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Abstract
Statistical models built using different data sources and methods can exhibit con-
flicting patterns. We used the northern stock of black sea bass (Centropristis stri-
ata) as a case study to assess the impacts of using different fisheries data sources 
and laboratory-derived physiological metrics in the development of thermal habitat 
models for marine fishes. We constructed thermal habitat models using general-
ized additive models (GAMs) based on various fisheries datasets as input, includ-
ing the NOAA Northeast Fisheries Science Center (NEFSC) bottom trawl surveys, 
various inshore fisheries-independent trawl surveys (state waters), NEFSC fisheries-
dependent observer data, and laboratory-based physiological metrics. We compared 
each model's GAM response curve and coupled them to historical ocean conditions 
in the U.S. Northeast Shelf using bias-corrected ocean temperature output from a 
regional ocean model. Thermal habitat models based on shelf-wide data (NEFSC 
fisheries-dependent observer data and fisheries-independent spring and fall sur-
veys) explained the most variation in black sea bass presence/absence data at ~15% 
deviance explained. Models based on a narrower range of sampled thermal habitat 
from inshore survey data in the Northeast Area Monitoring and Assessment Program 
(NEAMAP) and the geographically isolated Long Island Sound data performed poorly. 
All models had similar lower thermal limits around 8.5℃, but thermal optima, when 
present, ranged from 16.7 to 24.8℃. The GAMs could reliably predict habitat from 
years excluded from model training, but due to strong seasonal temperature fluctua-
tions in the region, could not be used to predict habitat in seasons excluded from 
training. We conclude that survey data source can greatly impact development and 
interpretation of thermal habitat models for marine fishes. We suggest that model 
development be based on data sources that sample the widest range of ocean tem-
perature and physical habitat throughout multiple seasons when possible, and en-
courage thorough consideration of how data gaps may influence model uncertainty.
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1  | INTRODUC TION

Defining marine habitat indicators is challenging due to the complex 
interaction between marine species and environmental variability, 
but various methodologies such as process-based laboratory exper-
iments (Slesinger et al., 2019) and empirical field studies (Cullen & 
Guida, 2021; Kleisner et al., 2017; McHenry et al., 2019) have been 
developed to determine the relationships between marine ecto-
therms and the environment. Such relationships can be developed 
because metabolic processes in ectotherms are tightly coupled to 
environmental temperatures (Clarke & Johnston,  1999; Verberk 
et al., 2016) and they are more vulnerable to warming temperatures 
than their terrestrial counterparts (Pinsky et al., 2019). Understanding 
how living marine resources respond to changes in environmental 
conditions is useful for management and policy decisions in a rap-
idly changing climate, as well as anticipating potential species shifts 
and introductions/evacuations in a local ecosystem. A common 
response to ocean warming includes rapid distribution shifts, usu-
ally poleward, for many marine species (Kleisner et  al.,  2016; Nye 
et al., 2009), which can lead to management conflicts and changes in 
species compositions in newly occupied regions (Pinsky et al., 2018). 
While laboratory and empirical studies have proven to be useful in 
elucidating these range shifts, they are also subject to many limita-
tions. Laboratory studies are conducted in controlled environments 
to promote replication under optimal conditions whereby the fish 
are fed ad libitum, predators are absent, and interactive effects from 
other stressors are removed, sometimes resulting in skewed ther-
mal optima (Jutfelt et al., 2018; Slesinger et al., 2019). Environmental 
response models for a single species developed in empirical field 
studies, on the other hand, can look quite different from one an-
other depending on the specific type of model and training datasets 
used, leaving many models vulnerable to misinterpretation or bias 
(Bahn & McGill, 2013). These methodological issues are concerning 
because one of the overarching goals in habitat model development 
is to provide a tool to predict future distributions under various cli-
mate change scenarios. While they are incredibly useful and effec-
tive tools, the limitations are often glossed over rather than used to 
inform key areas of uncertainty.

The Mid-Atlantic Bight (MAB), located within the U.S. Northeast 
Shelf, provides a natural laboratory to investigate the impacts of fish-
ery data source on thermal habitat models because this region has 
exceptionally high seasonal temperature variability and substantial 
long-term ocean warming (Chen et  al.,  2020), and offers long-term 
datasets of fishery-independent and dependent data to build ther-
mal habitat models for many marine taxa. The MAB spans from Cape 
Hatteras, North Carolina to Cape Cod, Massachusetts, with a broad 
shelf that transitions to a steep slope ~150 km from shore. Ectotherms 
that inhabit the MAB have distributions and life histories coupled 
to ocean temperature and thus many species undergo seasonal mi-
grations in which they move between nearshore habitat during the 
summer, often for spawning, and southern or warmer offshore shelf-
slope habitats during cooler months of the year (e.g., butterfish; Cross 
et  al.,  1999; black sea bass: Drohan et  al.,  2007; summer flounder: 

Packer et al., 1999; bluefish: Shepherd & Packer, 2006; scup: Steimle 
et  al.,  1999). On longer timescales, several marine species have al-
ready shifted their distribution poleward and/or into deeper waters 
(Kleisner et al., 2016; Nye et al., 2009) and are projected to continue to 
shift under continued ocean warming (Kleisner et al., 2017; McHenry 
et al., 2019; Morley et al., 2018). If we hope to understand short- and 
long-term species distribution shifts in such a highly dynamic region, 
it is important to accurately interpret the relationships between those 
species distributions and the surrounding environment.

Within the MAB, black sea bass (Centropristis striata) are an ideal 
study species to test the effects of varying data sources on model 
shape used for the development of thermal habitat models due 
to the abundance of existing data and research on black sea bass. 
Black sea bass are an abundant demersal finfish often found near 
rock and artificial reefs (Drohan et al., 2007) that support lucrative 
recreational and commercial fisheries in the MAB (NEFSC,  2017). 
The U.S. Northern stock of black sea bass occupies waters north 
of Cape Hatteras, NC (Roy et al., 2012), inhabiting shallow inshore 
water during the summer and migrating offshore during the late fall 
to overwinter at the shelf-slope front (Moser & Shepherd,  2008). 
Like many species, black sea bass have shifted their distribution 
northward along the U.S. northeast coast as ocean temperature 
has warmed over the last few decades (Bell et  al.,  2015; Kleisner 
et  al.,  2016). Multiple black sea bass thermal habitat models have 
been developed using fisheries data paired with in situ and mod-
eled environmental parameters. For example, Kleisner et al. (2017) 
and McHenry et  al.  (2019) each developed GAMs by associating 
presence-absence data with several environmental covariates. 
While similar, the two models used different data sources as input 
to their respective models, resulting in some key differences in the 
shape of the response curves of the GAMs. Differences in model 
output describing the relationships of bottom temperature to black 
sea bass habitat can have significant implications for both our cur-
rent interpretation of temperature as it applies to fish distribution 
(e.g., optimal temperatures) and for predicting future thermal habitat 
under varying climate scenarios. While differences between various 
models are not inherently a problem, examining the reasons behind 
those differences can improve our understanding of the models 
themselves and can include where and why there is more (or less) 
uncertainty in each model, and what types of applications different 
models may be most appropriately suited to rather than opting for a 
“one size fits all” approach. Altogether, this analysis could provide a 
framework for using these models to predict thermal habitat.

Here we show that thermal response curves developed using 
GAMs vary by model type and data source. Specifically, we assessed 
field-based measurements from fishery-independent and fishery-
dependent data sources as they relate to measured and modeled 
bottom temperature, and in situ laboratory-derived thermal op-
tima from physiological studies (Slesinger et  al., 2019). We limited 
our models to habitat based on bottom temperature because it al-
lowed us to directly compare empirical models derived from survey 
data to recent process-based laboratory data that only measured 
the effects of temperature, and because bottom temperature has a 
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well-established physiological relationship with fitness for many de-
mersal species, including black sea bass (Bicego et al., 2007; Clarke 
& Johnston, 1999). As a standard ocean variable resolved in many 
global and regional hydrodynamic hindcasts, nowcasts, and long-
term climate projections, habitat models based solely on tempera-
ture can be coupled to a wide variety of hydrodynamic simulations. 
Our multi-model analysis provides new information on uncertainty, 
interpretation, and application of habitat models that is relevant to 
many marine species.

2  | METHODS

Following Kleisner et al.  (2017) and McHenry et al.  (2019), we as-
sociated black sea bass presence-absence data with environmental 
covariates, which we limited to bottom temperature in order to bet-
ter compare models developed from different training data sources. 
We used the “mgcv” package in R version 3.6.1 (Wood,  2017) to 
develop presence–absence GAMs with a binomial distribution from 
five fisheries data sources paired with both measured and modeled 
bottom temperatures in order to determine whether GAM models 
developed using modeled temperatures were comparably effec-
tive to those developed with measured temperatures. The shape 
and performance of the curves were compared to each other and 
to the experimental physiological response curve from Slesinger 
et al. (2019) to assess compatibility between model results obtained 
via statistical models versus in situ laboratory data.

2.1 | Fisheries data sources

We used data from four fisheries-independent bottom trawl sources 
(Sections 2.1.1–2.1.4): a shelf-wide federal bottom trawl survey, a 

shallow inshore federal bottom trawl survey spanning the entire 
MAB coast, and inshore state government bottom trawl surveys 
by New Jersey and Connecticut. All fisheries-independent surveys 
followed a stratified random sampling design. Fisheries-dependent 
observer data from a regional observer program was used as well 
(Section 2.1.5). Where available, data from 1985 through 2015 
were used for this analysis (Table 1). We started with 1985 because 
it was the earliest year included in the decadal climatologies used 
for bias-correcting that had full overlap with the hydrodynamic 
model used, and all surveys except one have data going back to 
1989 or earlier, and thus, long-term temporal coverage was similar. 
Data past 2015 are excluded because it is the final year covered by 
the hydrodynamic model. All survey methods only included juvenile 
and adult fish.

2.1.1 | National Marine Fisheries Service Northeast 
Science Center (NMFS NEFSC) bottom trawl survey

The NEFSC has run annual spring and fall bottom trawl surveys along 
the shelf from Cape Hatteras, NC to the Canadian Scotian Shelf 
since 1968. Most of the spring survey trawls occurred from March 
through mid-May, and most fall survey trawls from September 
through mid-November. Nets were towed throughout the 24-hr 
day over the bottom at about 3.5 knots for 20–30  min. In 2009, 
coinciding with a transition in research vessels, the minimum sur-
vey depth was increased from 10 m to 20 m. Most spring samples 
were observed between 5 and 15℃ with salinity between 32 and 36 
PSU; fall samples had a similar salinity range but a wider tempera-
ture range between ~5 and 25℃. More details on the survey design 
can be found in Azarovitz (1981). The gear on the research vessel 
being used since 2009 has higher catchability compared to the gear 
used before 2009, particularly for smaller fish (Miller et al., 2010), 

TA B L E  1   Summary information of sampling by fisheries data sources used in this analysis

Survey Years Months sampled
Latitudinal 
range (°N)

Depth 
range (m)

Environmental data 
sampled

N (% samples w/
black sea bass)

NEFSC 1985–2015 2–6,9–12 33.5–44.75 10–350 depth, surface and bottom 
temperature, surface and 
bottom salinity

20,690 (10.4%)

NEAMAP 2007–2015 4–6,9–11 35.1–41.5 5–60 depth, bottom salinity, 
bottom temperature, 
dissolved oxygen 
concentration, and 
saturation

2,570 (33.5%)

NJDEP 1988–2015 1,4,6,8,10 (other 
months included in 
early data)

38.5–40.5 5–40 depth, surface and bottom 
temperature, surface and 
bottom salinity, surface, 
and bottom dissolved 
oxygen

5,105 (39.3%)

CTDEEP 1985–2015 5–7,9–11 40.8–41.4 5–60 depth, surface and bottom 
temperature, surface, and 
bottom salinity

5,850 (17.9%)

Observer 1989–2015 1–12 35–44.5 10–250 n/a 190,303 (9.8%)



13004  |     NAZZARO et al.

but for this analysis we consider that difference to be minimal com-
pared to the differences in survey design and timing, particularly for 
presence–absence models as used in this study.

2.1.2 | Northeast Area Monitoring and Assessment 
Program (NEAMAP) bottom trawl survey

NEAMAP has conducted a shallow-water bottom trawl survey span-
ning from Cape Hatteras, NC to Cape Cod, MA during the spring 
and fall since 2008 (Bonzek et al., 2008). Nets were trawled along 
the bottom during daylight at about 3.1 knots for 20 min in water 
up to approximately 20 m deep or 40 m in the sounds. The major-
ity of spring survey samples were collected between mid-April and 
mid-June, and the majority of fall survey samples were collected 
from mid-September through mid-November. Both seasons sampled 
a narrow band of temperature, ~5–10℃ in spring and 15–20℃ in 
fall, across a comparatively wider salinity band, approximately 28–
34 PSU.

2.1.3 | New Jersey Department of Environmental 
Protection (NJDEP) bottom trawl survey

The NJDEP Department of Fish and Wildlife has been conduct-
ing a week-long ocean stock assessment bottom trawl survey five 
times a year from Sandy Hook, NJ to Cape Henlopen, DE since 1988 
(Celestino et  al.,  2014). Year-round, this survey sampled a narrow 
salinity band around 31–33 PSU across a very wide range of tem-
peratures from 2 to 25℃.

2.1.4 | Connecticut Department of Energy and 
Environmental Protection (CTDEEP) Long Island Sound 
bottom trawl survey

The CTDEEP has been conducting bottom trawl surveys within the 
Long Island Sound three times each spring and twice each fall since 
1984 (Gottschall & Pacileo, 2018). Sampling covered a wide range of 
temperatures from ~3–23℃ in water between 26 and 30 PSU.

2.1.5 | Northeast Fisheries Observer Program 
(NEFOP)

NEFOP is the regional component of the national observer program, 
managed by the NMFS NEFSC Fisheries Sampling Branch, that uses 
trained federal observers to collect catch data during commercial 
fishing trips (NMFS,  2019). We obtained data for the MAB shelf 
and Gulf of Maine from 1989 through 2015. While several gear 
types were included in the dataset, we limited our analysis to four 
types of bottom otter trawls (fish, scallop, twin, and Ruhle) to pro-
vide comparable data to the federal and state trawl surveys. Even 

after eliminating several gear types, this dataset offered an order of 
magnitude more samples than any of the fisheries-independent sur-
veys. The majority of the sampling was performed year-round at the 
shelf break and canyons, as well as the edges of Georges Bank. As a 
fisheries-dependent dataset, sampling locations were not randomly 
selected although black sea bass were not necessarily the target 
fishery for most samples.

2.2 | Ocean bottom temperature sources

Fisheries data samples were paired with bottom temperature meas-
ured in situ with each trawl (where available) and bias-corrected 
modeled bottom temperature (described below). Each of the four 
fisheries-independent surveys collected oceanographic data for 
each survey sample by lowering a temperature probe to near-bottom 
immediately before or after each tow was performed, so both in 
situ measured and bias-corrected modeled bottom temperatures 
were available for trawls from these surveys. There were no in situ 
temperature data available from the commercial fishery observer 
program, and thus, presence–absence data were matched only to 
bias-corrected modeled bottom.

We paired each tow from all surveys with bias-corrected monthly 
averaged bottom temperatures from a Regional Ocean Modeling 
System (ROMS) non-data-assimilative hindcast simulation span-
ning 1981–2015. The simulation was an updated version of the one 
used in Kang and Curchitser (2015) with a newer Jerlov water type 
array, covering the entire Northwest Atlantic including the path of 
the Gulf Stream from the Gulf of Mexico to the northwest Atlantic 
including the Gulf of Saint Lawrence, with a horizontal resolution 
of 7 km and 40 terrain-following vertical levels. Bottom bathyme-
try for the model was derived from the Shuttle Radar Topography 
Mission (SRTM) database (Farr et al., 2007), initial ocean boundary 
conditions from reanalysis data of Simple Ocean Data Assimilation 
(SODA 3.3.1) (Carton et  al.,  2018), and atmospheric forcing from 
the Drakkar forcing set (DFS 5.2) (Dussin et al., 2016). There was a 
persistent bottom temperature bias of around 2℃ across the shelf 
(Figure S1), which we corrected using a regional climatology.

The NOAA Northwest Atlantic climatology (Seidov et al., 2016) 
at a monthly temporal resolution and 0.1° spatial resolution was 
used to bias-correct ROMS bottom temperatures. Several decadal 
climatologies, calculated using all data that was available in the 
World Ocean Database in 2013, are available, including three that 
overlapped with our time period: 1985–1994, 1995–2004, and 
2005–2012. Climatology temperatures were provided at set depths 
of varying vertical resolution and we defined bottom temperature as 
the deepest point within the data. Vertical resolution of the climatol-
ogy varied as a function of total water depth in the following ranges: 
5 m resolution (0 m to 100 m depth), 25 m resolution (100 to 500 m), 
and 50 m resolution (>500 m). Thus, across the shelf, the matched 
bottom temperatures were within 5 m of true bottom. In the slope 
water, deeper than 100 m, bottom temperatures could have been 
up to 25 m shallower than actual bottom and averaged over a wider 
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vertical swath, but deep water temperatures vary much less with 
small changes in depths than water temperatures closer to the sur-
face. We averaged the monthly ROMS bottom temperatures over 
the corresponding decadal ranges, binned to the same grid as the 
climatology, and subtracted the climatology to determine a spatially 
varying bias to apply to each month for all years within the corre-
sponding decade. The bias correction based on the 2005–2012 cli-
matology was used for all years between 2005 and 2015. Individual 
trawls from all five surveys were paired with the nearest monthly 
averaged, bias-corrected ROMS bottom temperature.

2.3 | Model development and comparison

We used the generalized additive models (GAM) function from the 
R package mgcv 1.8–28 (Wood, 2017) to model presence–absence 
as a function of bottom temperature from the sources listed above. 
Separate GAMs, with thin plate regression spines and smoothing 
penalties modified to penalize null space, were created for each sur-
vey paired with in situ measured bottom temperature and another 
paired with bias-corrected ROMS bottom temperature, except for 
observer data which had no measured bottom temperature avail-
able. GAM response was considered positive where the log-odds 
prediction was greater than 0, and thermal optima, only defined for 
curves with a steady increase followed by a steady decrease, were 
considered to be the temperature at which the prediction reached 
its highest value.

For each GAM, we compared a traditional random Monte Carlo 
cross-validation with 100 iterations of the model run using 75% of 
the data used to train the model and the remaining 25% withheld for 
testing. To account for some of the spatial and temporal autocorrela-
tion and determine the reliability of the model when used to predict 
years that were not included in training, we compared grouped it-
erations for rolling consecutive 7-year sets of trawls (approximately 
25% of the data) withheld for testing while the remaining data were 
used for training. We used area under the receiver operating curve 
(AUC) as our cross-validation metric to evaluate the predictive ability 
of the presence–absence model. AUC varies between 0 and 1, with 
better-performing models scoring closer to 1, models with no pre-
dictive value scoring 0.5, and scores near 0 indicating models that 
predict the opposite of what is observed. We required all iterations 
of the cross-validation to fall above an AUC of 0.6 in order to con-
sider a model as having predictive value. To compare how well each 
model predicted data from other surveys compared to the training 
survey, we also compared AUC for each set of survey data based on 
each well-described survey GAM.

In laboratory experiments conducted on black sea bass, 
Slesinger et al.  (2019) measured standard and maximum metabolic 
rate to derive aerobic scope at a range of temperatures (12–30℃). 
The laboratory-derived model from Slesinger et al. (2019) used aer-
obic scope as a dependent variable using a 3rd degree polynomial 
fit. In order to provide a laboratory-derived model comparable to 
the presence–absence GAMs from the fishery-independent and 

dependent data sources, we developed a laboratory data-based 
Poisson family GAM for aerobic scope as a function of temperature, 
with a smoothing factor of 3.

AUC is an effective, quantitative metric that can be used to di-
rectly compare presence–absence species models. However, be-
cause laboratory data modeled aerobic scope and thus were not 
directly comparable to the GAMs predicting presence–absence the 
same metric could not be used to evaluate the performance of the 
laboratory model as it compared to the others. In order to do so, 
we performed additional cross-validations for the laboratory data-
set and the NEFSC, NJDEP, and observer survey datasets similar to 
the method in NEFSC (2014), but adapted for use with presence–
absence data: For 100 iterations in a random Monte-Carlo, the GAM 
based on the training dataset was used to predict the response of 
the testing dataset, which we then normalized to the maximum 
predicted response so all responses were scaled from zero to one. 
The survey iterations were randomized as described for the initial 
Monte-Carlo described above, and the laboratory GAM iterations 
were randomized by selecting 9 samples of each temperature re-
cord (from originally 10–12 samples for each of five temperatures 
between 12 and 30℃) and then compared to testing data from the 
three surveys well-described by temperature (NJDEP, NEFSC, and 
observer). Presence–absence survey GAMs were all asymptotic near 
zero for low temperatures, while aerobic scope was on a much larger 
scale and required scaling from 0 to 1 over the minimum to maximum 
range of response from 0 to 30℃ in order to be comparable. This 
scaled response value was calculated for each trawl in each of the 
100 iterations and then converted to a habitat quality ranking be-
tween 1 (poorest quality) and 10 (highest quality) depending on this 
scaled response value (i.e., scaled GAM response between 0.0–0.1 
was given a quality ranking of 1, scaled responses 0.1–0.2 a qual-
ity ranking of 2,… scaled response 0.9–1.0 a quality ranking of 10). 
For this version of the cross-validation, the proportion of trawls that 
caught black sea bass in each of the ten categories was calculated and 
pattern of the proportion of trawls with black sea bass versus habitat 
quality ranking was used to assess model performance. Better model 
performance was indicated by increasing black sea bass catch with 
habitat quality ranking, regardless of the specific proportion of tows 
containing black sea bass.

3  | RESULTS

3.1 | Fisheries data coverage

Each of the data sources considered in this study provided thou-
sands of samples within the MAB (Table 1, Figure 1), but had differ-
ent temporal and spatial coverage. The NEFSC survey only sampled 
during the spring and fall seasons (Figure S2a,c), but covered a wide 
range of temperatures and a few distinct water masses across the 
entire shelf (Figure S2e-g), and captured the seasonal black sea bass 
migration as a predominantly shallow-water catch during the fall 
survey versus a largely shelf break catch during the spring survey 
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(Figure S2b,d). The NEAMAP survey sampled a wide latitudinal range 
in shallow water during the same seasons but with slightly different 
timing and sampling pattern, following the seasonal transition from 
south to north from April into June, and from north to south from 
September into November (Figure S3a-d) as opposed to the NEFSC 
survey which samples earlier in the spring (Figure S2a,c) and follows 
the same sampling pattern during each seasonal survey. Because of 
this, NEAMAP only sampled a relatively small range of temperatures, 
most of which lay inside an approximately 2℃ range for each season 
(Figure  S3e-g). The NJDEP survey covered a much smaller spatial 
area (Figure S4a), but had greater temporal coverage throughout the 
year. While it did not sample during every single month, the survey 
did sample during each season at least once, evenly covering the en-
tire sampling area during each survey and including a wide range of 
temperatures throughout the year (Figure S4e-g). The CTDEEP Long 
Island Sound survey covered a wide range of temperatures as well 
(Figure  S4b-d), but data from this survey were similarly limited in 
monthly temporal coverage and almost completely surrounded by 
land and therefore isolated from the rest of the shelf (Figure S4a). 

Of the five fisheries data sources, only the observer program pro-
vided consistent year-round coverage. Sampling was concentrated 
in key fishing areas such as the canyons and the shelf break front 
(Figure S5a) but was relatively consistent throughout the year. Black 
sea bass caught in the surveys generally followed expected seasonal 
migration patterns, mainly inshore during the summer and transi-
tioning into deeper water in the fall until the winter and spring when 
most of the catch was at the shelf break (Figure S5b).

3.2 | Black sea bass GAM thermal response curves

Only GAMs based on NEFSC trawl survey and observer data exhib-
ited a clear peak in thermal response, and both were equally well-
described with approximately 15% deviance explained. While the 
patterns varied slightly, they were generally the same with a positive 
response between approximately 8.5℃ and 25℃. The thermal opti-
mum (Topt), the temperature at which the GAM peaked, was slightly 
warmer for the NEFSC data than it was for the observer data (18℃ 
vs. 16.7℃ ROMS bottom temperature). The NEFSC data resulted in 
a slightly bimodal GAM, with a weak and narrow spring peak in cool 
temperatures as well as a wider and stronger peak in warmer fall 
waters, as opposed to the smoother curve created by the year-round 
observer data (Table 2, Figure 2). This is similar to the partial GAM 
including only bottom temperature from the McHenry et al. (2019) 
model that also used fisheries-dependent observer data (Figure S6b).

The GAM response derived from NJDEP data increased toward 
higher temperatures before plateauing without reaching a natu-
ral peak or high-temperature decrease. Despite the difference in 
shape, the lower thermal limit from this curve is remarkably similar 
to the lower limit in the NEFSC and observer data, at 7.7℃ for in 
situ bottom temperature and 8.7℃ for ROMS bottom temperature 
(Table 2). The GAM based on in situ temperature performed better 
than the GAM based on ROMS bottom temperature (10.8% devi-
ance explained by in situ temperature versus 7% explained by ROMS 
temperature) (Table  2, Figure  2), but both explained less deviance 
when compared to the NEFSC data which had approximately 15% 
deviance explained by both temperature sources. The shape of the 
NJDEP curve was more similar to the partial GAM based on bottom F I G U R E  1   All sampling locations included in this study

Survey Deviance explained Topt

Positive response 
temperature range

NEFSC 16.5% (in situ)
15% (ROMS)

20.8℃ (in situ)
18.0℃ (ROMS)

8.5–26.8℃ (in situ)
8.9–26.5℃ (ROMS)

NEAMAP 4% (in situ)
2.6% (ROMS)

n/a n/a

NJDEP 10.8% (in situ)
7% (ROMS)

n/a 7.7℃ and higher (in situ)
8.7℃ and higher 

(ROMS)

CTDEEP 4.5% (in situ)
2.2% (ROMS)

n/a n/a

Observer 15.3% (ROMS) 16.7℃ (ROMS) 8.3–24.6℃ (ROMS)

TA B L E  2   Performance of GAMs 
for each survey, and key descriptive 
characteristics for each curve including 
optimal temperature and range of 
temperatures exhibiting a positive 
response
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temperature only from the Kleisner et  al.  (2017) model compared 
to the peaked curve seen in the NEFSC, observer (Figure  2), and 
McHenry et al. (2019) models (Figure S6a). The GAM based on labo-
ratory data was somewhere between the two curves, with a gradual 
rise at low temperatures and minimal decrease at high temperatures. 
A peak in the laboratory-based data existed but was not as strong as 
the other peaks and was a few degrees warmer than survey-based 
GAMs at 24.8℃ (Figure S6c).

The remaining two fisheries data sources both performed poorly 
(<5% deviance explained) with erratic response curves (Table  2, 
Figure 2). For the NEAMAP-based GAM, this was likely due to the 
narrow range of temperatures sampled (Figure  S3), while for the 
CTDEEP-based GAM it was more likely attributed to the isolated na-
ture of Long Island Sound (Figure S4). Due to the poor performance 
of these models, they were excluded from the cross-validation.

3.3 | Cross-validation

Because the GAMs based on NEFSC and NJDEP survey data were 
similar when fitted to in situ bottom temperature and ROMS bottom 
temperature (Figure 2), and no in situ data were available for the ob-
server dataset, cross-validations were only performed using ROMS-
based models and temperatures. The scaled predictive response 
curves for each survey based on the full dataset that were used for 
the habitat quality ranking cross-validation are shown in Figure 3.

The NEFSC survey- and observer-based GAMs each performed 
well in both the random and time-grouped cross-validations, with 
nearly every iteration having an AUC value over 0.75. The NJDEP-
based GAM also performed relatively well, though not as well as the 
shelf-wide models, with the majority of iterations exceeding an AUC 
of 0.65 (Figure  4). Cross-validation for predictions based on years 
not included in model training were comparable to random cross-
validation, but with a wider range in predictive ability (Figure  4). 
Shelf-wide NEFSC and observer survey-based GAMs were the most 
skillful, followed by the NJDEP-based GAM (Figure  5). None of 
the GAMs were successful at predicting presence–absence in the 
NEAMAP or CTDEEP data.

The three surveys (NEFSC, Observer, NJDEP) had an increas-
ing proportion of tows containing black sea bass with increasing 
habitat quality ranking, further indicating good model performance 
(Figure 6). The laboratory cross-validation did not perform as well 
as the surveys. There was a small uptick at the lowest habitat qual-
ity ranking, which was likely due to the very gradual slope of the 
curve as well as a small number of black sea bass that were ob-
served in very cold water (<5℃, scaled response between 0 and 

F I G U R E  2   GAM log-odds response ±1 SE for data from each 
survey as a response to in situ measured bottom temperature (a) and 
monthly averaged bias-corrected ROMS bottom temperature (b)
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(b) F I G U R E  3   GAM response as a function of temperature, scaled 
from 0 to 1 based on all data for each dataset (±1 SE). These 
curves are used for the habitat quality ranking cross-validation in 
Figure 6 and the habitat projections in Figure 7. NEFSC, observer, 
and NJDEP GAMs are based on ROMS bias-corrected bottom 
temperature, while the laboratory GAM is based on measured 
temperature
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0.1 equivalent to quality ranking 1; see Figure  3) in the observer 
dataset included in testing for the laboratory-based GAM. It should 
also be noted that 12℃ was the coldest temperature that black sea 
bass metabolic rates were measured for, so inferences colder than 
12℃ were based on the model generated from warmer tempera-
tures. Excluding the minor deviation at the lowest habitat quality 
ranking, black sea bass presence increased steadily with habitat 
quality ranking for the laboratory-derived GAM, until reaching the 
highest two levels where black sea bass became less prevalent. The 
laboratory-derived thermal optimum, by definition the highest hab-
itat quality ranking, was several degrees warmer than seen in any of 

the survey GAMs (Figures 3,6) or even frequently sampled by any 
of the surveys (Figures S2–S5), so the highest quality rankings for 
that data were shifted into temperatures black sea bass were rarely 
observed in the field.

4  | DISCUSSION

Our results demonstrate that differences in survey designs and the 
time of year that data are collected can strongly affect final model 
results, and similarities and differences between models can guide 
uncertainty estimates and model interpretations for various applica-
tions. Specifically in our data, varying the data source used as input 
to a thermal habitat model yielded different model output (e.g., Topt 
range 17–25℃) but led to similar lower positive temperature re-
sponse bounds (~8℃). Similarities between models can improve our 
confidence in their use, while differences can inform uncertainty 
estimates. The GAM-derived thermal habitat models had skill at pre-
dicting years not included in model training, with only a few excep-
tions from data sources that performed poorly overall. However, due 
to the intense seasonal variability in the MAB, the models that were 
based on fishery data that did not cover all four seasons as well as a 
large spatial portion of the region, both inshore and offshore waters, 
are unlikely to be reliable if applied to seasons not included in the 
training dataset. The observer data source was the only dataset that 
included black sea bass presence–absence data for all 12 months of 
the year. However, as a fisheries-dependent data source, it is more 
appropriate for species distribution analyses such as our research 
than it would be for biomass and abundance studies that require 
fisheries-independent data such as the NEFSC bottom trawl survey.

F I G U R E  4   Boxplot of AUC cross-validations metrics for the 
three well-performing surveys (NJDEP, observer, and NEFSC). AUC 
values near 0.5 indicate models no better than random prediction, 
and closer to 1 indicating highest performance. Blue boxplots 
show the range of AUC values for the random cross-validations, 
compared to the grouped cross-validation with consecutive groups 
of years removed for testing shown in green
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The shelf-wide NEFSC and observer program surveys as well as 
the shallow-water NJDEP survey each exhibited clear patterns for 
presence–absence dependent on bottom temperature. Catch from 
the Connecticut DEEP survey was poorly explained by bottom tem-
perature GAMs, likely due to the isolated nature of the enclosed 
Long Island Sound, as well as the high volume of localized terrestrial 
input compared to the rest of the shelf, resulting in presence being 
dependent on a more complex group of features than bottom tem-
perature alone (Vieira, 2000). The shallow-water NEAMAP survey 
spanning the MAB coastline performed poorly in the GAMs as well. 
While not isolated like the Long Island Sound survey, the sampling 

design resulted in a narrow range of temperatures and bottom hab-
itat being sampled, thus making it impractical to develop a reliable 
model based solely on bottom temperature. The poor performance 
of the model based on this survey highlights that even a survey with 
wide latitudinal coverage can have low predictive power based on 
the timing and sampling pattern of the survey. The other surveys 
(NEFSC, Observer, NJDEP) exhibited clear patterns based on bottom 
temperature alone but had a large majority of deviance remaining 
unexplained. Ocean variables other than temperature are clearly 
very important (Cullen & Guida, 2021; McHenry et al., 2019; Miller 
et  al.,  2016), but should be carefully interpreted especially when 

F I G U R E  7   Bias-corrected ROMS 
bottom temperature for spring (March–
May, a) and fall (September–November, b) 
averaged over 1985–2015, with habitat 
quality as in Figure 3 projected onto those 
temperature fields for the NEFSC-based 
GAM (c, spring; d, fall), the observer-based 
GAM (e, spring; f, fall), and the laboratory-
based GAM (g, spring; h, fall)
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physiological effects of those features are not well-established 
(Helmuth et  al.,  2005). Furthermore, our study only included ju-
veniles and adults that are capable of migrating out of suboptimal 
water temperatures. The effects of temperature and other envi-
ronmental variables on early life history stages that have more re-
strictive thermal constraints must be considered to achieve a more 
comprehensive understanding of a species ecosystem response, as 
well as inform possible time lags in large-scale thermal responses 
(Berlinsky et al., 2004; Cowen et al., 1993; Houde, 1989).

Despite variability in the steepness of the curves and the exact 
location of the optimal temperature, the two shelf-wide thermal re-
sponse curves, one based on fisheries-dependent data and the other 
based on fisheries-independent data, were very similar with a grad-
ual increase in habitat quality with temperatures up to about 18℃ 
followed by a rapid decrease in quality with temperatures above 
that. The only skillful GAM based on inshore data (NJDEP) plateaued 
and failed to exhibit a decrease in thermal habitat quality at high tem-
peratures. This GAM did not perform as well as the shelf-wide sur-
veys even in the within-survey cross-validation and also had higher 
skill at predicting the shelf-wide catch data than it did predicting its 
own data. This suggests that bottom temperature alone is a more ef-
fective predictor shelf-wide than it is in shallow inshore waters where 
other features such as productivity, bottom topography, terrestrial 
and riverine inputs, competition, spawning dynamics, and predator–
prey interactions may play a larger role (Cowen et  al.,  1993; Del 
Vecchio & Blough, 2004; Vodacek et al., 1997). Cooler temperatures 
may be more deterministic to predicting distribution limitations than 
warmer temperatures for the US Northern stock of black sea bass 
population, which inhabits the most northern latitude for the spe-
cies, an observation supported by several previous studies (Miller 
et al., 2016; Sullivan & Tomasso, 2011; Younes et al., 2020) as well 
as this study by the fact that all three surveys displayed a remark-
ably similar lower thermal limit around 8.5℃. Bottom temperature 
in the Mid-Atlantic Bight rarely reaches the upper thermal tolerance 
limit observed in laboratory studies (>25℃; Atwood et  al.,  2003; 
Slesinger et al., 2019; Sullivan & Tomasso, 2011). These undersam-
pled temperatures in the surveys, where response variability is high, 
also overlap with the optimal temperature range, and predictions of 
future habitat are thus based on current measurements of bottom 
temperature that do not typically reach the future predicted tem-
peratures under climate change scenarios (Saba et al., 2016). Models 
based on survey data in this region must be interpreted with caution 
especially at the upper end of the thermal response curve.

The warmest thermal curve was that derived from the laboratory-
based experiments, with a thermal optimum of 24.8℃ (Slesinger 
et al., 2019; similar laboratory-based thermal optima observed for 
northern stock by Sullivan & Tomasso, 2011 and for southern stock 
by Atwood et al., 2003). Under laboratory conditions, fish were fed 
ad libitum and relieved of energy expenditure related to finding food 
and evading predators. Therefore, the warmer thermal optimum ob-
served in the laboratory could be a function of increased available 
energetic reserves allowing higher tolerance to warmer tempera-
tures (Clark et al., 2013). Additionally, the use of aerobic scope as 

an indicator to determine optimal temperatures has recently been 
critiqued (see Jutfelt et  al.,  2018). The laboratory-derived thermal 
optimum should therefore be assumed to be near a maximum ther-
mal tolerance limit, should other limiting factors in the environment 
(e.g., food, reproductive costs) be minimal. There may be potential 
flexibility for fish to acclimatize to a higher thermal optimum as 
ocean warming continues, especially given that the black sea bass 
U.S. Southern stock extends into warmer temperatures further 
south and into the Gulf of Mexico (Drohan et al., 2007; McCartney 
et al., 2013). However, the perceived lower thermal limit is likely to 
remain a habitat distribution limit. Additionally, physiological data 
encapsulates a different metric of fitness than presence–absence 
data, such that presence–absence data may best reflect true short-
term in situ oceanographic limits whereas the laboratory data re-
flects longer-term effects on fitness (e.g., reduced reproduction) 
that downstream may affect the black sea bass population.

While the cross-validation statistics show that the models per-
form well, indicating that they can be reliably paired with hindcasts 
over time periods similar to the surveys themselves, sampling in 
temperature-salinity space varied substantially between seasons and 
surveys. The range of temperatures sampled by the NEFSC fisheries-
independent survey during the spring was lower than that sampled 
during the fall, resulting in a false bimodal peak in the NEFSC survey-
based thermal habitat curve that could have been smoothed out by 
year-round sampling as in the NEFSC fishery-dependent observer 
dataset. Because temperatures in the MAB are seasonally variable 
and temperatures available to a trawl survey can be extremely dif-
ferent depending on time of year, predicting habitat quality for sea-
sons not included in GAM training is likely to yield flawed results. For 
applications considering year-round temperatures, a GAM based on 
year-round sampling, such as the observer dataset, is likely to yield 
more reliable results than a GAM based on the NEFSC survey that 
only samples during spring and fall. However, if spring and fall are 
the only seasons of interest—for example, if the model was being 
used specifically to improve interpretation of NEFSC survey results 
during a stock assessment—a GAM based on NEFSC data is likely a 
preferable option due to the random stratified nature of the sur-
vey. Applying a GAM to years that were not used in model training, 
on the other hand, was shown to be reliable on average when com-
pared to random cross-validation, though an increased variability in 
model performance should be taken into account if applying GAMs 
to projections separated from the training dataset by several de-
cades. There is likely no “one size fits all” model, but ensembles can 
better inform how to interpret a given model. In some scenarios, a 
qualitative model may even be a more trustworthy predictor over a 
continuous model (e.g., responses described as high quality, neutral 
quality, or poor quality as opposed to a continuous scaled response).

Restricting GAMs to variables that are represented in hydrody-
namic models (e.g., bottom temperature) allows for development 
of coupled habitat models that can have many applications, and the 
reliability of hydrodynamic models as they apply to niche models is 
supported by the similar response of in situ versus modeled tempera-
ture in this study. Thermal habitat models for various species have 
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been coupled to ocean temperature hindcasts (Kleisner et al., 2016), 
to nowcasts and forecasts, and to long-term climate change projec-
tions in order to estimate future habitat availability (Crear et al., 2020; 
Kleisner et al., 2017; McHenry et al., 2019; Tanaka et al., 2020). We 
coupled three of our GAMs (NEFSC survey-based, observer-based, 
and laboratory-based) to seasonally averaged hindcast bottom tem-
perature and the resulting spatial maps show that while the intensity 
of the spatial gradients varies, patterns of habitat quality are very sim-
ilar. During the spring, habitat quality is weak across the entire shelf 
for all three models except for a narrow stretch of favorable habitat 
along the shelf break and at the southern boundary of the bight, while 
during the fall they each show favorable habitat across the majority 
of the MAB shelf and Georges Bank (Figure 7). The laboratory-based 
GAM shows a much less intense spatial gradient, reflecting the gradual 
increase in habitat quality with temperature in cool water due to the 
lack of metabolic rate measurements at temperatures <12℃. Despite 
the strong similarities between the two shelf-wide GAM response 
patterns, the observer-based GAM predicted stronger habitat qual-
ity than predicted by the NEFSC survey-based GAM. Thus, choosing 
an inappropriate model could be effective at reproducing the general 
spatial pattern of habitat, but may miss the strength of the spatial gra-
dients in habitat quality or certain key patches of high- or low-quality 
habitat. The distribution of the northern stock of black sea bass has 
been shifting to the north (Kleisner et al., 2016) and projections sug-
gest that this northern shift will persist under continued ocean warm-
ing (Kleisner et  al.,  2017; McHenry et  al.,  2019), but spatial habitat 
modeling research must consider the uncertainty caused by fishery 
data used to train models particularly as it applies to habitat coupled to 
climate projections or other scenarios where the environment is very 
different from the data the habitat model were initially trained with.

GAMs are frequently used to determine the relationship be-
tween marine species and the ocean environment. However, these 
models often yield overfitted results that can be easily misinter-
preted. To avoid this, we suggest the following: (1) consider that data 
source can affect the shape of the model's curve and thus the ulti-
mate intended application of the GAM (e.g., estuary, nearshore, off-
shore habitat modeling); (2) GAMs coupled to hydrodynamic models 
should only be applied to times of year similar to those that were 
actually sampled by the model training data sources (e.g., applying a 
GAM to seasons not included in the training of the model will need 
to be interpreted with extreme caution); (3) an ensemble of habi-
tat model types (e.g., GAMs, linear models, random forest, machine 
learning) can also be used to address single model limitations such 
as GAM overfitting (Tanaka et al., 2020); and (4) thermal response 
variability between models developed from different data sources 
and modeling methods can be used to inform uncertainty levels in 
thermal habitat predictions.
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