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Abstract

Motivation: To understand the regulatory pathways underlying diseases, studies often investigate

the differential gene expression between genetically or chemically differing cell populations.

Differential expression analysis identifies global changes in transcription and enables the inference

of functional roles of applied perturbations. This approach has transformed the discovery of genet-

ic drivers of disease and possible therapies. However, differential expression analysis does not

provide quantitative predictions of gene expression in untested conditions. We present a hybrid

approach, termed Differential Expression in Python (DiffExPy), that uniquely combines discrete,

differential expression analysis with in silico differential equation simulations to yield accurate,

quantitative predictions of gene expression from time-series data.

Results: To demonstrate the distinct insight provided by DiffExpy, we applied it to published,

in vitro, time-series RNA-seq data from several genetic PI3K/PTEN variants of MCF10a cells stimu-

lated with epidermal growth factor. DiffExPy proposed ensembles of several minimal differential

equation systems for each differentially expressed gene. These systems provide quantitative mod-

els of expression for several previously uncharacterized genes and uncover new regulation by the

PI3K/PTEN pathways. We validated model predictions on expression data from conditions that

were not used for model training. Our discrete, differential expression analysis also identified

SUZ12 and FOXA1 as possible regulators of specific groups of genes that exhibit late changes in

expression. Our work reveals how DiffExPy generates quantitatively predictive models with test-

able, biological hypotheses from time-series expression data.

Availability and implementation: DiffExPy is available on GitHub (https://github.com/bagherilab/

diffexpy).

Contact: n-bagheri@northwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Aberrant regulation of gene expression is frequently associated with

diseases; thus, changes to gene expression serve as key proxies to

infer cell state (Emilsson et al., 2008). Differential gene expression

analysis quantifies changes in gene expression between cell states.

Expression is compared between genetically different cells, cells

exposed to different exogenous treatments—such as small mole-

cules, proteins, temperatures or other environmental cues—or a

combination of several treatments. Each gene in the analysis is then

categorized as a differentially expressed gene (DEG) or not. This cat-

egorization is often based on the magnitude of the log-fold change

(LFC) of its expression between experimental conditions and by an
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adjusted P-value. DEGs are often split into groups of genes that are

overexpressed or underexpressed (Law et al., 2014; Pimentel et al.,

2017). Finding enriched Gene Ontology (GO) terms or pathways

associated with the DEGs can elucidate the functional role of the ex-

perimental condition (Consortium, 2016; Subramanian et al., 2005).

Measuring and analyzing the dynamics of gene expression are

also critical to understanding responses involved in DNA repair,

development and circadian rhythms (Hafner et al., 2017; Jiang

et al., 2000, 2015). A typical time-series, gene expression experi-

ment compares expression between experimental conditions over

several time points (Hafner et al., 2017; Schulz et al., 2012). Many

algorithms that identify DEGs from time-series data exist, but these

algorithms focus on DEG identification for subsequent enrichment

analyses (Spies et al., 2017). Other algorithms use time-series ex-

pression data to infer the structure of gene regulatory networks

(Finkle et al., 2018; Madar et al., 2009; Zoppoli et al., 2010), or at-

tempt to identify transcription factors (TFs) that explain changes in

time-series gene expression, by pairing the expression data with

ChIP-seq data (Mina et al., 2015; Schulz et al., 2012).

A limitation of existing differential expression analyses—both of

static and time-series data—is that they do not propose quantitative

models of a gene’s expression that can be tested in new experimental

conditions. For example, if a gene is overexpressed in cells treated

with a particular drug (compared with untreated cells), existing

analyses cannot predict if that gene will be overexpressed, under-

expressed or unchanged when a different drug is applied.

Researchers can only infer how the regulation might occur and

qualitatively predict how expression will differ in untested contexts.

Distinct from statistical enrichment approaches, differential equa-

tion models aim to use mechanistic information to describe how spe-

cies, such as genes or proteins, interact and are well-suited to

quantitatively predict gene expression in untrained conditions.

However, designing and fitting differential equation parameters

requires sufficient data; therefore, such models only exist for a few

well-studied systems (Gambin et al., 2013; Orton et al., 2005;

Pappalardo et al., 2016; Sulaimanov et al., 2017). Genetic and sparse

regression algorithms can generate differential equation models dir-

ectly from data, but current gene expression technologies cannot pro-

duce the highly sampled, low-noise data that these algorithms require

(François and Hakim, 2004; Mangan et al., 2016).

Data-driven methods to generate models that can quantitatively

predict gene expression are currently limited. Network inference

methods generate genome-scale models, however, to predict the ex-

pression of any one gene requires knowing the expression of several

others (Bansal et al., 2006; Finkle et al., 2018; Geurts et al., 2018).

Other methods explicitly fit expression to a time variable, which

ignores the molecular contexts driving expression (Hafner et al.,

2017). To fill this gap, we present Differential Expression in Python

(DiffExPy), a framework that uses time-series expression data to cre-

ate dynamical-systems models of gene expression.

DiffExPy first determines a discrete response from the expression

of each gene in the time series based on the sign and significance of

the gene’s LFC between conditions at each time point. Next,

DiffExPy simulates time-series expression data from a library of

minimal stochastic differential equation (SDE) systems that mimic

the experimental conditions. Then, the discrete response of a gene is

matched to models in the simulation library to train an ensemble

model. This trained model can predict that gene’s expression in new

conditions. DiffExPy also clusters genes by discrete response, and

infers the timing of regulatory events by associating these gene

groups with TFs and GO terms (Fig. 1).

We demonstrate the efficacy of DiffExPy on publicly available

RNA-seq data from the GeneExpressionOmnibus(GEO) repository,

accession number GSE69822 (Kiselev et al., 2015). Previous analysis

of this dataset further elucidated the transcriptional roles of phos-

phoinositide 3-kinase (PI3K) and phosphatase and tensin homolog

(PTEN), which respectively phosphorylate and dephosphorylate

phosphatidylinositidol-4, 5-bisphosphate (PIP2) to and from phos-

phatidylinositidol-3,4,5-trisphosphate (PIP3). PIP3 regulates many

downstream pathways, most notably the AKT pathway (Kiselev

et al., 2015). For our analyses, we use data from the wild-type (WT),

PTEN knockout (PTEN KO), A66-treated cells and PI3K knockin
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Fig. 1. Overview of DiffExPy analysis. (Left) Genes are categorized as differentially expressed genes (DEGs), dynamic DEGs (dDEGs) or differentially responding

genes (DRGs) from time-course gene expression data. Discrete responses (in brackets) are determined for each contrast. (Center) Stochastic differential equation

(SDE) systems that match the dDEG gene profiles are selected from a library of possible models and combined into an ensemble model. The ensembles can pre-

dict gene expression behavior in new, untested conditions. (Right) Biological insights are gained by associating GO terms with gene classifications and associat-

ing TFs with groups of genes that share discrete differential behavior
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(PIK3CA H1047R) conditions. A66 inhibits the p110a PIK3CA and

we refer to it as the inhibited condition (PI3Kinh). The histidine-to-

arginine substitution makes PIK3CA constitutively active, and we

refer to it as the knockin (PI3K KI) condition. In the original study,

expression was measured from MCF10a cells, a commonly used

human breast epithelial cell line, stimulated with epidermal growth

factor (EGF) using RNA-seq in three replicates at 0, 15, 40, 90, 180

and 300 min after EGF stimulation (Kiselev et al., 2015).

Using the differential-expression data between the PI3Kinh and

WT conditions, we train ensemble models for several genes. We val-

idate the expression predictions for each gene using the PI3K KI

time-series data and provide a straightforward approach to rank the

confidence of each trained ensemble. The ensembles vary in size and

consist of minimal SDE systems with different connectivities. We

highlight results of three genes known to interact with the PI3K

pathway that currently lack quantitative models for their expres-

sion. In doing so, we demonstrate how the trained ensemble models

provide simple starting models for less-studied genes. We also use

the discrete response calculated by DiffExPy to identify the timing of

regulation by suppressor of zeste 12 (SUZ12) and forkhead box A1

(FOXA1) on their target genes.

DiffExPy is distinct from the status quo in generating dynamical

system models de novo for many genes that were not previously char-

acterized. Currently, DiffExPy is limited in that it constructs small

models based on time-series data from individual perturbations.

However, DiffExPy is readily extensible and can be adapted to other

differential-expression packages, model assumptions and genomic

data. For example, future improvements to DiffExPy could be made to

incorporate multiple perturbations, additional omics data types and

prior knowledge. Our work provides a foundation on which more

complex models of gene expression can be developed.

2 Materials and methods

Using time-series RNA-seq data, DiffExPy sorts genes according to

their discrete, dynamic, differential gene expression profiles (Fig. 1

and Supplementary Fig. S1). Each gene’s discrete profile is used to

train an ensemble model of minimal SDE systems that predict ex-

pression in new conditions (Fig. 1). DiffExPy also associates GO

terms with resulting groups, which suggest functional roles for the

genes in each distinct cluster. Finally, DiffExPy associates TFs with

genes that exhibit similar responses at specific times (Fig. 1).

Overall, DiffExPy identifies (i) minimal dynamical systems models

that accurately predict gene expression dynamics in untrained condi-

tions, (ii) specific GO terms associated with classes of expression

dynamics and (iii) specific TFs associated with genes with similar ex-

pression responses.

2.1 DiffExPy assigns discrete differential responses
To match gene expression responses to dynamical systems models,

DiffExPy first calculates discrete responses from LFC contrasts gen-

erated by differential expression analysis (Supplementary Fig. S1)

using the package limma (Ritchie et al., 2015). A contrast is defined

as a comparison of expression between conditions, time points or

both. The discrete response is derived from the LFC value for a con-

trast, which can be positive (þ1), negative (�1) or not significant

(0). We assign gene labels based on discretized LFC values (Fig. 1

and Supplementary Fig. S1) as DEGs, dynamic DEGs (dDEGs) and

differentially responding genes (DRGs).

DEGs are genes that are differentially expressed between condi-

tions at one or more time points after the treatment, based on an F-

test. dDEGs define the subset of DEGs that exhibit dynamic, or vari-

able, differential expression across time. For instance, an expression

profile need not be differentially expressed at time 0, but it can be-

come differentially expressed at a later time point. DRGs contain at

least one time point in which the LFC is significantly different from

the LFC either at the previous time point (i.e. LFCt 6¼ LFCt�1) or

from the time the treatment is applied (i.e. LFCt 6¼ LFC0), where sig-

nificance is determined using an F-test. Classification of a gene as a

dDEG or DRG is not mutually exclusive, and by definition, a dDEG

or DRG is also a DEG.

2.1.1 Definition of gene expression contrasts

A gene expression contrast compares the distribution of expression

values of a gene between samples (Ritchie et al., 2015). Using time-

series data, the basic set of values used in a contrast for gene i, given

condition c, with R replicates and at time t is defined as:

~gt
ijc ¼ ½g

1;t
i ; g2;t

i . . . ; gR;t
i � (1)

The LFC is calculated as the ratio of the mean log2 expression

value between the conditions:

lti ¼
h~gt

ij exp i
h~gt

ijctrli
(2)

where exp is the experimental condition and ctrl is the control con-

dition. By convention, the control condition is in the denominator,

so positive LFC values correspond to overexpression in the experi-

mental condition. For each contrast, a corresponding P-value is

calculated. When multiple contrasts are made, an overall signifi-

cance level is also calculated using an F-test. Significance levels are

corrected for multiple hypothesis testing (Ritchie et al., 2015).

Differential expression calculations between genes are linearly inde-

pendent and are easily extended to matrix form.

DiffExPy departs from the status quo by using time-series data

to create more complex contrasts. Pairwise (PW) contrasts compare

expression between experimental conditions at each time points.

Time-series (TS) contrasts compare expression between a time point

and the previous time point. Autoregressive (AR) contrasts compare

expression between a time point and the time point before the treat-

ment was applied. A detailed description of these and other combi-

nations of contrasts (PW-TS and PW-AR) is available in

Supplementary Figure S1.

2.1.2 Discrete expression responses

To facilitate downstream analyses, DiffExPy calculates a discrete re-

sponse for each gene based on the P-values and signs of LFC for the

individual contrasts. If the P-value for a contrast is above the user-

specified threshold, the LFC is not considered significant and is set

to zero. The discrete response for gene i is defined as
~di;x ¼ ½dðlÞ� 8 l 2~l i;x, where x is one of the set {PW, TS, AR, PW-TS

or PW-AR}. The discrete values are calculated using the signs of the

LFC values as follows:

dðlÞ ¼
1 signðlÞ > 0 and pðlÞ < pcut

0 pðlÞ � pcut

�1 signðlÞ < 0 and pðlÞ < pcut

;

8<
: (3)

where p(l) is the adjusted P-value of the LFC for the contrast and

pcut is the significance threshold. For a time series of T time points,

each discrete response has 3T�1 possible clusters—except for ~dPW,

which has 3T. We did not filter LFC values by magnitude, but the

option is provided in DiffExPy. We used a P-value threshold of 0.05
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for all of our tests. A lower P-value cut-off could result in discrete

responses with more zero values.

2.2 Training predictive models of gene expression
DiffExPy uses GeneNetWeaver (GNW) to generate minimal differ-

ential equation models for unique, three-node networks and to carry

out stochastic simulations. GNW models include a protein and

mRNA component (Schaffter et al., 2011). Each model is an ab-

stract representation of the flow of information that might regulate

a gene’s expression and should not be used to identify specific regu-

lation between genes. To mimic the experimental data, we used

DiffExPy to conduct three independent, stochastic runs of each

model and sampled each model at the same time points as the RNA-

seq data. Microarray-like measurement noise was added to the data,

and values were normalized between 0 and 1. A complete descrip-

tion of model generation is available in Supplementary Material.

Simulations were conducted under three genetic conditions: WT,

knockout and knockin. It is important to note that the identity of

the perturbed gene does not need to be known to gain information

from DiffExPy. If a treatment with an unknown target is applied,

DiffExPy can still provide insight into possible motifs of which a

gene is a part that results in the observed expression behavior.

2.2.1 Matching models to genes

After simulation, each SDE model had time-series data mimicking the

experimental data. We conducted the same discrete clustering process on

the simulated data. Each gene was matched to all SDE models with the

same discrete response as the gene matchi ¼ fm 2Mjlti ¼ ltm 8 t 2 Tg,
where M is the set of all models in the simulation library and T is the

number of time points in the discrete response.

2.3 Model predictions
Each SDE model matched by DiffExPy can then simulate time-series

data under different conditions to generate predicted LFC values at

each time point, represented as a T-length vector l̂ k ¼ ½l̂
1
; . . . ; l̂

T
�,

where k is the index of the matched SDE system and T is the number

of time points in the predicted time series. The time series of the control

condition provides an internal control for predicting the response.

For our predictions, we applied a simulated knockin of PI3K to

each of the trained SDE models as this matches the PI3K KI perturb-

ation that was applied in the experimental data. Importantly, predic-

tions to match different treatment strategies can also be made—such

as targeting multiple nodes in the SDE models, inhibiting interac-

tions between SDE nodes or changing the forcing function.

We found no feature of the individual models that correlated

with their prediction error. We therefore created an ensemble pre-

diction by using the median predicted LFC. For each gene i, the pre-

dicted LFC is calculated as the median LFC of all matched SDE

predictions for each time t:

l̂
t

i ¼ medianð½l̂
t

m 8m 2 matchi�Þ: (4)

The simulated model predictions in log2 expression space are

ŷt
i ¼ bt

i þ l̂
t

i , where bt
i is the log2 expression of the control condition

at time t, l̂
t

i is the model predicted LFC and ŷt
i is the predicted log2

expression of the experimental condition.

2.3.1 Scoring prediction accuracy

We validated the accuracy of the quantitative predictions by calculating

the error between PI3K KI expression of a gene and its corresponding

model’s prediction. We define accuracy as the mean-squared error

(MSE) between a model’s average LFC (of three stochastic runs) and

the true LFC. MSE values range from 0 to1, where smaller values in-

dicate that the prediction is closer to the true LFC value. We know of

no existing, data-driven method that generates models capable of quan-

titative, time-series, gene expression prediction to provide an appropri-

ate basis for comparison. Thus, we used the selection of a random

model from our library as the null model comparison.

3 Results

3.1 Many previously uncharacterized genes are

matched to ensemble models
We used the discrete response profiles to match each gene to an en-

semble of three-node SDE models that each share similar dynamics

upon simulation. Our library consists of 2172 uniquely structured

SDE models. We trained the models using the PI3Kinh and WT data,

and we used the PI3K KI data as test data to validate the predic-

tions. Simulations for each network model were created to match

the PI3K genetic condition and EGF stimulation. The simulated

data are sampled at the same time points used in the experiments.

Details of the library creation are provided in Supplementary

Material.

As the PI3Kinh does not affect the expression of many genes

(Kiselev et al., 2015), DiffExPy only identifies 223 dDEGs from the

differential expression analysis of the PI3Kinh and WT data. There is

a many-to-many match between the dDEGs and the possible three-

node SDE systems. A total of 217 of the dDEGs were matched to at

least one network model. Of the 217 matched genes, few are well-

studied; there is sparse information about their functional role. We

identified just nine genes whose paralogs were likely to exist in cur-

rent computational models of well-studied signaling pathways.

These include genes in the MAPK, JAK/STAT and PI3K/AKT/

mTOR pathways (Gambin et al., 2013; Orton et al., 2005;

Pappalardo et al., 2016; Sulaimanov et al., 2017).

3.2 Ensemble models highlight possible dynamical

systems from which to build more detailed models
Each independent model in the ensemble suggests a possible SDE

system whose simulations match the qualitative features of the ex-

perimentally measured expression. Specifically, each SDE system

represents how the gene of interest (node y) might interact with the

perturbed gene (node G) and the rest of the genome (node x). In this

experiment, G represents PI3K as it was the knocked-out, knocked-

in or inhibited gene. Summaries of the models that match each gene

and create the quantitative predictions reveal possible regulatory

interactions that result in the observed dynamics (Fig. 2A). We high-

light results of trained models for three genes that exhibit different

discrete responses and predictive accuracy: cytoplasmic linker-

associated protein 1 (CLASP1), regulator of cell cycle (RGCC) and

retinoic acid receptor alpha (RARA). CLASP1 and RARA were pre-

viously shown to interact with components of the PI3K/AKT path-

way (Lansbergen et al., 2006; Srinivas et al., 2006).

Models for CLASP1 and RGCC primarily contain inhibition by

both x and G, whereas x and G appear as activators of RARA.

Furthermore, in almost all models matched to RARA, both x and G

must be present to activate RARA. The RGCC models often contain

activation of G by RGCC. Conversely, models of CLASP1 and

RARA often exhibit feedback on G but are not consistently activat-

ing or inhibiting. Overall, these models suggest modes of regulation

between PI3K and CLASP1, RGCC and RARA, and predict gene
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responses to future conditions and treatments. These models also

provide a basis from which more detailed models can be developed.

3.3 DiffExPy ranking sorts models by predictive

accuracy
Because every ensemble model is not equally predictive of its respect-

ive gene, we searched for a metric to rank model predictions. We find

that the mean absolute LFC between the PI3K KI and WT conditions

correlates with improved model accuracy (Spearman’s q ¼ 0.636,

P¼5.4e-26, Supplementary Fig. S2). Ordering gene predictions by the

mean absolute LFC places genes with lower MSE at the top of the list.

Treating genes with positive DMSE (i.e. lower error than random) as

positive classifications, we can assess the area under the receiver oper-

ator characteristic (AUROC) and area under precision recall (AUPR)

curves. The AUROC for this ranking is 0.76 and the AUPR is 0.78,

both of which are significantly greater than expected from a random

ordering (Fig. 2B and Supplementary Fig. S3).

Since future experiments will not always include validation data,

we sought a proxy for model confidence. We find that the mean ab-

solute LFC between the PI3Kinh and WT correlates with the mean

absolute LFC between the PI3K KI and WT (Spearman’s q ¼
0.684, P¼2.7e-31, Supplementary Fig. S4). The mean absolute LFC

between the PI3Kinh and WT also correlates with improved model

accuracy (Spearman’s q ¼ 0.418, P¼1.4e-10, Supplementary Fig.

S5). This ranking yields an AUROC of 0.66 and an AUPR of 0.73,

which are slightly lower, but still significantly better than random

(Fig. 2B and Supplementary Fig. S3).

We believe this sorting is intuitive. A gene with a greater effect

size in the transcriptional response provides more information dur-

ing training, which results in better matched models. On average, a

random model predicts no LFC between WT and another condition

for a given gene, so a trained model prediction should be more ac-

curate (Supplementary Fig. S6).

3.4 Top-ranked genes offer accurate predictions
Overall, the predictions for the dDEGs have a median MSE that is

0.027 (P¼0.018) lower than random (DMSE). However, after rank-

ing genes by mean PI3Kinh-WT LFC, we applied an elbow rule to se-

lect the top 40 genes. Our results indicate that the top-ranked genes

have significantly more accurate predictions than random models. The

top genes have a median DMSE of 0.523 (P¼1.45e-6) and a %MSE

of 33.3% (P¼1.74e-5, Fig. 2C). The elbow rule gives an empirical

threshold to select the top predictive genes (Supplementary Fig. S7).

3.5 Gene classifications from discrete responses

associate with specific GO terms
To demonstrate the high-level biological insights gained from the dis-

crete responses, we present results of classifying genes from their dis-

crete responses comparing the PTEN KO to WT time-series

expression data. We identify 8508 DEGs, of which 3961 are classified

as dDEGs, 140 as DRGs and 283 as all three (Fig. 3B). We performed

GO term enrichment analysis on each of these non-mutually exclusive

gene classifications. Enriched GO terms were grouped by the exclusive

set to which they belonged. Thus, genes can have multiple labels, but

GO terms can only be associated with one group. For example, a GO

term associated with both the sets of DEGs and dDEGs—which have

many overlapping genes—would be assigned to the DEGs \ dDEGs

group, whereas a GO term only associated with the set of dDEGs

would be assigned to the dDEG group (Fig. 3B and C).
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All terms were called from the same directed acyclic graph

(DAG). Term depth quantifies the level in the GO hierarchy, and it

is used as proxy for term specificity. Even though no genes are cate-

gorized exclusively as dDEGs or DRGs, there are very specific terms

associated only with these groups (Fig. 3C). Results of the gene clas-

sifications for the PI3K KI and PI3Kinh compared with WT are pro-

vided in Supplementary Figures S8 and S9. Specific gene clusters

with similar discrete responses may also be used for GO enrichment

analysis, but we next focus on using them for TF enrichment.

3.6 TF enrichment suggests regulators of gene

expression
Similar to GO term enrichment analysis, we calculate TF enrichment

for gene clusters. A group of genes enriched for association with a par-

ticular TF may indicate that the TF is responsible for the observed

change in expression. Existing methods, such as weighted gene co-

expression network analysis (WGCNA) and dynamic regulatory events

miner (DREM), perform clustering of gene profiles for subsequent GO

and TF enrichment analysis (Langfelder and Horvath, 2008; Schulz

et al., 2012; Wise and Bar-Joseph, 2015). In contrast, DiffExPy uses

the discrete LFC values (0, 1, �1) to generate default clusters. This dis-

cretization enables grouping genes in various ways that suggest differ-

ent types of coregulation by a shared TF.

For example, the set of all DRGs is enriched for association with

52 TFs (adjusted P<0.05). This set includes supressor of zeste 12

(SUZ12) and forkhead box A1 (FOXA1), which were not identified

in the original study (Kiselev et al., 2015). SUZ12 is a zinc finger

protein and a component of the polycomb repressive complex 2

(PRC2). PRC2 has histone methylation activity, yet its regulatory

role in cell fate is uncertain (Comet et al., 2016; Squazzo et al.,

2006). FOXA1 is an important TF in breast and prostate cancers

and is known to be a target of both MAPK and AKT (Bernardo

et al., 2013; Potter et al., 2012).

Using the temporal information inherent to a time-series dataset,

we can identify when, and how, the regulation by these factors

occurs. For example, we identify the set of 41 genes that have lower

LFC at 300 min than at 0 min, which are enriched for association

with SUZ12 (Fig. 4A). A total of 13 of the 41 genes are known to be

associated with SUZ12, and the enrichment suggests that changes in

expression for this group are regulated by SUZ12. Interestingly,

there is no identifiable change in SUZ12 expression (Fig. 4A), indi-

cating that downstream gene regulation by SUZ12 might depend on

post-trancriptional changes, such as sumoylation (Riising et al.,

2008).

We also find FOXA1 to be associated with genes that show an

increase in LFC between 90 and 180 min. A natural hypothesis is

that this group of 79 genes all show the same change in expression

at these later time points because they share a common regulator,

FOXA1 (Fig. 4B). In contrast to SUZ12, FOXA1 exhibits a distinct

differential response beginning 90 min after the EGF stimulus.

Several of the genes that have the described behavior and are associ-

ated with FOXA1 show a similar qualitative differential response to

EGF as FOXA1. These results suggest that FOXA1 might regulate

the expression of these genes, as well as others in the set, in response

to EGF stimulation. Additionally, each of these genes, including

FOXA1, is classified as a DRG, further supporting the hypothesis

that PTEN is required for proper expression of these genes in re-

sponse to EGF stimulation.

SUZ12 and FOXA1 are not the only TFs associated with discrete

response clusters. Instead, these examples demonstrate two possible
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ways the discrete analysis might identify enriched regulators for

groups with different response behaviors. The timing of the expres-

sion behavior creates strong, testable hypotheses for the inferred reg-

ulators. Additional enrichment results, and a complete discussion of

the enrichment methods, are provided in Supplementary Material.

4 Discussion

The characterization of less-studied genes is fundamental to under-

standing cellular responses in diverse environmental contexts

(Stoeger et al., 2018). In this study, we presented DiffExPy, an ana-

lytical framework that calculates discrete differential expression

responses and trains dynamical systems models for many quantita-

tively uncharacterized genes.

We demonstrated how, for each matched gene, DiffExPy proto-

types quantitative models that offer accurate predictions of gene ex-

pression in untrained conditions. We also validated the DiffExPy

model predictions of each gene’s expression in the untrained PI3K

KI condition (Fig. 2). Our results suggest that PI3K inhibits expres-

sion of both CLASP1 and RGCC, often in conjunction with add-

itional factors. These de novo results are supported by previous

experiments. CLASP1 was shown to interact with proteins affected

by PI3K activity (Lansbergen et al., 2006). RGCC was also demon-

strated to have several regulatory roles in the PI3K pathway (Tegla

et al., 2015). Discrepancies with other data can refine the models

and our understanding of each gene’s regulation. For example, the

summary of RARA suggests that for the observed response, PI3K is

a positive regulator of RARA. This result is surprising because PI3K

activates AKT, which was shown to subsequently inhibit RARA

(Srinivas et al., 2006). One explanation is that an unknown activat-

ing path between PI3K and RARA exists.

We also demonstrated how DiffExPy associates groups of simi-

lar, discrete gene expression responses with TFs, such as SUZ12 and

FOXA1 (Fig. 4). Though SUZ12 expression does not differ between

the PI3Kinh and WT conditions, several known and possibly new

targets of SUZ12 exhibit a differential response to EGF stimulus.

These observations might suggest that regulation by SUZ12 results

from post-translational modification (Riising et al., 2008).

Conversely, FOXA1 and many of its targets exhibit a differential re-

sponse, which is consistent with previously studied interactions be-

tween FOXA1 and the AKT pathway (Bernardo et al., 2013; Potter

et al., 2012). Finally, we show how each gene classification associ-

ates with GO terms that enable a unique understanding of regula-

tory functions.

DiffExPy was formulated to create predictive models for many

genes with varied dynamic expression responses. We limited our

model library to three-node gene regulatory networks without self-

edges (Supplementary Fig. S10). As such, a suitable model match

might not exist in the library for each gene. In our analysis, a small

fraction of genes (6 of the 223 dDEGs, or less than 3%) did not

match to a suitable model. The absence of matches might be attrib-

uted to the limited scope of SDE models in the library, limiting pos-

sible gene expression dynamics. The library could be expanded to

include four-node networks, which might be capable of simulating

more qualitatively diverse expression dynamics. Expanding the li-

brary might be computationally expensive and require optimizing

the library generation step, simulation and matching. Additionally,

the current SDE models could be simulated with different kinetic

assumptions, though the accuracy of these assumptions would need

to be validated. Finally, because our training and testing perturb-

ation affect the same gene, the ranking of the results might not hold

for all predictions. We also focused only on comparisons between

pairs of experimental conditions (i.e. only one node is perturbed).

Integrating multiple experimental conditions into model training

might yield more predictive models, but also make training the mod-

els more difficult.

A complete understanding of cellular regulation cannot be

gained only from transcriptomics. Epigenomic data from ChIP-seq,

ATAC-seq, etc., can provide additional information to increase the

mechanistic specificity of the models by identifying direct regulators

and chromatin accessibility. Currently, TF enrichment is calculated

using associations derived from ENCODE (Schulz et al., 2012).

Direct measurements of TF association or chromatin accessibility,

during the same time course, could be directly integrated into the

existing framework. Unfortunately, this data was not available for

our analysis and might currently be cost prohibitive.

Overall, few genes have detailed biochemical models that quanti-

tatively predict their behavior in diverse conditions. Characterizing

how less-studied genes are regulated in multiple contexts will im-

prove our understanding and treatment of disease. The models gen-

erated by DiffExPy provide systematic, reliable starting points for

quantitative models of regulation based on time-series, differential-

expression data.
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