
Computational and Structural Biotechnology Journal 18 (2020) 548–557
journal homepage: www.elsevier .com/locate /csbj
Review
Prediction of the miRNA interactome – Established methods and
upcoming perspectives
https://doi.org/10.1016/j.csbj.2020.02.019
2001-0370/� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: cciaudo@ethz.ch (C. Ciaudo).
Moritz Schäfer a,b, Constance Ciaudo a,⇑
a Swiss Federal Institute of Technology Zurich, Department of Biology, Institute of Molecular Health Sciences, CH-8093 Zurich, Switzerland
b Life Science Zurich Graduate School, Systems Biology Program, University of Zurich, CH-8047 Zurich, Switzerland
a r t i c l e i n f o

Article history:
Received 16 October 2019
Received in revised form 21 February 2020
Accepted 27 February 2020
Available online 5 March 2020

Keywords:
Machine Learning
Deep Learning
microRNA target prediction
a b s t r a c t

MicroRNAs (miRNAs) are well-studied small noncoding RNAs involved in post-transcriptional gene reg-
ulation in a wide range of organisms, including mammals. Their function is mediated by base pairing with
their target RNAs. Although many features required for miRNA-mediated repression have been described,
the identification of functional interactions is still challenging. In the last two decades, numerous
Machine Learning (ML) models have been developed to predict their putative targets. In this review,
we summarize the biological knowledge and the experimental data used to develop these ML models.
Recently, Deep Neural Network-based models have also emerged in miRNA interaction modeling. We
thus outline established and emerging models to give a perspective on the future developments needed
to improve the identification of genes directly regulated by miRNAs.
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1. Introduction

1.1. Regulation of gene expression by microRNAs

Mammalian canonical microRNAs (miRNAs) are key compo-
nents of cellular networks, regulating gene expression in many cell
types (for review [1]). Their biogenesis starts with the transcription
of primary miRNAs (pri-miRNAs) by RNA polymerase II and is fol-
lowed by their processing in the nucleus by the microprocessor
complex, composed of two DGCR8 and one DROSHA protein, into
hairpin precursor miRNAs (pre-miRNAs) of ~70 nucleotides (nts)
length. After export into the cytoplasm, pre-miRNAs are cleaved
by the DICER endonuclease III enzyme into mature miRNA
duplexes of ~22 nts length (for review [2]). Mature miRNAs are
subsequently loaded in one of the Argonaute proteins forming
the RISC (RNA-induced silencing complex) to target 30 Untrans-
lated Region (30UTR) of mRNAs, mostly via Watson-Crick base pair-
ing of their seed region (comprising nucleotides 2–8 (Fig. 1a)) [3].
This interaction leads to post-transcriptional repression of mRNAs
via at least one of two modes: Translational inhibition and mRNA
decay [4]. Interestingly, it was previously shown, using human cells
as a model, that 84% of translational inhibition by miRNAs might
be attributed to mRNA degradation [5]. Nevertheless, the potential
to functionally repress mRNAs varies across individual miRNA-
target pairs and a number of specific factors have been associated
with regulatory efficiency (see Section 2.2.1). Interestingly, a given
30UTR can be targeted by several miRNAs and an individual miRNA
might also have many targets [3], implying millions of possible
interactions, which may or may not be functional. As a conse-
quence, there is a need for computational methods to identify
functional miRNA-mRNA interactions and the key features leading
to post-transcriptional repression.

To determine such potential interactions, the first computa-
tional miRNA interaction prediction (MIP) methods analyzed the
30UTRs of genes for conserved seed matches [6]. While this
approach was effective to identify many interactions, it became
apparent that these predicted matches were not always functional
and that several other features contribute to the repression medi-
ated by a given miRNA-mRNA interaction pair [7,8].

Experimentally, over-expression of individual miRNAs followed
by the analysis of targeted mRNA expression using microarrays,
produced data sets with high numbers of potential direct and indi-
rect interactions [9]. These data sets were used as the first basis for
the prediction of functional interactions using Machine Learning
techniques in mammals [7].
1.2. Machine Learning

The termMachine Learning (ML) dates back to 1959 [10] and has
gained tremendous popularity in the last decades [11]. ML meth-
ods commonly analyze collected data in order to make predictions
from novel observations [12]. In this review, we focus on Machine
Learning techniques that are applied in the context of MIP.

Most of these models rely on Supervised Learning. Here, ML algo-
rithms are provided with (input, output) pairs for training of a
function:

f inputð Þ � output

During training, the function, or model, f is optimized to esti-
mate the output, or label, based on the provided input, or obser-
vation, preferably using a large number of (input, output) pairs.
After training, the model can be used to predict the unknown
output, for a provided input [11]. In MIP, the input consists of
features, describing a given potential miRNA-mRNA interaction
(e.g. the degree of conservation at the target site, see Sec-
tion 2.2.1), while the output indicates the repressive potential
of the interaction.

Unsupervised Learning is a form of learning that allows the iden-
tification of patterns in data sets without the use of labels. It is
especially useful for working with unlabeled data sets and for
learning more descriptive feature representations in cases where
supervised learning methods struggle to capture relevant informa-
tion from the raw features of an observation (i.e. unprocessed fea-
tures from observations). Learned feature representations are
computable from raw features and can be used in subsequent
supervised learning models [13].

The repressive potential of a miRNA-mRNA interaction can be
described either categorically or continuously. In the former case,
interactions are typically classified in two classes functional and
nonfunctional, reflecting whether a considered interaction medi-
ates gene repression or not. This kind of prediction is referred to
as classification. In the latter case, the repressive potential of an
interaction is estimated as a continuous variable, which is referred
to as regression.

Another notable property of ML methods is whether they are
capable of modeling nonlinear relationships. ML models can be
separated into linear and nonlinear models. Nonlinearities in the
training data cannot be modeled accurately by a linear model,
while nonlinear models may perform well on linear and nonlinear
data [12]. To provide an example, the repression of the target
mRNA is not proportional to the amount of miRNAs present in
the system. It has been observed that repression usually plateaus,
or changes, only after the miRNA expression reached a specific
threshold. This implies a nonlinear relationship between miRNA
expression and target repression [3] and a nonlinear model might
thus lead to more accurate predictions than a linear one.

1.2.1. ML methods
A set of Machine Learning methods have been widely employed

in biology and previously reviewed [14]. Here, we focus our intro-
duction on methods being broadly applied in MIP.

� Linear methods
The Linear Regression is the simplest imaginable regression
model. It fits a line of the form y ¼ axþ b (in the one-
dimensional case, with x being the observation, y the prediction
and a and b the fitted model parameters) to the observed data
such that deviations of the observations from that line are min-
imized. The possibility to directly interpret the model parame-
ters as well as to fit the model to very small data sets are the
strengths of this model. Logistic Regression is a method for
the parameter estimation of a logistic function. The function
models the probability of an observation to belong to one of
two classes and can be used to classify an observation using a
threshold. Linear methods can be based on more complex for-
mulas with larger numbers of trainable parameters, which for
example enables them to model data using polynomials. These
models usually have the disadvantage of overfitting, i.e. they
mimic the training data extremely well, but fail to predict
new observations accurately. In order to keep complex models
simple and to therefore avoid overfitting, model parameters
are often incentivized to stay small, a process called regulariza-
tion. These concepts and linear methods are comprehensively
described in [12].

� Kernel methods
Kernels are functions that compute similarity measures
between two observations. Kernel methods make use of these
measures to train models based on pairwise similarities. This
enables them to model nonlinear relationships between fea-
tures without the need to explicitly convert observations to a
high-dimensional feature space as described in [15].
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The Support Vector Machine (SVM) is a classification method
that commonly employs kernel functions. It works by spanning
a hyperplane in the feature space to linearly separate training
observations of different classes. Using kernel functions, this
feature space can be implicitly transformed, enabling the non-
linear separation of observations in the original feature space.
Notably, in order to improve classification of unseen samples
(i.e. samples that have not been observed during training), the
hyperplane is optimized to maximize its margin to the training
samples of two classes. SVMs are able to efficiently process
high-dimensional and large data sets and reach high prediction
accuracies [16]. They have been previously reviewed in the con-
text of biology in [15].

� Tree-based methods
Decision Tree models are able to classify observations by
traversing through the nodes of a tree-like structure. Each node
represents a test of one or more features of the observation and
determines, which of the subsequent nodes to traverse next,
ultimately leading to a predicted class when reaching a leaf
node (i.e. a node without subsequent child nodes) [17]. Using
ensemble learning, multiple decision trees can be trained and
combined into a Random Forest model, which usually leads to
improved predictive performance. Random Forests are able to
efficiently model complex and nonlinear data types, while still
retaining the ability to interpret the relevance of individual fea-
tures [18,19]. They have been described in the context of biol-
ogy in [17,18].

� Neural networks (NNs)
NNs, in their ordinary form, work by transforming input fea-
tures towards more abstract representations. These networks
are built up of layers, each responsible for a linear feature trans-
formation followed by a nonlinear activation function. The out-
put of the NN is usually retrieved from the final layer. NNs
having a larger number of layers, are also referred to as Deep
Neural Networks (DNNs) [20]. As an example, an image-based
object recognition NN model, receiving raw pixel values as
input, usually learns common concepts comparable to lines
and curves in its first layers and combines these features to
shapes, like circles, corners and more complex patterns in sub-
sequent layers, to finally predict object classes such as hand-
written characters or cell types in the last layer. Given a suffi-
cient amount of training data, the back-propagation algorithm
enables the training of the transformations directly from raw
features [21]. This enables NNs to automatically extract com-
plex and useful features from the provided input. NN methods
have been extended to effectively model different kinds of data.
High-dimensional data with homogenous features, as in images
or nucleotide sequences, can be modeled efficiently using Con-
volutional Neural Networks (CNNs). In CNNs, trainable filters
are applied with convolutional operations onto input data, to
compute the output of a layer in the network. This leads to
fewer model parameters needed to be trained, as compared to
NNs with fully connected layers [20].
In many cases, input representations used to train ML models
are substantially larger than necessary for carrying the con-
tained information. This hampers training due to the
increased number of model parameters needed to be trained.
The Autoencoder architecture, a specific type of NNs, uses
unsupervised learning to encode the input data into a form
of fewer dimensions, which can be used for further training.
A NN Autoencoder is designed and trained such that it repro-
duces the input data in its output layer, while its inner en-
coded representations have fewer dimensions than the input
data [22].
Another type of NNs are Recurrent Neural Networks (RNNs).
They are capable of storing previous events for the adapted
processing of new observations, which is suitable to model
sequential data including nucleotide sequences [23–25].

As of yet, DNN models have paved the way for groundbreaking
performance in many fields including speech recognition, natural
language processing and visual object recognition (for review
[13,26]). In biology, DNNs have outperformed other ML methods
in a wide range of applications and have been comprehensively
reviewed in [20].

1.2.2. Model evaluation
A major challenge in ML is to design models that gain the ability

to generalize their predictive power onto unseen data. Observa-
tions, used for prediction of a trained model, usually deviate from
the training observations. Nevertheless, it is desirable that a model
predicts the label of new observations as accurate as for observa-
tions it has already observed during training. In order to verify this
property of a model, the model is evaluated on a test data set,
which must be different from the training data set, previously used
for the training. Especially in computational biology, researchers
often use and recommend labeled test sets that are completely
independent of the training data (e.g. from a different organism
or experimental method) [27]. Furthermore, during training and
model optimization, instead of using the test set, a part of the
training set is excluded from training and used as separate valida-
tion set. This step is necessary to avoid systematic optimization of
the model towards the test set. As observations in a given data set
may share common properties, it is important to carefully split
data sets in a way that observations with the same property never
appear at the same time in the training set and the validation set
[28]. As an example, this can be an issue for miRNA interaction
data sets, which mostly contain data on a limited number of miR-
NAs (see Section 2.1). Some miRNAs may be generally more potent
at repressing their targets than others. This notion could be learned
by a model and, in case of an improperly split validation set, be
exploited to report better model performances than reachable in
a realistic scenario, where mostly interactions with previously
unobserved miRNAs are being predicted.

In order to assess, or score, the performance of a model for com-
parison and optimization, a number of metrics exist. For regression
models, the root-mean-square error (RMSE) and the coefficient of

determination denoted as R2 are common scoring metrics.
Given a test set of length n with known outputs y and predicted

outputs by it is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i yi � byi

� �2
n

s

Due to low reliability of the RMSE [29], the R2 is used more
often for model scoring. It is a measure for the proportion of vari-
ance in a data set’s output, explained by a given regression model
and defined as

R2 ¼ 1�
Pn

i yi � byi

� �2Pn
i yi � yð Þ2

with y ¼
Pn

i
yi

n being the mean of the outputs of the data set [30].
Binary classification is the most common form of classification

in MIP as interactions are usually separated in one of two classes
positive/functional or negative/nonfunctional. Metrics for classifi-
cation models have been discussed in [31,32] and are summarized
below.

When evaluating a binary classification model on a test set, the
number of correctly predicted positives (true positives (TP)) and
incorrectly predicted positives (false positives (FP)), as well as true
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negatives (TN) and false negatives (FN) can be counted and used to
derive a number of metrics, including

� precision: TP
TPþFP, i.e. the fraction of predicted positives that are

actually true positives.
� true-positive rate or recall: TP

TPþFN, i.e. the fraction of positives
that have been identified as such.

� false-positive rate or (1-specificity): FP
FPþTN, i.e. the fraction of

negatives that have been wrongly identified as positives.
� accuracy: TPþTN

TPþTNþFPþFN, i.e. the fraction of predictions that have
been predicted correctly.

It might seem intuitive at first to use the accuracy for evaluating
a model’s performance. However, none of these metrics are robust
against an imbalanced data set, where the number of positive and
negative observations is largely different. For example, a (hypo-
thetical) prediction model that predicts every observation as neg-
ative, could yield high accuracy scores, given a data set with a
large number of negatives and few positives. To counteract such
issues, it is advised to use these metrics in combination as does
for example the F1 score, which is more robust against imbalanced
data sets and defined as:

F1 ¼ 2 � precision � recall
precisionþ recall

Furthermore, as binary classifiers mostly use thresholds to
determine the output class based on a predicted score, it is more
informative to evaluate the performance of a model for a range
of thresholds. Here, receiver operating characteristic (ROC) graphs
are often used to plot the false-positive rate (i.e. 1 – specificity) on
the x axis against the true-positive rate on the y axis, covering the
full range of possible threshold values. This graph can be reduced
to a single value metric by calculating the area under the ROC curve
(AUROC or AUC) with 1 being the best and 0 being the worst value
[33].

For a concise overview of recommended ML practices beyond
model evaluation, the reader is referred to [34].
2. Methods

Despite several years of effort to better understand the underly-
ing factors and contexts involved in efficient translational inhibi-
tion of mammalian mRNAs by miRNAs, it is still challenging to
identify functionally relevant interactions [35]. To tackle this issue,
researchers have employed Machine Learning techniques to build
models that predict functional interactions based on experimental
observations.
2.1. Experimental methods and data used for ML-based miRNA target
prediction

As highlighted previously, supervised ML relies on labeled data
sets, both for training models and for subsequently testing them.
For the generation of ML data sets, most MIP methods rely on find-
ing seed matches in the 30UTR to extract potential interactions. The
regulatory efficiency of the extracted interactions is assigned based
on data sets from experimental methods described in this section.
For regression models, the regulatory effect observed for a given
interaction is used as continuous variable [36]. For classification
models, a threshold usually decides whether an interaction is pos-
itive or negative [37]. Although data sets generated in this way do
contain errors (e.g. experimental false positives), they are the basis
for ML training and hence are seen as ground truth for the ML
model.
A direct functional miRNA-mRNA interaction involves the bind-
ing of an AGO2-bound miRNA to an mRNA, leading to its transla-
tional inhibition and generally the subsequent downregulation of
that mRNA [5]. In practice, RNA levels are easier to measure with
high-throughput methods than total protein levels. Consequently,
mRNA expression is widely used as a proxy for miRNA-mediated
gene regulation and used as ground truth.

Several groups have generated data sets based on miRNA per-
turbation and subsequent mRNA expression measurements, in
order to build ML models. In 2005, Lee et al. were the first to per-
form a miRNA transfection in HeLa cells with high-throughput
measurement of induced mRNA repression 12–24 h post transfec-
tion using microarrays [9]. Similarly, knockdown of miRNAs, fol-
lowed by transcript measurement has been performed [38]. In
2015, Agarwal et al. have collected and compiled a data set con-
taining 74 microarray data sets of HeLa cells transfected with indi-
vidual miRNAs [36]. More recently, Liu et al. also overexpressed 25
miRNAs individually in HeLa cells and performed RNA-sequencing
(RNA-seq) to identify affected transcripts [39]. Such approaches
have some obvious issues: 1. The overexpression of miRNAs might
lead to interactions that cannot be observed in physiological condi-
tions where miRNA levels are lower. 2. It cannot be guaranteed
that an observed repression was provoked by a transfected miRNA
or by some secondary effect, for example through a repressed tran-
scription factor.

In order to observe direct functional mRNA-miRNA interactions,
researchers commonly use Luciferase reporter assays [40]. Van
Peer et al. performed luciferase assays for 470 miRNAs and 30UTRs
of 17 human genes in parallel, thus observing 7990 potential inter-
actions [37]. Since a protein-based readout is taken here, this kind
of measurement is very direct but experimentally time consuming
due to the necessary cloning and transfection steps. Mutation of
putative miRNA binding sites in the 30UTR of interest can further-
more confirm a direct interaction of the studied miRNA. This data
set contains a significant number of tested miRNAs (but rather a
small number of targets), which might be favorable for modeling
functional interactions, since binding affinities can deviate greatly
between distinct miRNAs [41]. However, the number of observed
genes and potential interactions is low, compared to RNA
expression-based approaches described previously.

Other data sets emerged with the development of Cross-
Linking Immunoprecipitation with High-Throughput Sequencing
methods (CLIP-seq, for review [42]), which allow the identifica-
tion of RNA-binding protein target sites up to single nucleotide
level precision. This approach has been used to reveal binding
sites of miRNAs by immunoprecipitation of Argonaute protein
in vitro [43] and in vivo [44]. Nevertheless, the identification of
miRNA target sites did, in many cases, not reveal the associated
miRNA. MiR-CLIP [45] and Cross-linking Ligation and Sequencing
of Hybrids (CLASH) [46] methods were then developed to reveal
this additional information. However, miR-CLIP is only capable
of revealing interactions of a single miRNA and CLASH only iden-
tifies miRNA-mRNA interactions at a very low efficacy [46,47].
Finally, despite their high sensitivity, it has been shown that a
substantial number of CLIP-seq- and CLASH-seq-identified sites,
especially in the coding region of a gene (CDS), do not mediate
target repression [36].

In vitro approaches have also been undertaken recently in
order to identify functional miRNA-mRNA interactions. Two
studies carried out high-throughput binding affinity experiments
of the RISC for several individual miRNAs [41,48]. They gener-
ated libraries of potential miRNA binding sites, containing mis-
matches and non-canonical seed sites, and measured the
amount of RISC bound to their library in cell-free extracts by
high-throughput sequencing. Both groups identified large differ-
ences in the binding patterns of individual miRNAs but also
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confirmed previous observations made in vivo, e.g. regarding
seed binding patterns.

Finally, curated databases of published experimental miRNA
regulation experiments are also available: MiRTarBase [49],
DIANA-TarBase [50] and miRecords [51]. Experimentally tested
miRNA-target pairs are regrouped to reflect the employed experi-
mental method and whether a repression has been observed or
not. Using these validated miRNA-mRNA interactions for modeling
brings the advantage of introducing little bias as these data were
generated from different laboratories, cell types and contexts. This
however comes at the cost of introducing a high variance, since it is
challenging to integrate data obtained from wide-ranging experi-
mental conditions. As an example, depending on the laboratory,
different stringencies may have been utilized in the cut-offs used
to report functional interactions, and this information is not trans-
parent to the ML method. Furthermore, experimental data stored
in these databases often stem from indirect readout methods
described above (e.g. RNA-seq) and are indeed correlative and
not causative.

To conclude, experimental data sets for miRNA-mRNA interac-
tions come from a variety of experiments, each having their unique
pros and cons. If possible, it is recommended to use a combination
of data sources for MIP such that shortcomings of different types of
data sets can be factored out. The variation of miRNAs, mRNAs and
cell types used in different experiments however, makes it a chal-
lenging task to combine them.
Fig. 1. Predictive features for functional miRNA-target interactions. a) Manually enginee
miRNA are marked in red, corresponding complementary regions on the mRNA are marke
Watson-Crick base pairing. From top to bottom: Nucleotides 2–8 define the seed of a
nucleotide generally lead to stronger repression. By simulating a heteroduplex between
can be determined. This feature is also used for shorter interaction parts like the seed regi
extent of binding to this region is extracted into a feature. Of note, the mRNA can form
conserved and features have been developed to convert conservation into a usable metr
accessible for RISC mediated repression than others. High AU content either near the pu
therefore commonly used as feature. Not only the folding of mRNA can hinder efficient
RISC for binding, which might explain why coding sequence (CDS) regions are not targete
length (l) of it are therefore important binding site features. Individual miRNAs that ta
decreased repression level for individual mRNAs. Here, the target site abundance (n
supplementary region are colored in blue and vertical dashes denote Watson-Crick bas
training data, here exemplified for a fictive MIP NN model. Nucleotide identities for the re
features are extracted from the raw sequence data, which are then combined to more com
described in a), but may also include unexpected, yet predictive, representations. This
ultimately enabling the assessment of the repression potential of input interactions. b) ins
reader is referred to the web version of this article.)
2.2. Computational miRNA target prediction methods

A large number of prediction models have been published,
based on specific features of miRNA-mRNA interactions, extracted
from the previously described data sets (for review [52–57]). Here,
we outline the main features used by current MIP ML methods and
review the potential of modern neural network-based methods to
improve prediction accuracy. An overview of these methods can be
found in Table 1.

2.2.1. Development of biological knowledge shapes ML features
Most ML methods used in MIP rely on manually engineered fea-

tures for effective prediction. Instead of providing raw descriptors
of miRNA-mRNA interactions (e.g. the nucleotide sequences of the
miRNA and the mRNA target site), features that have been shown
to correlate with regulation efficiency, are being computed. These
are typically represented either by a binary value (e.g. 0 or 1) or
by a continuous value (e.g. any value between 0 and 1). The former
case is usually used to describe categories like the seed type or a
nucleotide identity (e.g. miRNA nucleotide at position 1 is an Ade-
nine). Continuous features are in many cases represented by exist-
ing metrics (e.g. binding free energy, conservation). In other cases,
simple computations can be used (e.g. the ratio of Adenine and
Uracil vs Cytosine and Guanine in a given sequence). The most rel-
evant biological findings and their integration into prediction
models via feature engineering are visualized in Fig. 1a and
red features based on biological assumptions. Seed and supplementary region of the
d in blue. Dots and Ns denote arbitrary nucleotides. Blue Ns and vertical bars denote
miRNA. Extensive base matching as well as an Adenine opposite the first miRNA
the miRNA and its putative binding site, the binding free energy of the interaction
on. Nucleotides 13–16 of a miRNA are denoted as its supplementary region and the
a bulge opposite the miRNA’s central region. Functional miRNA targets are often

ic. Since mRNAs can fold and form secondary structures, some target sites are more
tative site or in the whole 30UTR has been shown to increase site accessibility and is
repression. It has been suggested that the ribosome complex can compete with the
d to the same extent as 30UTRs. The position (d1; d2) within the 30UTR as well as the
rget large sets of mRNAs, might distribute their repression potential, leading to a
) is counted and used as features. Target nucleotides bound to the seed or the
e pairing. b) Implicit feature extraction by neural networks, based on the provided
levant input sequences are the only input data provided. In the first layer(s), simple
plex features in the later layers. Such features may resemble engineered features as
hierarchical structure leads to the autonomous extraction of high-level features,
pired by [20]. (For interpretation of the references to colour in this figure legend, the
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described in this section. For a dedicated and more comprehensive
review on miRNA interaction prediction features, the reader is
referred to [53].

� Seed Type: Nucleotides 2–8 define the seed of a miRNA. Exten-
sive base matching as well as an adenine opposite to the first
miRNA nucleotide generally lead to stronger repression.

� Binding Free Energy: By simulating a heteroduplex between
the miRNA and its putative binding site, it is possible to calcu-
late the binding free energy of an interaction [58]. ML models
have made use of this feature, not only by computing the bind-
ing free energy for the complete miRNA-target duplex but also
for the seed only (a feature denoted as ‘‘seed-pairing stability”).
The RNA22 MIP model uses this feature and does not employ
ML, giving it the opportunity to predict interactions without
introducing unwanted artifacts from data sets [59].

� Supplementary Binding: Nucleotides 13–16 of a miRNA are
denoted as its supplementary region. Having been shown to
affect interaction efficacy for a number of miRNAs, the extent
of pairing between the supplementary region and the target site
is used as feature [7].

� Target Site Conservation: Functional miRNA targets are often
conserved and conservation scoring metrics have been devel-
oped for use as features [6].

� Target Site Accessibility: Since mRNAs can fold and form sec-
ondary structures, some target sites might be more accessible
for RISC mediated repression than others [60–62]. High AU con-
tent, both near the putative site and also in the whole 30UTR, has
been shown to increase site accessibility and is therefore also
used as feature [8].

� Target Site Position: Not only can the folding of mRNA hinder
efficient repression, it has furthermore been suggested that the
ribosome complex competes with the RISC for binding, which
might explain why CDS regions are not targeted to the same
extent as 30UTRs [63]. This competition might also explain the
observation that target sites in the first and last nucleotides of
a 30UTR lead to significantly lower translational repression
[64]. As such, additional features include the distances of a tar-
get site to the end of the CDS and to the polyA signal but also
the length of the 30UTR. All of these highly correlate with inter-
action efficiency [65,66].

� Target Site Abundance: A miRNA that is targeting large sets of
mRNAs might distribute its repression potential, leading to a
decreased repression for individual mRNAs [67]. The number
of seed-complementary target sites in the 30UTRs of the studied
organism for a given miRNA, reflects this mechanistic as a sim-
ple feature [68].

Although the previously described features have been shown to
correlate with target repression, the contribution of single features
to the degree of repression as well as the interplay between them is
hard to determine. Here, ML methods can use miRNA mediated
repression observations from biological experiments, associate
them with the described features and finally determine the rela-
tionships between features and observed repression.

2.2.2. MIP methods
Since the first use of ML in MIP, models have improved signifi-

cantly, predominantly driven by the discovery of additional rele-
vant biological features as well as by new methods to produce
experimental data. State-of-the-art models mostly rely on a similar
set of engineered features and deviate mostly in the experimental
data sets and in the ML architecture they use.

One of the oldest MIP models is TargetScan. It received ongoing
updates, with the latest version (v7) from 2015 using a simple
linear regression model. This enabled the efficient selection of
the 14 (out of 26) most relevant features using step-wise regression
to be used for training, leading to a highly interpretable model,
which significantly outperformed previously published models
including DIANA-microT-CDS (discussed below) on several
independent test data sets [36]. Training was performed using a
compiled data set of 74 microarray data sets of HeLa cells trans-
fected with individual miRNAs. The use of such a non-complex
model comes at the cost of only catching linear relationships in
the data, and the step-wise regression technique has been suggested
to oversimplify models and to bias them towards the training data
[69,70]. TargetScan predicts the repressive potential for single tar-
get sites and subsequently combines these predictions to scores for
miRNA-mRNA pairs using a mathematical model. Consequently,
potential combinatorial effects of binding sites on the same mRNA
are not modeled based on experimentally obtained training data,
which might introduce inaccuracies in predictions.

ThemiSTARmethod from 2016 uses a stacked model to address
this major challenge [37]. The first layer uses a Random Forest clas-
sification to estimate whether a repression is provoked by a single
miRNA binding site. The second layer uses these estimates on a
per-transcript basis and predicts a repression for the miRNA-
transcript pair using a logistic regression. miSTAR is based on
30UTR reporter assays performed for 470 miRNAs and 30 UTRs from
17 genes (see Section 2.1). With recent reports showing strongly
deviating binding patterns across different miRNAs [41,48], this
comes as an advantage to generalize for unseen miRNAs. The
authors demonstrated the improved generalization capability for
unseen miRNAs in comparison to unseen mRNAs by cross-
validation, leaving out individual miRNAs or mRNAs as tests during
training. Using their model, they outperformed popular models,
including TargetScan (version 6.2), using the AUC score as evalua-
tion metric. Although the authors used a stringent cross-validation
approach to estimate the performance of their model, they only
tested against the data set they had used to optimize the model.
Furthermore, only a small number of interactions, from which
most were negative, were used for training.

In contrast, CLIP-seq identifies large numbers of interactions
covering a high number of distinct miRNAs as well as mRNAs.
The DIANA-microT-CDS (2012) model is a popular example for
the use of this type of data for model training [71]. For the gener-
ation of training samples, positive and negative interactions were
extracted by identifying overlaps between CLIP-seq data and
miRNA complementary regions. Two models, covering interactions
in the CDS and 30UTR separately, were trained and combined lin-
early to produce a final score. Testing against an independent pro-
teomics data set, DIANA-microT-CDS outperformed all published
models. As noted in Section 2.1, interactions observed in CLIP-seq
data often do not mediate translational repression, which poten-
tially introduces unwanted biases when used for ML model
training.

Very recently, Liu et al. combined their newly generated RNA-
seq-based data set of 25 individual miRNAs overexpressed in HeLa
cells with CLIP-seq data for the training of the novel MiRTarget
v4.0 model [39]. They combined the interaction pairs, determined
by using their RNA-seq data set, with interaction pairs determined
based on publicly available CLIP- and CLASH-seq data sets. They
employed an SVM with radial basis function (RBF) kernel to train
their model. To retrieve a metric for miRNA-mRNA pairs from their
target-site predictions, they used a simple multiplication of per-
binding site predictions. Testing their model on independent CLIP
and microarray data sets showed that they outperform previously
published methods including TargetScan (v7) and DIANA-microT.

Lately, efforts have been undertaken to also apply modern DNN
methods to MIP. In contrast to the methods described above, DNNs
usually do not depend on engineered features, but extract useful
representations on their own, as exemplified in Fig. 1b.



Table 1
Properties of established and Deep Learning-based miRNA target prediction tools.

ML type Accessibility Organisms Last
update

Features Output Training data set Independent test data set Particularities References

Established methods
TargetScan Linear regression Web,

Dataset,
Source code

mmu,
dme, hsa,
cel, re

2015 Features from Fig. 1 + ORF
length + nucleotide identity
features for position 1 and 8

cont. 74 individual miRNA
transfections and
subsequent MicroArray
readout in HeLa cells

7 individual miRNA
transfections and
subsequent MicroArray
readout in HCT116 cells;
Experimentally validated
interactions; CLIP-seq data
set

- Strong focus on feature
engineering
- Stepwise regression for
feature selection

First: [6]
Latest:
[36]

RNA22 No ML used Web,
Dataset

mmu, hsa,
dme, cel,
any

2019 folding energy,
heteroduplex

cont. N/A N/A - No ML employed
- free binding energy as sole
indicator of interaction

[59]

miSTAR 2-layer model using
logistic regression
and random forest

Web hsa 2016 Features from Fig. 1 except
supplementary binding

cont. Luciferase reporter assay
for 17 human mRNAs and
470 miRNA mimics

N/A - Stacked model for ML
based estimation of
cooperative repression

[37]

MiRTarget SVM Web,
Dataset

mmu, hsa,
rno, clf,
ggm

2019 96 features including the
features from Fig. 1

cont. 25 individual miRNA
transfections and
subsequent RNA-seq in
HeLa cells

CLIP-seq data set;
concurrent knockout of 25
miRNAs and subsequent
MicroArray readout

N/A First: [86]
Latest:
[39]

DNN-based methods
miRAW ‘‘Normal” DNN Dataset,

Source code
hsa 2018 Nucleotide identities of

miRNA (30 nts) and target
site (40 nts)

t/n/f Positive: CLASH and CLIP
data set intersected with
TarBase and mirTarBase
validated interactions
Negative: plausible
interaction sites in
validated (tarbase and
mirtarbase) negative pairs

5 individual miRNA
tranfections and
subsequent MicroArray
readout

- Very broad identification
of potential interaction sites
- miRNA- and interaction
site-unrelated features are
applied a posteriori as filters

[73]

deepTarget RNN with
Autoencoder for
unsupervised input
representation
learning

Source code hsa 2016 Nucleotide identities of
miRNA (30 nts) and target
site (30 nts)

t/f Positive: Experimentally
validated interaction data
from miRecords
Negative: Computational
generation of mock miRNAs
with corresponding binding
sites

N/A N/A [72]

DeepMirTar Stacked
Autoencoder

Source code hsa 2018 750 features grouped in
categories ‘‘high level”,
‘‘expert-designed”, ‘‘low-
level” and ‘‘raw-data-level”

t/f Positive: CLASH data set
and validated interaction
data from miRecords
Negative: Computational
generation of mock miRNAs
with corresponding binding
sites

PAR-CLIP based interactions N/A [74]

Biochemical
affinity
CNN1

CNN Source code hsa 2018 Nucleotide identities of
miRNA (10 nts) and target
site (12 nts)

cont. RISC binding affinity data
for 6 individual miRNAs
(AGO2 RNA bind-n-seq)

N/A CNN used for prediction of
miRNA-target binding
affinities; affinities are
forwarded into a separate
regressor for final miRNA
interaction efficacy
prediction

[48]

t/f (true/false) denotes binary classification, t/n/f (true/neutral/false) denotes ternary classification, cont. denotes a continuous regression.
1No name given by publication.
Abbreviations N/A (Not available, ML (Machine Learning, miRNA (microRNA, CNN (Convolutional Neural Network, SVM (Support Vector Machine, DNN (Deep Neural Network, ORF (Open reading frame, CLIP-seq (Cross-Linking
ImmunoPrecipitation high-throughput sequencing, PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced CLIP-seq, CLASH (Cross-linking, Ligation and Sequencing of Hybrids, RISC (RNA induced silencing complex hsa (Homo
sapiens), mmu (Mus musculus), dsa (Drosophila melanogaster), cel (Caenorhabditis elegans), dre (Danio Rerio), rno (Rattus norvegicus), clf (Canis lupus familiaris), ggm (Gallus gallus domesticus).
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The deepTarget model (2016) uses two Autoencoders to learn
compact representations for the miRNA and mRNA target site
sequences separately. These representations are then processed
in an RNN layer followed by an ordinary NN layer, which determi-
nes whether the observed interaction is functional or not [72]. This
model runs without any engineered features and outperforms
established models like miRanda and TargetScan by 26% (F1-
score improvement from 0.722 and 0.7271 to 0.9105). However,
no independent test data set was used for the evaluation of the
model.

Pla et al. also do not use any engineered features in their
miRAW model (2018), and argue that it reduces the bias intro-
duced by manual feature engineering. In contrast to the deepTarget
model, they test their model on two independent test sets, report-
ing a performance increase of 23% over the second-best model
(DIANA-microT-CDS [71], F1-score 0.602 to 0.744). Their architec-
ture also relies on a pretrained Autoencoder of 5 layers. Subse-
quently, three fully connected NN layers process the
Autoencoder’s representation to a MIP [73].

Wen et al. took a different approach for the DeepMirTar model
(2018) [74]. They provided a very large set of different kinds of fea-
tures to their NN, including seed matching-, free energy-, sequence
composition-, raw nucleotide identity- and site location-,
conservation- and accessibility-features. Their architecture relies
on Autoencoder layers, also resulting in two outputs, which indi-
cate whether the interaction is functional or not. By comparing
their DNNmethod with non-NNML methods, as well as other pub-
lished methods, they demonstrate the superior performance of
their model by an increase of 21% to the second-best model (TarP-
miR [75], AUC measure 0.8021 to 0.9793). Of note, they compared
all methods on their own data set and only provided performance
data for a very limited independent test data set of 48 positive
observations extracted from a CLIP-seq experiment.

McGeary et al. performed in vitro binding affinity experiments
demonstrating a high correlation between their measured affini-
ties and mRNA repressions, measured from miRNA-
overexpression experiments. In order to be able to generalize their
experimental findings from few individual miRNAs onto the whole
set of annotated miRNAs, they used a CNN, which predicts binding
affinities based on provided miRNA-target pair sequences. Their
measurements and predictions were more accurate than previous
binding affinity approximations and they were able to improve
predictive performance of miRNA mediated target repression over
the latest TargetScan model (v7) by 31% (r2 score of 0.16 to 0.21).
This improvement was achieved by passing the predicted binding
affinity from the CNN into a regression model (used for repression
prediction) and training both models simultaneously [48].

Finally, in order to improve prediction performance, some
groups have developed databases and methods to combine the
output of previously described existing models. Oliveira et al. took
a simple but effective approach by combining the predictions of
four established models. By comparing their results to a set of
highly validated miRNA-target interaction pairs, they showed that
the union of predictions from TargetScan [36], miRanda-mirSVR
[66] and RNA22 [59] outperforms all other combinations as well
as the individual models themselves [76]. Davis et al. went one
step further by not only using in silico modeling scores from estab-
lished prediction models, but by also integrating data of experi-
mentally validated miRNA interaction pairs, gene and protein
expression and CLIP-seq experiments for their metaMIR method
[77]. The method aims at identifying individual miRNAs that co-
regulate a set of provided genes. MiRWalk [78] and miRGate
[79] are databases providing combined resources of integrated
data and up to date predictions from established models as well
as experimentally verified interactions. Both offer an accessible
web interface for various species and additionally allow for
programmable access either via a comprehensive downloadable
database (miRWalk) or by an application programming interface
(miRGate).
3. Discussion

Here, we have provided an overview of established MIP models,
including their underlying feature engineering and experimental
data and furthermore, reviewed recent DNN-based MIP attempts.

Despite a decade of evolution of MIP models, recent methods
might still predict many false positives [80]. Also, recent efforts
report major shortcomings of their models, as for example Agarwal
et al. who attribute the 85% unexplained variability of their model
to secondary effects, experimental noise and imperfections of their
model [36]. A set of potential mechanisms, including the methyla-
tion of RNAs and the binding of miRNAs to long non-coding RNAs,
might compete with miRNA mediated regulation and explain some
of the variation [45,81,82]. Here, possible improvement might
come from the identification and study of miRNA-mRNA interac-
tion pairs that deviate from model predictions to reveal common
factors explaining the model’s deviations.

Another caveat, which has not yet received much attention, is
the potential cell context-specific variability of miRNA regulation.
One study has attributed a large part of the observed variation of
miRNA regulation in different cell types, to the differential expres-
sion of 30UTR isoforms [83]. A novel published in vivo CLIP method,
might highlight Argonaute binding differences across different
in vivo contexts [44].

Ground truth data sets form the basis for ML and we reviewed a
number of experiments that provide relevant data. Unfortunately,
most of these experiments have limitations, which potentially
introduce modeling biases. For example, a part of the observed
transcript repression after overexpression of a specific miRNA
might be caused by secondary regulatory events [84]. Although
high-throughput experiments show a direct and comprehensive
picture of binding affinities for individual miRNAs, this can so far
only be performed in an artificial environment outside of the cell
[41,48]. Naturally, a ML model can only be as good as the ground
truth data it is based on, so focus should lie on improving this basis.
It has already been shown that the integration of existing models,
and thus applied data sets, outperforms the predictive perfor-
mance of each individual model [76]. Unfortunately, to date only
few approaches have focused on integrating different types of data
sources and modeling approaches, in order to rule out their indi-
vidual limitations. For now, we recommend the reader to use mul-
tiple MIP methods and to be most confident in the repressive
potential of an interaction pair, if it appears in several of the
applied methods as functional.

Interestingly, recent findings improve our understanding of
miRNA mediated gene regulation and are probably reflected in
existing data sets. For example, a structural study further improved
our understanding of miRNA binding via the supplementary region
of miRNAs [85]. Although it had been suggested earlier that the
targeted mRNA can form a small loop between the seed region-
binding nucleotides and the supplementary region-binding
nucleotides [7], their structural analysis revealed that the targeted
mRNA can form an up to 15 nts large bulge between the seed com-
plementary region and the supplementary binding region (visual-
ized in Fig. 1 a). Especially 30 extended isomiRs, miRNAs that are
alternatively processed by the microprocessor or DICER, showed
a tremendously increased potential to repress targets with supple-
mentary binding. A recent miRNA binding affinity study brought
up further evidence for this, showing that inserts of up to 7 bps
in the miRNA target site between the seed region and the 30 sup-
plementary regions do not reduce binding affinity [41]. Indeed,
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most ML models need to be frequently updated to make use of
such new biological findings.

NNs, with their capability to automatically obtain meaningful
features from raw input data, have the potential to increase the
amount of information extracted from data sets, including poten-
tial biological molecular mechanisms that have not yet been dis-
covered. While state-of-the-art miRNA interaction models rely on
a long history of feature engineering and model optimization pro-
gress, modern DNN approaches are able to achieve similar perfor-
mances, ignoring most of these advancements [73].

However, there is still little work proving the generalization
capabilities of these models, i.e. how they perform on data, which
are completely independent of the model design and training pro-
cess. To our best knowledge, the reviewed DNN models have not
been evaluated by independent research groups. Until now, only
work on human data sets has been published and there are neither
web interfaces nor genome scale precomputed prediction data sets
available. Work in this direction, therefore, needs to include
improvements in reproducibility and accessibility. Also, since
interpretation of NN models is not as straightforward as for most
other types of ML models, researchers need to put increased effort
into model interpretability, which is an active field of research
[87,88]. Since DNNs identify predictive features automatically,
they might describe novel features allowing for a better under-
standing of underlying biological mechanisms of miRNA-
mediated regulation.
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