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A B S T R A C T   

Artificial intelligence (AI) systems have become critical in support of decision-making. This systematic review 
summarizes all the data currently available on the AI-assisted CT-Scan prediction accuracy for COVID-19. The ISI 
Web of Science, Cochrane Library, PubMed, Scopus, CINAHL, Science Direct, PROSPERO, and EMBASE were 
systematically searched. We used the revised Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) 
tool to assess all included studies’ quality and potential bias. A hierarchical receiver-operating characteristic 
summary (HSROC) curve and a summary receiver operating characteristic (SROC) curve have been implemented. 
The area under the curve (AUC) was computed to determine the diagnostic accuracy. Finally, 36 studies (a total 
of 39,246 image data) were selected for inclusion into the final meta-analysis. The pooled sensitivity for AI was 
0.90 (95% CI, 0.90–0.91), specificity was 0.91 (95% CI, 0.90–0.92) and the AUC was 0.96 (95% CI, 0.91–0.98). 
For deep learning (DL) method, the pooled sensitivity was 0.90 (95% CI, 0.90–0.91), specificity was 0.88 (95% 
CI, 0.87–0.88) and the AUC was 0.96 (95% CI, 0.93–0.97). In case of machine learning (ML), the pooled 
sensitivity was 0.90 (95% CI, 0.90–0.91), specificity was 0.95 (95% CI, 0.94–0.95) and the AUC was 0.97 (95% 
CI, 0.96–0.99). AI in COVID-19 patients is useful in identifying symptoms of lung involvement. More prospective 
real-time trials are required to confirm AI’s role for high and quick COVID-19 diagnosis due to the possible 
selection bias and retrospective existence of currently available studies.   

1. Introduction 

The 2019-new coronavirus (2019-nCoV, causing COVID-19 disease) 
was reported as the cause of the outbreak of pneumonia in Wuhan, 
Hubei province of China, at the end of 2019 [1]. This virus is associated 
with the severe acute respiratory syndrome coronavirus 2 (SAR-
S-CoV-2), a group of beta viruses that cause respiratory, gastrointestinal, 
neurological diseases in humans. The virus transmission appears to be 
done via respiratory droplets mainly [2]. 

COVID-19 patients usually present with trouble breathing, cough, 
and fever. The COVID-19- associated cytokine storms and innate 

immune system over-activation can lead to Acute Lung Injury (ALI) and 
induction of Acute Respiratory Distress Syndrome (ARDS), especially in 
patients with hypertension [3]. The cytokine storm induces the pro-
duction of Hyaluronic Acid (HA) molecules in lung tissue, with conse-
quent progressive fibrosis, tissue stiffness, and impaired lung function 
[4]. SARS-CoV-2 enters the cell by binding to spike (S) glycoproteins of 
the enzyme Angiotensin-Converting Enzyme 2 (ACE2) receptor [5,6]. 
Thus, pulmonary involvement is common in patients, and imaging 
techniques such as Chest X-ray Radiography (CXR) or Computed To-
mography (CT-scans) are recommended as the first-line diagnostic tools 
[7]. 

Radiological manifestations clinically confirmed, such as unilateral 

* Corresponding author. 
** Corresponding author. International Affairs Department (IAD), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 

E-mail addresses: Meisam.moezzi@yahoo.com (M. Moezzi), Shirbandi.k@gmail.com (K. Shirbandi), Hassankiani1398@gmail.com (H.K. Shahvandi), arjmand_ 
itb@yahoo.com (B. Arjmand), bioinfo2003@gmail.com (F. Rahim).  

Contents lists available at ScienceDirect 

Informatics in Medicine Unlocked 

journal homepage: www.elsevier.com/locate/imu 

https://doi.org/10.1016/j.imu.2021.100591 
Received 13 March 2021; Received in revised form 17 April 2021; Accepted 29 April 2021   

mailto:Meisam.moezzi@yahoo.com
mailto:Shirbandi.k@gmail.com
mailto:Hassankiani1398@gmail.com
mailto:arjmand_itb@yahoo.com
mailto:arjmand_itb@yahoo.com
mailto:bioinfo2003@gmail.com
www.sciencedirect.com/science/journal/23529148
https://www.elsevier.com/locate/imu
https://doi.org/10.1016/j.imu.2021.100591
https://doi.org/10.1016/j.imu.2021.100591
https://doi.org/10.1016/j.imu.2021.100591
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2021.100591&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Informatics in Medicine Unlocked 24 (2021) 100591

2

Abbreviations 

2019-nCoVs New Coronaviruses-2019 
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 
COVID-19 Coronavirus Disease-2019 
ALI Acute Lung injury 
ARDS Acute Respiratory Distress Syndrome 
HA Hyaluronic Acid 
ACE2 Angiotensin-Converting Enzyme 2 
CXR Chest X-ray Radiography 
CT-Scans Computed Tomography-Scans 
GGO Ground-Glass Opacity 
AI Artificial Intelligence 

ML: Machine Learning 
DL: Deep Learning 
AUC Area Under the Curve 
CI Confidence Interval 
FN False Negative 
FT False Positive 
TN True Negative 
TP True Positive 
QUADAS-2 Quality Assessment of Diagnostic Accuracy Studies 2 
HSROC: Hierarchical Summary Receiver-Operating Characteristic 
MOOSE Meta-analyses Of Observational Studies in Epidemiology 
PRISMA Preferred Reporting Items for Systematic reviews and 

Meta-Analyses  

Fig. 1. PRISMA 2009 flow diagram.  
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Table 1 
Characteristics of included studies on various models in patients with COVID-19.  

Country/ID Country Expert Radiologists 
involved as control 

AI 
model 

Reference 
standard 

Chest CT images Diagnosis factors 

Positive Healthy 
samples 

Accuracy, 
% 

AUROC PPV NPV Sen. Spec. 

Kelei He et al., 
2021 [1] 

China Yes DL RT-PCR 666 NA 0.985 0.991 0.799 NA 0.783 NA 

Ziwei Zhu et al., 
2021 [2] 

China Yes DL RT-PCR 687 395 0.93 0.93 NA NA 0.93 0.92 

Vruddhi Shah 
et al., 2021 [3] 

India Yes DL RT-PCR 738 NA 0.821 NA NA NA NA NA 

Carlos Quiroz 
et al., 2021 [4] 

Australia Yes ML RT-PCR 346 NA NA 0.926 NA NA 0.818 0.901 

H Alshazly et al., 
2021 [5] 

Germany Yes DL RT-PCR 1252 1230 0.994 NA NA NA 0.998 0.996 

Mohit Agarwal 
et al., 2021 [6] 

India Yes DL RT-PCR 705 990 0.994 0.991 NA NA 0.99 0.985 
ML 0.994 0.988 NA NA 0.99 0.985 
DL 0.718 0.714 NA NA 0.802 0.630 
DL 0.915 0.913 NA NA 0.938 0.888 
DL 0.859 0.852 NA NA 0.895 0.810 
DL 0.874 0.871 NA NA 0.915 0.826 
DL 0.909 0.893 NA NA 0.937 0.864 
DL 0.87 0.861 NA NA 0.914 0.815 
ML 0.958 0.948 NA NA 0.969 0.943 

Xi Fang et al., 
2021 [7] 

USA Yes DL RT-PCR 193 NA NA 0.813 NA NA NA NA 

Kumar Mishra 
et al., 2020 [8] 

India Yes DL RT-PCR 360 397 0.8834 0.8832 NA NA 0.8813 0.9051 

Jun Chen et al., 
2020 [9] 

China Yes DL RT-PCR 636 691 0.9524 NA NA NA 1 0.9355 

Liang Sun et al., 
2020 [10] 

China Yes DL RT-PCR 1495 1027 0.9179 0.9635 NA NA 0.9305 0.8995 

S Carvalho et al., 
2020 [11] 

Portugal Yes DL RT-PCR 130 NA 0.82 0.90 NA NA 0.80 0.86 

Lu-Shan Xiao 
et al., 2020 [12] 

China Yes DL RT-PCR 408 NA 0.974 0.987 NA NA NA NA 

Kimura-Sandoval 
et al., 2020 [13] 

Mexico Yes AI RT-PCR 166 NA NA 0.88 NA NA 0.74 0.91 

Hui-Bin Tan et al., 
2020 [14] 

China Yes ML RT-PCR NA NA NA 0.95 NA NA 0.987 0.984 

Liping Fu et al., 
2020 [15] 

China Yes ML RT-PCR 64 NA NA 0.833 NA NA 0.8095 0.7442 

Kang Zhang et al., 
2020 [16] 

China Yes AI RT-PCR 752 697 .08411 0.9050 NA NA 0.8667 0.8226 

Quan Cai et al., 
2020 [17] 

China Yes ML RT-PCR 81 122 0.709 0.811 NA NA 0.765 0.625 

D Javor et al., 
2020 [18] 

Austria Yes DL RT-PCR 3102 NA NA 0.956 NA NA 0.844 0.933 

Daowei Li et al., 
2020 [19] 

China Yes DL RT-PCR 10 36 NA 0.68 NA NA NA NA 

Hoon Ko et al., 
2020 [20] 

Korea Yes DL RT-PCR 337 998 0.9987 1 NA NA 0.9958 1 

Xueyan Mei et al., 
2020 [21] 

USA Yes DL RT-PCR 419 486 0.796 0.86 NA NA 0.836 0.759 

Xinggang Wang 
et al., 2020 [22] 

China Yes DL RT-PCR 313 229 0.901 0.959 NA NA 0.95 0.95 

Xiangjun Wu 
et al., 2020 [23] 

China Yes DL RT-PCR 294 101 0.819 0.76 NA NA 0.811 0.615 

Shuo Wang et al., 
2020 [24] 

China Yes DL RT-PCR 560 149 0.8124 0.90 NA NA 0.7893 0.8993 

Lin Li et al., 2020 
[25] 

China Yes DL RT-PCR 1296 1325 NA 0.96 NA NA 0.90 0.96 

A. Harmon et al., 
2020 [26] 

USA Yes AI RT-PCR 1029 1695 0.908 0.949 NA NA 0.84 0.93 

Chenglong Liu 
et al., 2020 [27] 

China Yes ML RT-PCR 73 27 0.9416 0.99 NA NA 0.8862 1 

Harrison X. Bai 
et al., 2020 [28] 

China Yes AI RT-PCR 521 665 0.96 0.95 NA NA 0.95 0.96 

A. Sakagianni 
et al., 2020 [29] 

Greece Yes ML RT-PCR 349 397 0.932 0.94 NA NA 0.8831 0.8831 

Deepika Selvaraj 
et al., 2020 [30] 

India Yes ML RT-PCR 50 NA 0.886 0.8723 NA NA 0.5549 0.8988 
ML 0.833 0.9107 NA NA 0.4025 0.9735 
ML 0.882 0.8187 NA NA 0.5211 0.8950 
ML 0.93 0.94 NA NA 0.756 0.9593 
DL 0.938 0.9427 NA NA 0.7678 0.9285 

Yuehua Li et al., 
2020 [31] 

China Yes DL RT-PCR 148 NA 0.626 0.660 NA NA 0.5897 0.6429 

(continued on next page) 
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or bilateral multilobar infiltration, Ground-Glass Opacity (GGO), and 
peripheral infiltration in chest CT-scan, have essential roles in the 
diagnosis of COVID-19 disease [8,9]. There is often no sign of lung 
involvement on a CT-scan in the early stages of the infection. In some 
cases, minimal involvement of up to two pulmonary lobes in the form of 
GGO, consolidation, or nodules less than one-third the volume of each 
lobe, especially in the peripheral areas [7,10]. Due to the removal and a 
high number of CT images of the lungs and its complex and uneven 
structure, it is challenging to diagnose vessels’ nodules in patients’ im-
ages [11]. Therefore, using computer-assisted techniques, especially 
Artificial Intelligence (AI) systems, has become more significant in 
supporting decision-making [12]. AI has great potential to improve 
clinical decisions; however, such systems’ successful implementation 
requires careful attention to each information system’s principles [13]. 
Due to the abundance and interference of variables in medical decisions, 
physicians can make faster and more efficient decisions using AI systems 
and spend more time evaluating decisions. 

So far only two systematic reviews and meta-analyses have been 
performed on AI in the COVID-19 field. Li et al. conducted a systematic 
review and meta-analysis of 151 published studies to generate a more 
accurate diagnostic model of COVID-19 using correlations between 
clinical variables, clustering COVID-19 patients into subtypes, and 

generating a computational classification model for discriminating be-
tween COVID-19 patients and influenza patients based on clinical vari-
ables alone [14]. Michelson et al. proposed an approach to answer 
clinical queries, termed rapid meta-analysis (RMA). Unlike traditional 
meta-analysis, it is an AI-based method with rapid time to production 
and reasonable data quality assurances. They performed a RMA on 11 
studies and estimated the incidence of ocular toxicity as a side effect of 
hydroxychloroquine in COVID-19 patients [15]. Thus, the purpose of 
this meta-analysis was to systematically assess and summarize all of the 
data currently available on the prediction accuracy of AI-assisted 
CT-Scanning for COVID-19. 

2. Materials and methods 

2.1. Protocol and registration 

This study was done according to Meta-analyses Of Observational 
Studies in Epidemiology (MOOSE) [16] and Preferred Reporting Items 
for Systematic reviews and Meta-Analyses (PRISMA) [17], and Syn-
thesizing Evidence from Diagnostic Accuracy TEsts (SEDATE) [18] 
guidelines. 

Table 1 (continued ) 

Country/ID Country Expert Radiologists 
involved as control 

AI 
model 

Reference 
standard 

Chest CT images Diagnosis factors 

Positive Healthy 
samples 

Accuracy, 
% 

AUROC PPV NPV Sen. Spec. 

Fei Shan et al., 
2020 [32] 

China Yes ML RT-PCR 249 NA 0.916 NA NA NA NA NA 

Minghuan Wang 
et al., 2020 [33] 

China Yes DL RT-PCR 1647 800 NA 0.953 0.790 0.948 0.923 0.851 

H–W Ren et al., 
2020 [34] 

China Yes AI RT-PCR 58 NA NA 0.740 NA NA 0.912 0.588 

Zhang Li et al., 
2020 [35] 

China Yes DL RT-PCR 204 164 NA 0.97 NA NA NA NA 

Jiantao Pu et al., 
2020 [36] 

USA Yes DL RT-PCR 151 498 NA 0.70 NA NA NA NA 

Fengjun Liu et al., 
2020 [37] 

USA Yes AI RT-PCR 134 115 NA 0.84 NA NA NA NA 

False Positive (FP), False Negative (FN), True Negative (TN), True Positive (TP), Area Under the Curve (AUC), Deep Learning (DL), Machine Learning (ML), 
convolution neural network (CNN), artificial neural network (ANN), Decision tree (DT), and random forest (RF), artificial neural network (ANN), Tree-based pipeline 
optimization tool (TPOT), ensemble of bagged tree (EBT), support vector machine (SVM), Gaussian Naive Bayes (GNB), Logistic Regression (LR), Deep Neural Network 
(DNN), 

Fig. 2. The summary receiver-operating characteristic (SROC) curves of the 
diagnostic performance of AI and CT-Scan on detection. Significant difference 
was present when the 95% confidence regions. Fig. 3. The summary receiver-operating characteristic (SROC) curves of the 

diagnostic performance of DL and CT-Scan on detection. Significant difference 
was present when the 95% confidence regions. 
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2.2. Eligibility criteria 

Studies suggest that lung involvement in the confirmed cases of 
COVID-19 patients based on RT-PCR results without language limits 
were included. We excluded papers that did not fit into the study’s 
conceptual framework focused on other types of infectious diseases. 

2.3. Information sources 

We systematically searched the ISI Web of Science, Cochrane Li-
brary, PubMed, Scopus, CINAHL, Science Direct, PROSPERO, and 
EMBASE for studies that evaluated the diagnostic accuracy of different 
models of AI-assisted CT-Scan for predict COVID-19 published between 
2020 and 2021 years. 

2.4. Search 

Two reviewers (K.SH and F.R) performed the search using medical 
subject headings (MeSh) terms included “artificial neural network” OR 
“Artificial Intelligence” OR “Machine Learning” OR “expert system” OR 
“Deep Learning” OR “Supervised Machine Learning” OR “computer- 
aided” AND “Respiratory Tract Infections” OR “Respiratory System” OR 
“Coronavirus Infections” OR “COVID-19” OR “SARS COV 2 Infection” 
AND “Computed Tomography” OR “CT-Scan” and all possible 
combinations. 

2.5. Summary measures 

Our desired outcomes were sensitivity, specificity, positive predic-
tive value (PPV), negative predictive value (NPV); studies that did not 
provide sufficient information to calculate true positive (TP, true 
COVID-19 predicted to be COVID-19 by AI), false positive (FP, non- 
COVID-19 predicted to be COVID-19), true negative (TN, non- COVID- 
19 predicted to be non- COVID-19 by AI) and false negative (FN, 
COVID-19 predicted to be non- COVID-19) values of AI on detection of 
COVID-19 in the patients, versus healthy control (HC). When the 
sensitivity and specificity were directly unavailable, we calculated them 
according to the following formulas: sensitivity = TP/ (TP + FN) and 
specificity = TN/ (FP + TN). 

2.6. Risk of bias across studies 

Data extraction for meta-analysis on detection of COVID-19 was 
based on the definition of criterion standard in the original study. In-
formation including the year of publication, the country where the study 
was conducted, type of study, number of patients also retrieved. We used 
the revised Quality Assessment of Diagnostic Accuracy Studies (QUA-
DAS-2) tool to assess the quality and potential bias of all studies by two 
independent reviewers (K.SH., F.R.) 

Any disagreements were resolved with discussion and involvement 
of the third reviewer (B.A.), and reviewers [K.SH., F.R.] assessed the 
first included articles independently. Four domains, namely patient se-
lection, index test, reference standard, and flow and timing, were 
assessed. Two categories, including the risk of bias and applicability, 
were assessed under the domain of patient selection, index test, and 
reference standard. The risk of bias was assessed in the domain of flow 
and timing. 

2.7. Additional analyses 

We used a bivariate model of random effects to estimate sensitivity, 
accuracy, and 95% confidence intervals (CI). A hierarchical summary 
receiver operating characteristic (HSROC) curve and a summary 
receiver operating characteristic (SROC) curve have been mounted. All 
experiments were viewed with the HSROC curve as a circle and plotted. 
The overview point was depicted by a dot surrounded by a 95% trust 
area (95% CI). The area under the curve (AUC) was computed to 
determine the diagnostic accuracy. Approaches 1.0 to the AUC would 
mean outstanding results, and impaired performance would be sug-
gested if it approaches 0.5. Among numerous subgroups, we compared 
the 95% CI of the AUC. We used non-overlapping 95% CI between two 
subgroups to identify statistically relevant variations. The variability 
and threshold effects of the studies included were also measured. 
Generally, the Chi-Square test of p < 0.1 reveals substantial heteroge-
neity performed was Cochran’s Q statistics and I2 test. Spearman’s 
correlation coefficient with r ≥ 0.6 between sensitivity and FP rate 
typically suggests a substantial threshold influence. We conducted both 
statistical studies using version 1.4 of the Meta-DiSc software [19] and 
the quality and potential bias of all studies by using Review Manager 5.4 
(RevMan 5.4) [20]. 

3. Results 

3.1. Study selection and characteristics 

Finally, 886 studies were retrieved on the initial search, and 223 
duplicates were removed. After reviewing the title, abstract and full 
article, finally, 36 studies were selected for inclusion into the meta- 
analysis [21–57] (Fig. 1). All included studies were retrospective, and 
all the studies were based on record images. 

Based on the number of enrolled images, 32,857 images (19,623 
COVID-19 images and 13,234 Healthy images) classified by analysis 
were included. The AI algorithm based on the neural network was 
established in a number of research articles [21–23,25–27,29–31,33–37, 
41–43,47,48,50–55,57]. Among the included studies, twenty-nine 
models were selected for meta-analysis on DL assisted detection for 
predict COVID-19 [21,22,25–27,30,33–37,40–42,46,47,50–54,56,57] 
and fourteen models on ML assisted detection for predict COVID-19 [21, 
24,28,31,38,43,45,46,48,49] (Table 1). 

3.2. Risk of bias within studies 

In the final part, 31 studies had a low risk of bias in patient selection, 
while 5 studies had a high risk of bias (Supplementary Fig. 1). In terms of 
the patient selection, two studies [21,46] used multiple tests, including 
(DL, and ML). Overall, studies with high risk [39,44,48,55,58] in at least 

Fig. 4. The summary receiver-operating characteristic (SROC) curves of the 
diagnostic performance of ML and CT-Scan on detection. Significant difference 
was present when the 95% confidence regions. 
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Table 2 
A detailed information of used AI-models to detect and Classified COVID- 19 by Compressed Chest CT Image.  

Country/ID Method Input Output Algorithm names Performance 
evaluation 

Training/test splitting Transfer learning 
/ ab initio 
training 

Network Architecture 

Kelei He et al., 
2021 [1] 

DL The 
raw 3D 

CT 
image 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

multi-task multi- 
instance U-Net 

(M2UNet) 

A five-fold cross- 
validation 

strategy used 

One subset as the 
testing set (20%)/ Four 
subsets are combined 

to construct the 
training set (70%) and 
validation set (10%) 

Synergistic 
Learning 

A bag (consisting of a 
set of 2D image 

patches) as the input 
data. 

M2UNet employs an 
encoding module for 
patch-level feature 

extraction 
Ziwei Zhu et al., 

2021 [2] 
DL The 

raw 3D 
CT 

image 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

Keras platform 
based on 
ResNet50 

architecture 

training set, 
validation set and 

testing set 

One subset as the 
training set, one subset 
as validation set, and 

one subset as testing set 

Transfer learning 
to detect the 
patients with 

COVID-19 

Imagenet dataset, 
Newly initialized 
weights, Output 

Vruddhi Shah 
et al., 2021 [3] 

DL The 
raw 3D 

CT 
image 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

ResNet-50 The confusion 
matrix 

A training set, 
validation set, and test 

set with a split 

A pre-trained 
network 

VGG-19 architecture 

Carlos Quiroz 
et al., 2021 [4] 

ML CT 
slices 
with 
<3 

mm2 of 
lung 
tissue 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

EfficientNetB7 U- 
Net 

5-fold repeated 
stratified cross- 

validation 

- - A 4-layer, fully 
connected 

architecture 

H Alshazly et al., 
2021 [5] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

ResNet50 and 
ResNet101 

K-fold cross- 
validation 

About 600 images 
only, and the test fold 

has less than 200 
images 

Transfer learning 
to detect the 
patients with 

COVID-19; which 
data are scarce 

The deep CNN 
architectures 

Mohit Agarwal 
et al., 2021 [6] 

DL, ML Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

CNN, RF, VGG16, 
DenseNet121, 
DenseNet169, 
DenseNet201, 

MobileNet, ANN, 
DT 

K-fold cross- 
validation 

K10 protocol (90% 
training and 10% 

testing) 

VGG16, 
DenseNet121, 
DenseNet169, 

DenseNet201 and 
MobileNet 

Based CNN thus has a 
total of 7 layers 

mainly adapting for 
simplicity 

Xi Fang et al., 
2021 [7] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

U-Net Cross-dataset 
validation 

(training on Site A 
and testing on Site 
B; training on Site 
B and testing on 

Site A) 

Labeled all five 
pulmonary lobes in 71 
CT volumes from Site A 

using chest imaging 
platform 

- - 

Kumar Mishra 
et al., 2020 [8] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

ResNet50 - Split 80% of the data is 
kept for training 

purpose (training data) 
and the rest for testing 

(testing data) 

- Indicate the potential 
usage of various Deep 

CNN architectures 

Jun Chen et al., 
2020 [9] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

UNet++ - 35,355 images were 
selected and split into 

training and 
retrospectively testing 

datasets. 

- UNet++ consists of 
encoder and decoder 
connecting through a 
series of nested dense 
convolutional blocks. 

Liang Sun et al., 
2020 [10] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

VB-Net - Adaptive Feature 
Selection guided Deep 

Forest (AFS-DF) 

- Selection guided deep 
forest 

S Carvalho et al., 
2020 [11] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

ANN Minimization of 
the cross-entropy 

Validation (150 ROIs), 
and test (150 ROIs) 

- 60 neurons in a 
single-hidden-layer 

architecture 

DL The lung 
segmentation 

ResNet34 Five-fold cross- 
validation 

- 

(continued on next page) 
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Table 2 (continued ) 

Country/ID Method Input Output Algorithm names Performance 
evaluation 

Training/test splitting Transfer learning 
/ ab initio 
training 

Network Architecture 

Lu-Shan Xiao 
et al., 2020 
[12] 

Chest 
CT 

scans 

and severity 
assessment of 

COVID19 
patients 

Patch dataset with a 
size as large as 3 × 224 

× 224 (z × y × x) 

ResNet34, AlexNet, 
VGGNet, and 

DenseNet 

Kimura- 
Sandoval 
et al., 2020 
[13] 

AI Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

Logistic - - - - 

Hui-Bin Tan 
et al., 2020 
[14] 

ML Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

TPOT Radiomics Auto- 
ML model in the 
first CT images 

Training set and test set 
according to the 
proportion of 8:2 

- Auto-ML, each 
group’s original data 

is imported into 
TPOT 

Liping Fu et al., 
2020 [15] 

ML Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

K(K-1)/2 binary - One-leave-out cross- 
validation 

- - 

Kang Zhang 
et al., 2020 
[16] 

AI Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

ResNet-18 A five-fold cross- 
validation test 

Randomly assigned to 
a training set (80%), an 
internal validation set 

(10%) or a test set 
(10%) 

- A computer-aided 
diagnosis (CAD) 

system for detecting 
COVID-19 patients 

Quan Cai et al., 
2020 [17] 

ML Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

- - 7:3 ratio to either the 
training cohort or the 

testing cohort 

- - 

D Javor et al., 
2020 [18] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

ResNet50 - Split for training the 
model and internal 

validation (20 % of the 
samples) 

- More layers (ResNet- 
101) 

Daowei Li et al., 
2020 [19] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

U-Net - - - - 

Hoon Ko et al., 
2020 [20] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

ResNet-50 5-fold cross- 
validation 

Randomly split with a 
ratio of 8:2 into a 
training set and a 

testing set 

On one of the 
following four 

pretrained CNN 

Initially used the 
predefined weights 

for each CNN 
architecture 

Xueyan Mei 
et al., 2020 
[21] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

- - - - - 

Xinggang Wang 
et al., 2020 
[22] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

UNet - A simple 2D UNet 
using the CT images in 

our training set 

- 3D deep 
convolutional neural 
Network to Detect 

COVID-19 
(DeCoVNet) from CT 

volumes. 
Xiangjun Wu 

et al., 2020 
[23] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

ResNet50 The layer outputs 
the risk value of 

COVID-19 
pneumonia 

50 cases (10%, 37 of 
COVID-19, 13 of other 

pneumonia) of the 
validation set and 50 

cases (10%, 37 of 
COVID-19, 13 of other 

pneumonia) of the 
testing set. 

- Modification of 
ResNet50 

architecture 

DL The lung 
segmentation 

COVID-19Net Train and 
externally 

The auxiliary training 
set 

The pre-trained 
COVID-19Net to 

- 

(continued on next page) 
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Table 2 (continued ) 

Country/ID Method Input Output Algorithm names Performance 
evaluation 

Training/test splitting Transfer learning 
/ ab initio 
training 

Network Architecture 

Shuo Wang 
et al., 2020 
[24] 

Chest 
CT 

scans 

and severity 
assessment of 

COVID19 
patients 

validate the 
performance 

the COVID-19 
dataset to 

specifically 

Lin Li et al., 2020 
[25] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

COVID-19Net Using an 
independent 
testing set. 

COVNet = COVID- 
19 detection 

neural network. 

A ratio of 9:1 into a 
training set and an 

independent testing set 
at the patient level. 

- A supervised deep 
learning framework 

(COVNet) was 
developed to detect 

COVID-19 and 
community acquired 

pneumonia. 
A. Harmon et al., 

2020 [26] 
AI Chest 

CT 
scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

AH-Net - - - Densnet-121 
architecture adapted 

to utilize 3D 
operations (i.e., 3D 

convolutions) 
compared to original 
2D implementation 

Chenglong Liu 
et al., 2020 
[27] 

ML Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

EBT SVM, LR, DT, KNN 
are implemented 

with the same 
texture feature 

extraction 

- - - 

Harrison X. Bai 
et al., 2020 
[28] 

AI Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

EfficientNet B4 - - - EfficientNet B4 deep 
neural network 

architecture 

A. Sakagianni 
et al., 2020 
[29] 

ML Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

- - - - - 

Deepika Selvaraj 
et al., 2020 
[30] 

DL, ML Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

SVM, GNB, LR, 
DT, DNN 

50 images are 
used for testing 

the trained 
network 

The dataset of training 
points is manually 
selected from the 

infected and 
background pixels 

from the 30 training 
images 

- The size of the input 
layer is 38 neurons 
(38 features), three 

hidden layers with 58 
neurons per layer and 
binary classification 

output layer 
Yuehua Li et al., 

2020 [31] 
DL Chest 

CT 
scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

U-Net The Dice 
coefficient 

- - - 

Fei Shan et al., 
2020 [32] 

ML Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

VB-Net - - - - 

Minghuan Wang 
et al., 2020 
[33] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

U-Net - Randomly split into a 
training set (1318 

patients with COVID- 
19; 640 patients 

without COVID-19) 
and a testing set (329 
patients with COVID- 

19; 160 patients 
without COVID-19) 

- - 

H–W Ren et al., 
2020 [34] 

AI Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

- - - - - 

Zhang Li et al., 
2020 [35] 

DL Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 

U-Net - - - - 

(continued on next page) 
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one of the seven domains were rated as low methodological quality in 
the subgroup analysis. 

4. Diagnostic test accuracy (DTA) 

4.1. Results of AI 

Among the 37 studies [21–57] of image-based analysis, the pooled 
sensitivity was 0.90 (95% CI, 0.90–0.91), specificity was 0.90 (95% CI, 
0.90–0.91), the AUC was 0.96 (95% CI, 0.91–0.98), and diagnostic odds 
ratio (DOR) was 88.98 (95% CI, 56.38–140.44) as shown in (Fig. 2) 
(Supplementary Figs. 2–8). 

4.2. Results of DL 

Among the 23 studies [21,22,25–27,30,31,33–37,40–42,46,47, 
50–54,56,57] of image-based analysis, the pooled sensitivity was 0.91 
(95% CI, 0.90–0.91), specificity was 0.88 (95% CI, 0.87–0.89), the AUC 
was 0.96 (95% CI, 0.93–0.97), and DOR was 99.04 (95% CI, 
54.68–179.36) as shown in (Fig. 3) (Supplementary Figs. 3–8). 

4.3. Results of ML 

Among the 9 studies [21,24,28,38,43,45,46,48,49] of image-based 
analysis, the pooled sensitivity was 0.91 (95% CI, 0.90–0.91), speci-
ficity was 0.95 (95% CI, 0.94–0.95), the AUC was 0.97 (95% CI, 
0.96–0.99), and DOR was 88.27 (95% CI, 29.52–263.96) as shown in 
(Fig. 4) (Supplementary Figs. 4–8). 

5. Discussion 

This meta-analysis study exhibited a satisfactory performance using 
the AI algorithm for AI assisted CT-Scan identification of COVID-19 vs. 
healthy samples. We showed that AI was accurate on the lung involve-
ment in the COVID-19 with a pooled sensitivity was 0.90 (95% CI, 
0.90–0.91), specificity was 0.90 (95% CI, 0.90–0.91) and the AUC was 
0.96 (95% CI, 0.91–0.98). According to Table 2, ResNet-50, ResNet101, 
ensemble of bagged tree (EBT), Tree-based pipeline optimization tool 
(TPOT), Gaussian Naive Bayes (GNB), random forest (RF), and convo-
lution neural network (CNN) algorithms had performed good on the CT- 
based COVID-19 detection. 

The lesions could explain AI’s excellent performance in detecting 
COVID-19 with the handle, bronchial vascularization, or lower ex-
tremities in bilateral lungs [59]. In contrast, AUC of ML detecting 

COVID-19 patients was 0.97 (95% CI, 0.96–0.99). However, the AUC of 
DL on detecting of COVID-19 patients was 0.96 (95% CI, 0.93–0.97). 
Thus, it may increase the AI, ML, and DL models’ close diagnosis to 
detect COVID-19. 

The AI system demonstrated performance comparable to senior 
practicing radiologists and can help to diagnose COVID-19 patients 
rapidly with 0.97 and 0.95 AUC [23,55]. Consequently, AI software 
expressing objective evaluations of the percentage of ventilated lung 
parenchyma compared to the affected one and can readily identify 
CT-scans with COVID-19 associated pneumonia [58,60]. Ilker Ozsahin 
et al., 2020, in the review study, showed that AI to be used in the clinic as 
a supportive system for physicians in detecting COVID-19 [61]. Also, 
pooled AUC in this study was 0.96 (95% CI, 0.91–0.98). 

Lin Li et al., 2020, showed that the DL model with 0.96 AUC could 
accurately detect COVID-19 and differentiate it from Community- 
Acquired Pneumonia (CAP) and other lung conditions [35]. In 
contrast, Xiangjun Wu et al., 2020, Xueyan Mei et al., 2020, and Shuo 
Wang et al., 2020, showed that DL model with 0.732, 0.86, and 0.87 AUC 
could accurately detect COVID-19, respectively [51,53,62]. However, 
one study was showed that chest CT-Scan with AI could not replace 
molecular diagnostic tests with a nasopharyngeal swab (RT-PCR) or 
suspected for COVID-19 patients [63]. Overall, analysis shows that the 
DL model can classify the chest CT-Scan at a high accuracy rate and AUC 
values ranging from 0.90 to 1.00 [33,52,64,65]. At the same time, this 
study showed that the AUC of DL on detecting COVID-19 patients was 
0.96 (95% CI, 0.93–0.97), which was near the same results with the 
research studies. 

Daowei Li et al., 2020, showed that the AUR score of ML was 0.93 
[34]. However, in our study, pooled AUC in ML was higher, 0.97 (95% 
CI, 0.96–0.99). Overall, ML’s accuracy is almost achieved over 0.90 for 
COVID-19 classification [66], and Chenglong Liu et al., 2020, showed 
that AUC was 0.99 [38]. 

This meta-analysis has several limitations. 1. All studies were 
retrospective based on static images. 2. The selection bias of studies 
cannot be eliminated (shown in the QUADAS-2). 3. There were some 
heterogeneities in the CT-Scans equipment, images, and algorithm of AI, 
DL, and ML used. 4. Also, two studies used some algorithms and methods 
for AI, which was effect bias for this analysis. 

6. Conclusion 

Our findings revealed that AI-platforms based on the ResNet-50, 
ResNet101, an ensemble of the bagged tree, Tree-based pipeline opti-
mization tool, Gaussian Naive Bayes, random forest, and convolution 

Table 2 (continued ) 

Country/ID Method Input Output Algorithm names Performance 
evaluation 

Training/test splitting Transfer learning 
/ ab initio 
training 

Network Architecture 

COVID19 
patients 

Jiantao Pu et al., 
2020 [36] 

DL 3D 
Chest 

CT 
scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

CNN - - - The CNN 
architectures used 

different numbers of 
filters at different 

layers. 

Fengjun Liu 
et al., 2020 
[37] 

AI Chest 
CT 

scans 

The lung 
segmentation 
and severity 

assessment of 
COVID19 
patients 

- - - - - 

False Positive (FP), False Negative (FN), True Negative (TN), True Positive (TP), Area Under the Curve (AUC), Deep Learning (DL), Machine Learning (ML), 
convolution neural network (CNN), artificial neural network (ANN), Decision tree (DT), and random forest (RF), artificial neural network (ANN), Tree-based pipeline 
optimization tool (TPOT), ensemble of bagged tree (EBT), support vector machine (SVM), Gaussian Naive Bayes (GNB), Logistic Regression (LR), Deep Neural Network 
(DNN), 
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neural network algorithms perform well for CT-based COVID-19 
detection. To confirm AI’s role for rapid and accurate COVID-19 diag-
nosis, more prospective real-time trials are required due to reduce the 
possibility of selection bias and to compare with currently available 
studies. 
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