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Abstract
We replicated the study conducted byWielgus and Peebles (2014) on the effect of wolf mor-

tality on livestock depredations in Montana, Wyoming and Idaho states in the US. Their best

models were found to be misspecified due to the omission of the time index and incorrect

functional form. When we respecified the models, this replication failed to confirm the mag-

nitude, direction and often the very existence of the original results. Wielgus and Peebles

(2014) reported that the increase in the number of wolves culled the previous year would

increase the expected number of livestock killed this year by 4 to 6%. But our results

showed that the culling of one wolf the previous year would decrease the expected number

of cattle killed this year by 1.9%, and the expected number of sheep killed by 3.4%. How-

ever, for every wolf killed there is a corresponding 2.2% increase in the expected number of

sheep killed in the same year. The increase in sheep depredation appears to be a short

term phenomenon.

Introduction
There is widespread acceptance that increased lethal control of wolves reduces the number of
livestock killed by wolves [1]. Such acceptance has been rarely subject to empirical scrutiny. To
the best of Wielgus and Peebles’s [1] knowledge, to which we concur, the long term effective-
ness of lethal wolf control–in reducing livestock depredation–has not been “rigorously tested.”
In their recent article “Effects of wolf mortality on livestock depredations” published in this
journal, Wielgus and Peebles [1] empirically tested the hypothesis that there is a negative rela-
tionship between the number of lethally-controlled wolves this year and the number of live-
stock depredated the following year. Based on statistical modeling, and in contrast to their
hypothesis, Wielgus and Peebles [1] reported that the number of livestock depredated the fol-
lowing year was positively associated with the number of wolves killed the previous year. Wiel-
gus and Peebles’s [1] findings are timely given the controversial nature of wolf recolonization
associated livestock depredation and the need for effective management and conservation poli-
cies. The analysis presented here is additionally motivated by several factors. First, there is
nascent evidence that the relationship between the number of wolves killed and the extent of

PLOSONE | DOI:10.1371/journal.pone.0148743 February 11, 2016 1 / 8

OPEN ACCESS

Citation: Poudyal N, Baral N, Asah ST (2016) Wolf
Lethal Control and Livestock Depredations: Counter-
Evidence from Respecified Models. PLoS ONE 11(2):
e0148743. doi:10.1371/journal.pone.0148743

Editor: Joseph K. Bump, Michigan Technological
University, UNITED STATES

Received: April 10, 2015

Accepted: January 18, 2016

Published: February 11, 2016

Copyright: © 2016 Poudyal et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The authors received no specific funding
for this work.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0148743&domain=pdf
http://creativecommons.org/licenses/by/4.0/


resultant livestock depredation is more complex than examination of only the numbers of
killed prey and predators can explain. Factors such as the partial versus complete removal of a
wolf pack, wolf social recruitment behaviors, and timing of wolf removal are shown to influ-
ence wildlife depredation [2, 3]. Second, Wielgus and Peebles’s [1] implicit call for rigorous
testing of the relationship between lethal control of wolves and livestock depredation. The need
for rigorous testing, effective management and policy, and our fascination with the counter-
intuition of Wielgus and Peebles’s [1] findings led us to scrutinize their analysis, wondering
whether the results were artifacts of the analytical procedures used. The results—and validity—
of statistical analysis are strongly dependent on the assumptions of the analysis. Certain proce-
dures can substantially distort the results of statistical tests if the assumptions are not met or
unmet assumptions are ignored [4]. Thus, to be rigorous and valid, the observational condi-
tions and ensuing data must meet the assumptions of the chosen analytic approach. Unmet
assumptions must be accommodated for either by choice of analytic approach or data
adjustments.

In the spirit of rigor, validity, and the pressing need for effective management and policy
decisions, we proceeded to test the replicability of Wielgus and Peebles’s [1] findings, thanks to
the open accessibility of this journal to the requisite data. In science, replication is valuable
because no single study can make irrefutable conclusions and progress is made over time
through cumulative evidence from several studies [5]. The reliability and validity of a particular
scientific finding increases as several independent scholars replicate that specific study and
arrive at the same conclusion [6]. Also, the introduction of different analytical procedures to
the same data can increase the confirmatory power of empirical findings. Only repeated studies
can ascertain the real result from what may be a spurious result from a single study, and safe-
guard science in the long run [7]. But, despite their merits and attribution of ‘gold standard’,
replication studies are scarce in sciences other than the natural sciences [8, 9, 10, 11].

We conducted the replication of Wielgus and Peebles’s [1] study by examining whether
there were any oversights in Wielgus and Peebles’s [1] analysis of the data, and reanalyzing the
data using the same analytic method but with due attention to the appropriate assumptions
and criteria for correct times series analysis [12]. In replicating this study, we show how the
omission of minor but important details in the analysis of observational time series data can
generate unexpected and misleading results. The results of our replication suggest that Wielgus
and Peebles’s [1] best models were misspecified; their conclusions do not hold in the respeci-
fied models. We present alternative conclusions given these new findings.

Methods
Wielgus and Peebles [1] provided the data for all variables used in the analysis in a supplemen-
tary table (S1 Table of the original paper). First, we plotted both the cattle and sheep depreda-
tion data on the temporal scale. There were long run patterns in all data series and those
patterns were persistent in nature (Figures A and B in S1 File). Except for the number of sheep,
all other variables display an increasing trend over the years. In such data, we cannot necessar-
ily assume their statistical properties remain constant over time. Modeling these data without
appropriate statistical procedures may yield spurious results. If a time-series has an obvious
trend, it makes sense to summarize the trend by some simple function of time itself [4, 13].
Furthermore, the temporal dependence in these variables should be assessed and accounted for
in the models. Thus to model these data series, trends and lags should be considered in the
model selection process [4, 13]. However, we did not find any terms that captured the trends
and cycles (apart from taking independent variables from lag periods) in the list of models
given in Table 1 and Table 3 or the best models presented in Table 2 and Table 4 by Wielgus
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and Peebles [1]. We therefore replicated their best models to determine whether the models
were correctly specified. The residual plots of the Wielgus and Peebles’s [1] models clearly
showed the departure of the residuals from the identically and independently distributed (IID)
assumption (Figures A, B, C and D in S2 File), raising legitimate concerns for drawing valid
inferences. In time series analysis, the estimator has desired finite sample and asymptotic prop-
erties such as unbiasedness and consistency, only when the unexplained residuals are indepen-
dently and identically distributed. Further statistical tests corroborated this departure because
in Wielgus and Peebles’s [1] best models, the assumptions of independence and homogeneity
(or stationarity) were violated (p< 0.05). Please see supporting information tables for more
information on misspecification tests (Tables A, B and C in S3 File).

For the conditional distribution of livestock depredations given other variables, we followed
Wielgus and Peebles [1] in using the negative binomial distribution to build new models. The
dependent variables were observed as count data and the variance was much larger than the

Table 1. Number of cattle depredated regressed on the number of wolves killed, number of wolf breeding pairs, number of cattle and time index.

Number of cattle depredated (t) Estimate Std. Error z value Pr (>|z|)

Time index (trend) 0.16440 0.03102 5.300 < 0.001 ***

Number of cattle depredated (t-1) 0.02077 0.00506 4.108 < 0.001 ***

Number of wolf breeding pairs (t) 0.02700 0.01563 1.728 0.084 *

Number of wolf breeding pairs (t-1) -0.02038 0.01650 -1.235 0.217

Number of wolves killed (t) 0.00802 0.00491 1.634 0.102

Number of wolves killed (t-1) -0.01948 0.00527 -3.696 < 0.001 ***

Number of cattle (t) -0.00032 0.00033 -0.950 0.342

Number of cattle (t-1) 0.00039 0.00033 1.182 0.237

Intercept -0.65986 0.55368 -1.192 0.233

*** significant at the 1% level

** significant at the 5% level

* significant at the 10% level.

AIC = 417.94, 2 Log-likelihood = -397.94, McFadden’s R2 = 0.27 (Wielgus and Peebles: AIC = 464.02, 2 Log-likelihood = -452.02, McFadden’s R2 = 0.17).

doi:10.1371/journal.pone.0148743.t001

Table 2. Number of sheep depredated regressed on the number of wolves killed, number of wolf breeding pairs, number of sheep and time index.

Number of sheep depredated (t) Estimate Std. Error z value Pr (>|z|)

Time index (trend) 0.21481 0.06657 3.227 0.001 ***

Number of sheep depredated (t-1) 0.00357 0.00351 1.016 0.310

Number of wolf breeding pairs (t) 0.03333 0.03227 1.033 0.302

Number of wolf breeding pairs (t-1) -0.05263 0.03769 -1.396 0.163

Number of wolves killed (t) 0.02211 0.00972 2.276 0.023 **

Number of wolves killed (t-1) -0.03434 0.00930 -3.691 < 0.001 ***

Number of sheep (t) -0.00252 0.00159 -1.585 0.113

Number of sheep (t-1) 0.00050 0.00148 0.334 0.738

Intercept 2.04601 1.35157 1.514 0.130

*** significant at the 1% level

** significant at the 5% level

* significant at the 10% level.

AIC = 506.64, 2 Log-likelihood = -486.64, McFadden’s R2 = 0.18 (Wielgus and Peebles: AIC = 544.04, 2 Log-likelihood = -510.05, McFadden’s R2 = 0.14).

doi:10.1371/journal.pone.0148743.t002
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mean. Therefore, using the same negative binomial distribution for model testing is appropri-
ate. Wielgus and Peebles [1] relied only on AIC and log-likelihood to select the best models.
AIC only identifies the best of a set of models that could still be inadequate, and likelihood only
generates parameters but does not test inferences. Therefore, AIC and log-likelihood, as mea-
sures of goodness-of-fit, are neither necessary nor sufficient for drawing reliable inferences
[14]. Moreover, if the model’s assumptions are violated for the data, measures of goodness-of-
fit are inferentially irrelevant [14, 15]. Thus, in addition to AIC and log-likelihood, we did mis-
specification tests to assess the reliability of goodness-of-fit.

For all the models (Wielgus and Peebles’s and re-specified), the same misspecification tests
were conducted. Specification errors occur when explanatory variables are correlated with the
error term due to various causes such as incorrect functional form, omitted variables, and irrel-
evant variables in the models. A range of other misspecification tests were also conducted with
little difference in the results. Apart from the formal misspecification tests, we evaluated residu-
als of all the models for their closeness to meeting IID assumption. Our misspecification tests
were built to detect heterogeneity, dependence, and extra non-linearity not captured by the
null model. In misspecification tests, the statistically significant terms indicate departure from
the assumptions of the null models.

In our models, we started with first order lag as done by Wielgus and Peebles [1], and also
explored second order lag terms but none of them were statistically significant. We removed
the second lag terms in the final models because they did not affect the outcomes of the misspe-
cification tests. We used a linear trend and its removal influenced the misspecification test
results, so it was retained in the final models. There was no need for doing even more stringent
misspecification tests to arrive at more adequate models because the results were sufficient for
a good model as indicated by the p-values [4]. All the estimation procedures were done in R
following Venables and Ripley [16].

Results

Analytical oversights in the Wielgus and Peebles’s models
There were a couple of analytical oversights in the Wielgus and Peebles’s [1] models. It was sur-
prising not to find any terms in their best models that would account for a trend, given that all
the variables had a persistent increasing trend over time. Also, the Wielgus and Peebles’s [1]
models should have considered the lag terms of the relevant variables to assess the temporal
dependence in the data because last year’s values are more likely to affect this year’s values in
this case, for example, the population of wolves produces more wolves through birth and
recruitment. It was also quite unusual to have statistically insignificant variables in the best
models when the forward selection method was used.

When persistent trends are present in the data, a statistically significant association between
the variables could be spurious [17]. Except for the number of sheep, all other variables showed
an increasing trend, so the variables might show statistically significant results just because
they all followed a common trajectory over time. De-trended data should have been used to
make the Figures 1 to 6 in Wielgus and Peebles [1]. Fitting the lines in a bivariate analysis in
the presence of trend variation is not appropriate [17]. Also, Wielgus and Peebles [1] did not
provide a sound theoretical justification for the choice of quadratic function. One could easily
fit cubic or quadratic functions and get completely different results because fitting curves to
data and building models to assess uncertainty are different things.

Because the data were not normally distributed, Wielgus and Peebles [1] used negative bino-
mial models. Therefore the Pearson correlation matrix given in Table S2 of the original paper
could be misleading. To estimate the Pearson correlation coefficients, the variables should
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follow the bivariate normal distribution. A major requirement for the bivariate normal distri-
bution is that the variables should have univariate normal distributions. A more important
requirement for computing correlations is that the residuals for each data series should be
examined separately to verify whether they meet the assumptions of identical and independent
distributions. All five variables were time series and there were trends and cycles in the data. At
the very least, the trend should have been controlled and non-parametric partial correlation
coefficients would have been better [17].

Cattle killed by wolves
Our results are substantially different from those of Wielgus and Peebles’s [1] (Table 1). In
Wielgus and Peebles’s [1] models, the number of wolves killed, the number of wolf breeding
pairs, and the number of wolves killed by number of breeding pairs interaction were significant
predictors of the number of cattle killed by wolves. Only the number of wolves killed remained
significant in our replication; the other two explanatory variables of the original model were
not significant. The sign of the number of wolves killed was negative in our case.

In our model, four explanatory variables were significantly associated with the number of
cattle killed by wolves. Although the time index could not be used for substantive explanations,
the statistically significant positive coefficient of the trend variable (time index) indicated that
there were unobserved factors (or missing explanatory variables) that were associated with the
increase in the number of cattle killed by wolves. All being equal, three more cattle were depre-
dated on average from one year to next. In addition, the variables that were statistically con-
trolled in the model also influenced the number of cattle killed by wolves. One wolf killed this
year would lead to decrease in the expected number of cattle killed next year by 1.9%. In other
words, three wolves culled this year would be associated with one less cattle depredated next
year, ceteris paribus. The number of cattle killed the previous year had a statistically significant
positive association with the expected number of cattle killed this year. An increase in one
breeding pair of wolves was associated with 2.7% increase in the expected number of cattle dep-
redated in the same year. To paraphrase, an increase in two breeding pairs of wolves would
lead to one more cattle depredated in the same year, keeping all other factors constant.

Sheep killed by wolves
When the Wielgus and Peebles’s [1] sheep depredation model was replicated, the results were
different in terms of sign, magnitude and significance of the coefficients. The number of statis-
tically significant predictors were fewer than those reported by Wielgus and Peebles (Table 2).
In the Wielgus and Peebles’s [1] model, four variables: number of wolves killed, wolf popula-
tion, number of cattle and number of sheep, and eight interaction terms were significant. Of
their four statistically significant variables, only one (number of wolves killed) was statistically
significant in our case. The sign of number of wolves killed was negative in this replication.

In our model, the statistically significant positive coefficient of the trend variable meant that
there was a long run increasing trend in the number of sheep killed by wolves which was not
explained by the explanatory variables included in the model. From one year to next, six more
sheep were depredated on average when the influences of other factors are controlled. A unit
increase in the number of wolves culled this year would reduce the expected number of sheep
killed by 3.4% next year. Ceteris paribus, one more wolf killed this year would meant one less
sheep depredated next year. For every wolf killed, there was a corresponding 2.2% increase in
the expected number of sheep killed in the same year. In other words, there was an increase in
the depredation by one sheep for every two wolves culled in the same year, all things being
equal.
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Discussion
We did not find any statistical support for the Wielgus and Peebles’s [1] findings in this repli-
cation. This could be because the original models were misspecified. Rather than more culling
of wolves leading to more killings of livestock in the following year, our results indicate that
more culling of wolves would lead to fewer killings of livestock in the following year than
expected in the absence of culling. Two recent studies conducted at the wolf pack level also sup-
port our findings directly or indirectly. In the same study area, Bradley and others [3] report
that compared to no removal, partial and full pack removal of wolves reduced the occurrence
of subsequent livestock depredations by 29% and 79%, respectively, over a span of 5 years. Sim-
ilarly in Idaho, it was found that killing of wolves would lead to decline in the recruitment (as
measured by pup survival to 15 months) in wolf populations [2], which may in turn lead to
fewer livestock depredations in subsequent years. How wolf populations respond to lethal con-
trol is a complex phenomenon. It seems that wolf removal reduces livestock depredations but
the magnitude somewhat depends on the type and timing of removal and timing, as well as the
recruitment behaviors of wolves.

Also, there is a positive association between the number of wolves killed and the expected
number of livestock killed in the same year. This association does not necessarily negate the
premise that wolves killed may lead to “fracture of pack structure and increased breeding
pairs” which eventually lead to increased livestock depredation [18]. Also, the positive associa-
tion between the number of wolves and the expected number of livestock killed in the same
year does not negate the social disruption hypothesis [19]. However, there is an inherent dis-
connect between the biological scale of data (statewide) used by Wielgus and Peebles [1] and
the biological scale of the social disruption hypothesis (the individual pack). While such direct
effect may exist, the correlational nature of the data and discrepancy of scale don’t really make
hypothesis directly testable. The rather brief nature of the effect (same year and with a reverse
effect the following year) suggests that the effects of fracture of pack structure and other social
disruptions are rather short term phenomena. According to our findings, it is possible that the
reorganization of pack structure and consequent reduction in breeding pairs, as well as the
emergence of a new social order in disrupted packs may occur by the following year. Addition-
ally, and given the observational nature of the study, it is not clear whether more killings of
livestock draws the attention to kill more wolves or wolves go on rampant killing of livestock
when they are hunted more frequently. Either way, caution should be exercised regarding the
potential impact of wolf culling on livestock depredation, especially in the long term. These
interpretations are further supported by the findings of Ausband et al. [2] and Bradley et al.
[3].

The failure of our attempt to reproduce the results using the same data and following more
rigorous statistical procedures casts doubt on the reliability and validity of the conclusions
drawn from the Wielgus and Peebles’s [1] models. If various models with their differing
assumptions lead to similar results, the finding is robust and we have greater confidence on the
finding [20]. Almost all statistical procedures have assumptions, and the results yielding from
those procedures are valid and reliable only if the underlying assumptions are met. This repli-
cation study also highlights the need for testing the assumptions in empirical modeling. Had
some information regarding the diagnostic tests been reported by Wielgus and Peebles [1],
such as a graph of residuals, it would have been easier to detect the analytical oversights.

The open access to the data policy of this journal made it easy to replicate the study. Provid-
ing the data publicly saved time and effort to acquire the data and also served as a major impe-
tus to replicate the study. Had these ‘counter-intuitive’ findings not been scrutinized closely
through replication, the accidental findings would have been propagated as general truth. Any
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management and conservation practices and decisions informed by such accidental findings
can be problematic.

The nature of data itself pose some major limitations for analysis. Based on wolf ecology,
wolf packs appear to be most appropriate unit of analysis to test the hypotheses [18]. Both wolf
population and livestock depredation data are grouped together (aggregated) at the state level.
When the data from different wolf packs are combined, the inferential statistics (such as corre-
lation or regression coefficients) for the resultant data set may not characterize the relationship
between X and Y in any of the constituent packs. This problem occurs because the aggregate
statistics reflect not only the relationship between X and Y within different wolf packs, but also
the differences among the group means [21]. We therefore recommend replication of the study
with data analysis done at the wolf pack level. Such an effort would be helpful to test the robust-
ness of our findings.
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