two broken bars (2BB) if the motor electric
current signal is taken as a gray-level measure. Therefore, in this work, the viability of using
contrast as a pointer to indicate the presence of BRBs in IM is also examined as a second
contribution by employing two distinct contrast definitions, which are compared with each
other to identify the one offering the best result for BRB detection and identification. The
experimentally obtained results demonstrate that the proposed methodology relying on
contrast estimation is highly efficient in diagnosing and classifying BRB faults in an IM,
even under a low mechanical load, matching recently proposed approaches in reviewed
literature, but with a lower computational complexity, thereby making it suitable to be
applied in online detection and classification of BRBs.

The remainder of the manuscript is organized as follows: Section 2 describes the
theoretical background on motor current signal analysis, contrast and fuzzy logic; the
experimental setup is described in Section 3; the results obtained are given and com-
pared against those from previous approaches in Section 4; finally, Section 5 provides
some conclusions.

2. Theoretical Background
2.1. Motor Current Signal Analysis

The theoretical basis of motor current signal analysis relies on the potentiality of faulty
conditions to influence the magnetic flux in the motor air gap. Electric current signal
analysis is the most used technique in predictive maintenance for detecting and diagnosing
IM faults due to its non-invasive nature. Its essence consists of acquiring and analyzing
one or multiple phases of electric current signal supplied to the IM stator [31,32].

2.2. Contrast

Contrast, a textural feature commonly used for image classification and initially
proposed by Haralick [33], is described as the recorded, perceived or reproduced tonality
difference between a pair of black and white dots. Contrast can be referred to as a measure
of detail preservation. In an image, the contrast between two pixels is at its maximum
when their gray levels have opposite values (0 and 255) and at its minimum when they
have similar gray levels; however, it is feasible to determine contrast for 2D, and 1D signals.
Haralick used gray-level co-occurrence matrices Pi,j, assuming that the texture content
information in an image is specified by the matrix Pi,j, which indicates the occurrence of
two neighboring resolution cells separated by the distance d on the image, one with gray
tone i and the other with gray tone j. Therefore, the co-occurrence matrices are functions
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of the angular relationship between neighboring resolution cells as well as the distance
between them [33]. For this reason, Unser [34] introduced the difference histogram as
an equivalence to the gray-level co-occurrence matrix, which shows benefits in required
memory storage and computing time [6].

According to Unser [34], the variation between two points from N samples of a digital
signal L(n) is defined by

Dn,d = L(n)− L(n + d) (1)

where n ∈ {0, 1, 2, . . . , N − 1}, and it is considered that the two points are separated by a
fixed position d, and that there are at least Ng distinct gray levels in L(n). Therefore, the
histogram of differences hd(j) is defined by

hd(j) = card
{

n ∈ N, Dn,d = j
}

(2)

where j = −Ng + 1, −Ng + 2, . . . , Ng − 2, Ng + 1 and the total number of counts T is
given by

T = ∑
j

h(j) (3)

A normalized difference histogram hd(j) is used for computing the difference in joint-
probability function PD(j) by

PD(j) =
hd(j)

T
(4)

Distinct features can be defined from difference histograms; one of them is contrast C,
which is given by

C = ∑j j2 · PD(j) (5)

On the other hand, Tamura [35] proposed an alternative contrast definition that does
not change the image structure but is intended to change the quality of the image. When two
patterns only vary in their corresponding gray-level assortment, the dissimilarity between
their contrast can be quantified [35]. In this regard, Tamura takes into consideration
alternative factors to describe contrast, namely:

i. Adjustable bounds of gray levels;
ii. Polarization of the black and white dispersion on the gray-level histogram or the

correlation between black and white regions.

The gray-level approximation distribution can be perceived in the variance σ2, and
kurtosis α4 provides the polarization degree, which assesses analytically the concentration
level of variable values around the midpoint (mean) µ4 of their frequency distribution,
which is defined as

α4 =
µ4

σ4 (6)

where α4 is the fourth central moment and σ is the standard deviation (σ2 is the variance).
Consequently, contrast is determined as follows:

Fcont =
σ

α4
η (7)

where η is experimentally defined as a positive number [35].

2.3. Fuzzy Logic Classifier

Fuzzification is the process of making crisp quantity fuzzy. This can be done by
recognizing many of the quantities considered deterministic as not deterministic, because
they have considerable uncertainty. Whether the form of uncertainty arises due to impreci-
sion, ambiguity or vagueness, the variable is probably fuzzy and can be represented by a
membership function, as depicted in Figure 1, where an input value to the membership
function is mapped into a quantity in the close interval [0, 1] [36,37].
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• For a membership function that represents a fuzzy set A, the CORE is defined as the
area of the universe that has the characteristic of belonging completely to set A. In
other words, the CORE comprises all the elements x in the universe in which µA(x) = 1.

• The SUPPORT in a membership function representing fuzzy set A is determined by
the region of the universe characterized by non-zero values of membership elements
in set A. This implies that the SUPPORT comprises all the elements x in the universe
in which µA(x) > 0.

• The BOUNDARY of a membership function representing fuzzy set A is defined as the
area of the universe containing elements with non-zero membership values that do
not belong completely to set A. This means that the BOUNDARIES of a membership
function comprise those elements x of the universe in which 0 < µA(x) < 1 [36].

Fuzzy inference uses a set of M if–then rules and a fuzzy rule base that contains this
set. Each rule has an antecedent or premise and a consequent. The antecedent part is
a Boolean expression of simple sentences on individual features x1, x2, x3, . . . , xn. The
Mamdani–Assilian model (the logical model) is used as the fuzzy if–then system, where the
input and the output are represented by Boolean expressions through linguistic terms [37].

Defuzzification is an inverse process to fuzzification, which transforms a fuzzy quan-
tity into a specific number. In this study, the centroid method is used to carry out the
defuzzification process [36,37].

3. Experimental Setup

Figure 2 shows the experimental setup where a 1-HP, three-phase induction motor
model WEG 00136APE48T with two poles and 28 bars is used for testing the proposed
methodology. The motor is fed through a 60 Hz, 220 V power supply. The mechanical load
is applied utilizing an ordinary alternator, which represents a quarter of the motor total
load. The steady-state electric current signal fed to the IM is acquired utilizing a current
clamp model i200 from Fluke and conditioned through a data acquisition system (DAS)
based on the analog-to-digital converter ADS7809 from Texas Instrument Corporation with
16-bit resolution [38]. The frequency of acquisition 1D4530 is set to 1.5 kHz to obtain all the
information that exists up to the tenth harmonic and further, since these data contain all the
signal energy [6], resulting in 4096 samples being obtained. Three different IM conditions
are considered in this study: an IM with one broken rotor bar (1BB), an IM with two broken
rotor bars (2BB) and a healthy IM (HLT). These conditions are generated artificially by
drilling holes to break one and two bars without causing any damage to the rotor shaft.
Each hole has a diameter of 7.938 mm, as shown in Figure 3 for both faulty conditions, 1BB
and 2BB.
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The proposed methodology to detect and classify incipient BRB faults in an IM through
the analysis of its steady-state electric current signal by means of contrast calculation and
fuzzy-logic categorization is depicted in Figure 4.
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Figure 4. Proposed methodology for BRB detection.

Figure 5a shows the steady-state current signal from one phase of the power supply
feeding the induction motor. The acquired current data are taken into gray scale levels
from 0 to 255 through a linear conversion, without modifying the electric current waveform
as depicted in Figure 5b.
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Unser [34] defined contrast based on the difference histogram as a probability Function (4),
where d is the distance separation between two pixels, and it was found heuristically
that the best results are obtained when d = 10. Contrast values are obtained for each
motor state, namely, HLT, 1BB and 2BB, at this pixel distance (d = 10). The mean (µ)
and standard deviation (σ) of the contrast values obtained through Unser definition for
a healthy motor, a motor with one broken bar and a motor with two broken rotor bars
show that the corresponding probability density functions (PDFs) overlap each other, as
shown in Figure 6. Hence, fuzzy logic classification is required to improve the accuracy of
operational condition detection.

Fuzzy logic classification is carried out utilizing input fuzzy sets that contain the
contrast computation results obtained through Unser definition for each analyzed IM
condition, as shown in Figure 7. The characteristics of a fuzzy logic classifier are: Mamdani-
type fuzzy inference, centroid defuzzification technique and 21 if–then rules with simple
sentences of one input/one output to simplify and improve classifier performance.
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On the other hand, Tamura [35] defined kurtosis-based contrast as in (7), with n = 1/4.
Each motor state (HTL, 1BB and 2BB) produces a contrast value. The mean (µ) and
standard deviation (σ) of contrast values obtained through Tamura definition for a healthy
motor, a motor with one broken bar and a motor with two broken rotor bars show that
the corresponding probability density functions (PDFs) overlap each other, as shown in
Figure 8. Hence, as in the Unser definition case, fuzzy logic classification is required to
improve the accuracy of operational condition detection.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 8. PDFs from contrast values computed through Tamura definition for a healthy motor 
(HLT), a motor with one broken rotor bar (1BRB) and a motor with two broken rotor bars (2BRB). 

The fuzzy logic classes are produced utilizing input fuzzy sets that contain the con-
trast computation results obtained from Tamura definition for each analyzed IM condi-
tion, as can be observed in Figure 9. The characteristics of a fuzzy logic classifier for this 
case are: Mamdani-type fuzzy inference, centroid defuzzification method and 19 if–then 
rules with simple sentences of one input/one output. 

 
Figure 9. Fuzzy sets entries based on the Tamura definition of contrast. 

The output sets of both classifiers differentiate among three IM operational condi-
tions: HLT, 1BB and 2BB, as shown in Figure 10. 

 
Figure 10. Output fuzzy sets. 

PD
F-

Am
pl

itu
de

D
EG

R
EE

 O
F 

M
EM

BE
R

SH
IP

Figure 8. PDFs from contrast values computed through Tamura definition for a healthy motor (HLT),
a motor with one broken rotor bar (1BRB) and a motor with two broken rotor bars (2BRB).



Sensors 2021, 21, 7446 9 of 14

The fuzzy logic classes are produced utilizing input fuzzy sets that contain the contrast
computation results obtained from Tamura definition for each analyzed IM condition, as
can be observed in Figure 9. The characteristics of a fuzzy logic classifier for this case are:
Mamdani-type fuzzy inference, centroid defuzzification method and 19 if–then rules with
simple sentences of one input/one output.
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Figure 9. Fuzzy sets entries based on the Tamura definition of contrast.

The output sets of both classifiers differentiate among three IM operational conditions:
HLT, 1BB and 2BB, as shown in Figure 10.
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4. Results and Discussion

For the proposed method, a hold-out type dataset is employed [37], where 180 trials
are performed on each IM condition. The first 120 experiments from each dataset are used
for training the system, and the remainder are used for testing the proposed method’s
effectiveness. Tables 1 and 2 describe the proposed methodology performance in identifying
and classifying BRBs, utilizing Unser and Tamura contrast definitions, respectively, through
confusion matrices. Meanwhile, Table 3 shows the overall effectiveness of the proposed
approach, considering each contrast definition.

Table 1. Confusion matrix using Unser contrast definition for BRB detection and classification.

IM Condition HLT 1BB 2BB

HLT 59 0 1
1BB 0 60 0
2BB 0 0 60
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Table 2. Confusion matrix using Tamura contrast definition for BRB detection and classification.

IM Condition HLT 1BB 2BB

HLT 57 0 3
1BB 0 60 0
2BB 0 0 60

Table 3. Effectiveness results for identifying and classifying BRBs, utilizing contrast as a detection index.

Contrast Definition
IM Condition

HLT 1BB 2BB

Unser 98.3% 100% 100%
Tamura 95% 100% 100%

From obtained results, it can be observed that even though Tamura (7) defines contrast
in a simpler way than Unser (4), the proposed methodology using the latter provides
higher effectiveness than using the former, reaching up to 100% accuracy in identifying and
classifying BRBs. Furthermore, the computational complexity of using Unser definition is
lower than using the Tamura one, since Unser description works with difference histograms
instead of co-occurrence matrices. In this regard, the proposed methodology implemented
in an Intel Core i7-8750H microprocessor at 2.20 GHz, utilizing MATLAB 2020a, elapses for
14.052 ms utilizing the Unser definition of contrast, whereas it lasts for 19.723 ms when
applying Tamura definition.

Discussion

A comparison of the introduced methodology against distinct techniques for broken
bar detection, regarding their corresponding efficacy and signal processing complexity,
is shown in Table 4. From the experimentally obtained results, the introduced technique
shows that it can detect BRBs with high certainty during the steady state. Using the Unser
definition of contrast exhibits higher effectiveness for BRB detection than using Tamura
definition, at a slightly longer processing time. The proposed method can detect and classify
the induction motor operational condition as healthy, 1BB, or 2BB, with high effectiveness
of up to 98.3%, 100% and 100%, respectively, surpassing most state-of-the-art schemes in
this area. Previous works in Table 4 that reach high efficacy attain it through combining
three or more complex processing techniques, whereas most of them identify BRBs in a
qualitative style, relying on subjective interpretation of a chart. Furthermore, most previous
works in the reviewed literature carry out BRB detection during the induction motor startup
transient, since the fault is easier to observe under this regime because of the increased
current in the rotor circuit and sometimes under the condition of heavy load to amplify the
effects of BRBs in the stator current [39]. Under the proposed approach, the identification
and classification of the IM operational condition are performed with high certainty during
its steady state at a low mechanical load, which means that the machine can be analyzed
while it is working, without the necessity of turning it off and stopping the entire process.
The experimentally obtained results demonstrate the feasibility of using contrast, which
has been mostly used to analyze texture in image processing, but not as an index for IM
diagnosis, as a reliable indicator for identifying and classifying BRBs in IM.
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Table 4. Proposed methodology performance comparison.

Reference Method Detected Fault Analyzed Signal Motor State Accuracy Rate

Aydin et al. [40]

1. Preprocessing signal Hilbert
transform
2. Boundary analysis
3. Fuzzy decision tree (FDT)

1BB
2BB Current signal Not reported 98.75%

Fernandez-
Cavero et al. [41] 1. Dragon transform 1BB Current signal Startup transient Qualitative

Haiyang
Li et al. [42]

1. Bandpass filter
2. Normalized frequency domain
energy operator
3. Spectral analysis

1BB
2BB Current signal Steady state Qualitative

Younes
Soleimani et al. [23]

1. Air-gap rotational magnetic
field analysis

1BB
2BB
3BB

Induced voltage in
dual search coils Not reported Qualitative

Weiguo
Zhao et al. [43]

1. Multivariate relevance vector
machine with multiple Gaussian
kernels
2. Principal components analysis
3. Bacterial foraging algorithm
4. Levy flight

1BB
2BB
3BB

Current signal Not reported 80-95%

Mina Abd-el-
Malek et al. [44]

1. Hilbert transform
2. Statistical analysis

Half broken bar
1BB

1.5BB
Current signal Startup transient Qualitative

Rangel-
Magdaleno et al. [16]

1. Hilbert transform
2. Statistical analysis

Half broken bar
1BB

1.5BB
Current signal Startup transient 99%

Proposed
methodology

1. Contrast computation
2. Fuzzy logic

1BB
2BB Current signal Steady state 98.3%

5. Conclusions

BRBs are among the most recurring fault conditions in IM that are quite hard to detect,
increasing IM power consumption without giving any indication of failure. Therefore, BRB
detection has remained a subject of interest for investigation. Hence, from the experimen-
tally obtained results and their comparison with those from state-of-the-art schemes, the
following conclusions can be inferred:

• Most approaches in the literature require the IM to stop and be put on a heavy load
to be applied. It is desirable to have a reliable BRB detection technique that can be
applied during the IM steady state under low load.

• In this work, a novel method for BRB detection, through analysis of the IM current
signal by contrast estimation during its steady state, is proposed.

• Unser and Tamura definitions of contrast have been widely used in image processing
for the analysis of texture; however, to the best of the authors’ knowledge, this index
has never been used for detecting faults in IM.

• Experimentally obtained results validate that the technique put forward is able to
detect and classify the induction motor operational condition as healthy, 1BB, or 2BB,
with high effectiveness.

• The introduced method surpasses other approaches in state-of-the-art schemes in this
area, which usually perform BRB detection by relying on subjective interpretation of
a chart.

• The Unser definition of contrast provides higher effectiveness for BRB detection
and classification than that of Tamura, with lower computational complexity and
processing time.

• Contrast estimation from one phase of the electric current power supply is asserted as a
useful indicator to identify and classify BRBs in an IM, even under low mechanical load.

Future work will focus on assessing contrast suitability for detecting other electrical
and mechanical faults in IM. It will also consider combining other signal processing
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techniques to retrieve distinct signal features as well as evaluating different types of
classifiers to improve fault detection and classification accuracy.
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