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Abstract: The MTT assay for cellular metabolic activity is almost ubiquitous to studies of cell toxicity;
however, it is commonly applied and interpreted erroneously. We investigated the applicability and
limitations of the MTT assay in representing treatment toxicity, cell viability, and metabolic activity.
We evaluated the effect of potential confounding variables on the MTT assay measurements on a
prostate cancer cell line (PC-3) including cell seeding number, MTT concentration, MTT incubation
time, serum starvation, cell culture media composition, released intracellular contents (cell lysate and
secretome), and extrusion of formazan to the extracellular space. We also assessed the confounding
effect of polyethylene glycol (PEG)-coated gold nanoparticles (Au-NPs) as a tested treatment in PC-3
cells on the assay measurements. We additionally evaluated the applicability of microscopic image
cytometry as a tool for measuring intracellular MTT reduction at the single-cell level. Our findings
show that the assay measurements are a result of a complicated process dependant on many of the
above-mentioned factors, and therefore, optimization of the assay and rational interpretation of the
data is necessary to prevent misleading conclusions on variables such as cell viability, treatment
toxicity, and/or cell metabolism. We conclude, with recommendations on how to apply the assay and
a perspective on where the utility of the assay is a powerful tool, but likewise where it has limitations.

Keywords: MTT assay; how to; interpret; cell metabolism; viability assay; cytotoxicity; gold nanopar-
ticles; PC-3 cells; image cytometry

1. Introduction

The MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)
is a mono-tetrazolium salt that consists of a positively charged quaternary tetrazole ring
core containing four nitrogen atoms surrounded by three aromatic rings including two
phenyl moieties and one thiazolyl ring. Reduction of MTT results in disruption of the
core tetrazole ring and the formation of a violet-blue water-insoluble molecule called
formazan [1]. The MTT reagent can pass through the cell membrane as well as the mito-
chondrial inner membrane of viable cells presumably due to its positive charge [1] as well
as its lipophilic structure [2] and is reduced to formazan by metabolically active cells [1].
The chromogenic nature of this redox chemical reaction provides a colorimetric-based
measurement of intracellular formazan production based on which the MTT assay was
developed by Mosmann et al. in 1983 [3]. Consequently, the assay has extensive utility as
a cell metabolic activity assay. However, its utility has increasingly been applied to infer
secondary processes or states of cells, such as viability, which is frequently unsubstantiated.

The MTT assay is typically performed after a few hours of incubation of cells with MTT.
The water-insoluble formazan produced is then solubilized by a solvent such as Dimethyl
sulfoxide (DMSO). Subsequently, the lowering of the light transmission by absorbance
and other mechanisms by the homogenized MTT-formazan solution is measured by a
microplate reader in terms of its optical density (OD) at a wavelength which MTT-derived
formazan absorbs the most (around 570 nm). The measured OD values are assumed to be
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a representation of formazan concentration and consequently the intracellular reduction
of MTT. This has been the basis of applying the MTT assay for nearly four decades as
a common tool to measure cell proliferation/viability, drug cytotoxicity, and mitochon-
drial/metabolic activity of cells [2].

Intracellular reduction of MTT can be mediated by oxidoreductase and dehydrogenase
enzymes and electron donors (mainly NAD(P)H) at different stages of the glycolytic
pathways to the mitochondrial electron transport chain [1]. The location of formazan
formation and its intracellular transportation has remained controversial. While the role of
mitochondria in MTT reduction [2,4,5] has been a justification for the common application
of the assay to measure mitochondrial activity [6–12], biochemical and microscopic studies
have located formazan in various intracellular organelles. Intracellular formazan granules
have been observed in the endoplasmic reticulum, cytosolic lipid droplets [13,14], plasma
membranes [1,15], nucleus, and microsomes [5]. These observations suggest that the MTT
assay is more than a mere representation of mitochondrial activity [2]. Furthermore, there
are several biomolecules such as ascorbic acid, cysteine, dihydrolipoic acid, glutathione,
glutathione S-transferase, and tocopherols that can also reduce MTT [2].

Several studies have revealed limitations of the MTT assay [2–8] and various con-
founding factors that are needed to be considered in designing, performing, analyzing, and
interpreting the assay results [5,9–14]. However, the MTT assay is still commonly used
and interpreted, overlooking these limitations and escaping the necessary optimization
steps. Commonly overlooked confounding variables include seeding cell number, the
concentration of MTT reagent added to the cells, time of incubating cells with MTT, type
of culture media, cells’ supernatant removal following MTT incubation, the wavelength
at which optical density is measured, and the tested treatment. Inconsistencies also exist
in these parameters which make it difficult to compare the measured OD values between
different studies. Moreover, the common purporting as a viability assay is often erroneous.
Reduction of the dye depends primarily on cell metabolism; sometimes this is reflective of
cell viability, but confounding variables means this often leads to the inaccurate utility of
the assay.

The underlying mechanism of the assay has also not been fully understood and there
are still controversies and uncertainties on some of the aspects such as what additional
organelles, enzymes, and molecules are involved in MTT reduction, the origin of extracel-
lular formazan crystals, the cytotoxic effect of the MTT reagent itself, and how the assay
measurements represent cell viability, metabolic activity, and/or treatment toxicity [2].

In this report, with the aim of assessing the applicability and limitations of the MTT
assay, we apply the assay in a typical context of testing polyethylene glycol (PEG)-coated
gold nanoparticle (Au-NP) toxicity in a prostate cancer cell line (PC-3). This is represen-
tative of how the assay is very commonly applied to test ‘cell viability’ in the literature.
However, we thoroughly assessed the effect of cell seeding density, MTT concentration,
MTT incubation time, and serum starvation on the measured values. We also investigated
the potential confounding effects of various factors on the assay measurements including
cell culture media components such as phenol red, released intracellular contents (cell
lysate and secretome), extrusion of formazan to extracellular space, and the PEG-coated
Au-NPs (PEG-Au-NPs) themselves. In this context, we present our data in hand with a
critical assessment of the literature to assess and discuss the applicability and potential
limitations of the assay. We additionally test and discuss the limitations of microscopic
image cytometry as a tool for measuring intracellular MTT reduction at the single-cell level.

Based on our findings, the assay in itself is relatively straightforward and benefits
from ease of its utility. However, this utility should not be flippantly applied as a simple
cell viability test as is all too commonly prevalent in the literature. Rather, a rigorous
process should be undertaken to confirm optimization of the assay followed by a rational
interpretation of the data keeping in mind what the assay actually represents, i.e., being
a measurement of how much reduced reagent exists in the sample. This depends on the
number of cells, the amount of reagent that actually enters the cell, cellular metabolic
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activity (which is highly dependent on a multitude of variables including treatments to
the cells), the timing of formazan crystals extrusion, the cytotoxic effect of MTT, abiotic
reduction of MTT by culture media or the tested treatment, and ultimately the optical
measurement which may also experience interference from the culture media or the tested
treatment such as nanoparticles (Figure 1). We conclude with recommendations on how to
apply the assay and a perspective on where the utility of the assay is a powerful tool, but
likewise where it has limitations.
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Figure 1. Factors affecting the final optical density (OD) measurements in the MTT assay. These
include the concentration of MTT reagent and the proportion that actually enters the cell, cellular
metabolic activity (which is highly dependent on a multitude of variables including treatments to the
cells, biological effect of culture media, cell density, and impedance of cell metabolism due to toxic
effects of MTT), cell number, timing of formazan crystals extrusion (which could impede further
MTT uptake), chemical interference such as abiotic reduction of MTT by culture media, the tested
treatment, or released cellular content, optical interference by all the background components, time of
incubating cells with MTT reagent and/or tested treatment, and ultimately the optical measurement.
Chemical structure of MTT and formazan are illustrated inside the cell: MTT consists of a tetrazole
ring core containing four nitrogen atoms (1) surrounded by three aromatic rings including two
phenyl moieties (2) and one thiazolyl ring (3). Reduction of MTT results in disruption of the core
tetrazole ring and the formation of formazan. Red arrows and the “-“ sign indicate disruption of
MTT reduction on the normal metabolic activity of the cells and the impeding effect of the formazan
crystals (when presenting on the cell surface) on further uptake of MTT reagent by cells.

2. Results and Discussion
2.1. The Effective Factors on the Bulk MTT Assay Measurements

To define the variables that could potentially affect the bulk MTT assay measurements,
we assessed optical density (OD) (specifically, the reduced transmission intensity of light
when the sample is being illuminated with a bandwidth of 10 nm from 565 to 575 nm,
denoted as 570/10 nm) as a function of cell seeding number, MTT concentration, and
the time of incubating cells with MTT reagent. Furthermore, we assessed if the released
intracellular contents as a result of cell lysis or secretion contribute to MTT reduction. We
also investigated how the culture media components, the extracellular formazan, and the
Au-PEG NPs may contribute to the measured OD.
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2.1.1. Cell Number and Density

Figure 2 presents OD as a function of cell seeding number and how it varies for
varying concentrations of MTT and incubation time. As the data indicates, regardless of
MTT concentration and MTT incubation time, increasing cell seeding number increases
OD (Figure 2). This is intuitive as increasing the number of cells accordingly increases the
total level of produced formazan by the cell population and consequently the measured
OD, as shown in other studies [16–18]. The fact that the OD levels in the absence of MTT
did not change with increasing the cell number shows this is not due to the optical effects
of increased cell number (Figures 3 and 4a).

The observed increase in OD could also be a result of an increase in cell density, rather
than the number of cells per se, given that spatial proximity of the cells to each other can
affect intercellular communication and consequently alter the metabolic behavior of the
cells [19–21]. In other words, not only does the sum of formazan levels produced by cells
increase as the number of cells rises, but also higher cell density may also change the
level of produced formazan in every single cell through altering the nature of intercellular
signaling and consequently the cells’ enzymatic activity. This is not however merely
drawable from our data and needs to be confirmed by comparing the OD levels of different
cell populations with the same seeding number in vessels of different sizes.

Reaching a plateau level in OD beyond a certain number of cells has also been reported
previously [16], attributed to the over confluence caused by seeding high numbers of cells
and consequent changes in nutrient availability and cell viability and metabolism [16,22].
The fact that we did not observe a saturation level in OD by increasing cell number,
is not an unexpected finding given the maximum seeding number used in this work
(20,000 cells/well of Corning® 96-well Microplate, area per well: 0.32 cm2) is expected to
correspond to approximately 90% confluence at the time of the measurements (27–30 h
after seeding) based on our light microscopy observations.

Having a closer look at the graphs in Figure 2, it is also notable that the effect
of increasing cell number on OD is not of the same magnitude among different MTT
concentrations and incubation time points. Even at a given MTT concentration and
incubation time-point, the magnitude of this effect does not remain constant as the
cell number increases. For instance, after 3 h of incubating cells with 0.1 mg/mL MTT
(Figure 2b), doubling the seeding number from 5000 to 10,000 cells per well only causes a
5% increase in OD (from 0.357 to 0.378), while doubling from 10,000 to 20,000 cells/well
causes a 39% increase (from 0.378 to 0.527) in OD. This also provides a direct indication
that changes in the OD levels are not necessarily a direct measurement of changes in the
percentage of viable cells, i.e., doubling the cell number does not result in a doubling
of OD level. Other studies have also shown that OD is not always a linear function of
cell number, and the function varies depending on cell type [16,18], cell number [16–18],
pH [18], and the formazan-solubilizing agent [17]. Moreover, it was previously shown
that a higher number of cells could cause a shift in the UV-Vis spectrum peak possibly
due to changes in pH. This shift could consequently result in an underestimation of
formazan production for higher cell numbers [18].

Altogether, these findings suggest that before implementing the MTT assay to assess
cell viability, stringent control experiments must be performed as a means to determine
how the aforementioned parameters influence the relationship between the measured OD
and cell number. This is however commonly overlooked in the published studies, where
OD values are used as a proxy for cell viability percentage and consequently erroneous
quantitative measurements of treatment efficacy or drug-induced cytotoxicity [23–29].
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increasing cell seeding number/density. PC-3 cells were allowed to grow for 26 h before MTT addition. Absorbance was
measured following 2 h (a), 3 h (b), and 4 h (c) of incubating cells with different concentrations of MTT. Data shown as
mean OD of triplicate wells and error bars represent standard deviation (SD).

To infer cell viability based on OD values, the assay may still suffer from unintended
bias for further reasons. Formazan concentration produced by a cell population is af-
fected by more than just the number of viable cells. For instance, other factors due to the
testing treatment/condition(s) can also affect results such as differing amounts of MTT
uptake [5,15] and changes in metabolic activity [30]. In other words, the net sum effect of all
these factors, and not just one of them, determines the level of MTT reduction, consequent
formazan production, and finally the measured OD. For instance, it is possible for two cell
populations, one with a low cell number but a high metabolic activity at the single-cell level
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(for example due to a cytotoxic treatment such as radiation [31–34]), and the other with a
higher cell number but lower metabolic activity at the single-cell level, to show the same OD
levels. If the assay was applied within the context of assessing cell viability the data could
be mistakenly interpreted as showing the same level of cell viability. Such an error could
be minimized if the consistency of potential confounder variables between the samples is
confirmed. However, due to the unknown effects of the studied treatments/conditions on
each of these variables, such consistency might not always be achievable. A good example
is a study published by Mirzayans et al. where they reported more than a 10-times increase
in MTT reduction at the single-cell level when treating cancer cells with the half-maximal
inhibitory concentration (IC50) of cisplatin (a chemotherapeutic agent), determined using
a multiwell metabolic assay [35]. This was shown to be a result of a growth-arrest response
induced by cisplatin through the emergence of greatly enlarged cells that can remain viable
and highly metabolically active, reduce MTT, and lead to cancer relapse. On the other hand,
the emergence of these cells is also indicative of the proliferation blocking effect of cisplatin
on cancer cells which was underestimated using multiwell metabolic assays [35]. A similar
growth arrest response was shown to be the dominant effect of radiation therapy, rather
than apoptosis, on prostate cancer cells [36]. The MTT assay measurements, however,
cannot be reflective of these growth-arrested cells as a type of induced “reproductive”
cell death [36]. Other than high metabolic activity, these chemo/radio-induced giant cells
have been shown to also express a senescence-like phenotype that does not only include
proliferation arrest but also a specific secretory phenotype, called senescence-associated
secretory phenotype (SASP) [37]. This secretory phenotype can promote cancer progression
via stimulating the proliferation of nearby cells, and therefore increasing the number of
cells [37,38]. The SASP was also shown to contain reactive oxygen species such as super-
oxide [13] that can potentially contribute to MTT reduction [39]. Therefore, response to a
treatment can be a complex combination of treatment effects on cell viability, proliferative
ability, cell secretome, and metabolic activity at the single-cell and cell population level.
Consequently, even under optimized conditions with stringent controls when the MTT
assay is used to measure cell viability and/or metabolic activity, the results should be,
where possible, confirmed with complementary assays to attain a more comprehensive
perspective of the treatment response.

2.1.2. MTT Incubation Time

Measuring OD levels at different time points (2, 3, and 4 h) following incubating PC-3
cells with MTT showed that regardless of MTT concentration and cell seeding number,
increasing the MTT incubation time increased OD levels which presumably represent
MTT reduction and formazan concentration (Figures 3b–d and 4b–f). However, in the
absence of cells, the OD levels were similar at different incubation times regardless of MTT
concentration (Figure 3a).

Looking more closely at the graphs in Figures 3c and 4b–e, the rate of time-related
increase in OD levels also generally increases. However, the increase rate in OD declines
over time for the seeding number of 20,000 cells/well at all MTT concentrations (Figures 3d
and 4b–f) and 10,000 cells/well at the MTT concentration of 0.5 mg/mL (Figure 4c,f). The
OD finally reaches a plateau level after 3 h of incubating 20,000 cells/well with 0.3 and
0.4 mg/mL, (Figure 4d,e), but not with 0.5 mg/mL of MTT (Figure 4d,f).

This result shows that the maximum possible level of MTT reduction is reached after
3 h of incubating 20,000 PC-3 cells per well of a 96-well plate with 0.3 and 0.4 mg/mL
of MTT. However, at the lower levels of cell number and/or MTT concentration, the
maximum (saturation) level of MTT reduction is not reached up to 4 h of MTT incubation.
In other words, the saturation time point depends on the seeded cell number and MTT
concentration, as previously shown [16].

Reaching a plateau level in OD after a certain time of incubating cells with MTT might
be due to reduction of all the available MTT reagent by cells or an impedance in further
MTT uptake when a certain amount of formazan crystals appear at the cell surface [5,13,40].
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Saturation of the cells’ metabolic capacity in reducing MTT could also be a reason for this
observation. Another reason could be the cytotoxic effect of MTT. Intracellular metabolism
of MTT has been shown to gradually cause mitochondrial injury, disturbance of normal cell
metabolism, and finally cell apoptosis [4,41]. Time-dependent loss of membrane integrity
as a result of formazan exocytosis has also been proposed as a mechanism of cell death
following MTT incubation [41].
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Figure 3. OD depends on cell seeding number/density, MTT concentration, and incubation time: OD changes with
increasing MTT incubation time. (a) OD of cell-free culture media (Phenol red-containing RPMI + 10% FCS) at different
time points after incubation with different concentrations of MTT. (b–d) OD of PC-3 cells with different seeding numbers of
5000 (b), 10,000 (c), and 20,000 (d) per well of 96-well plates. Cells were allowed to grow for 26 h before the addition of
different concentrations of MTT and the OD was measured at different time points following MTT addition. Data shown as
mean OD of triplicate wells and error bars represent SD (standard deviation).

The fact that the saturation in OD levels occurs earlier with higher MTT concentration
and higher cell number suggests that a higher MTT concentration and/or higher number
of cells potentially accelerate reaching the saturation level in MTT reduction. A higher
number of cells could result in more rapid consumption of the available MTT by the whole
cell population. In addition, this could be hypothetically attributed to the effect of the
proximity of the cells (cell density) on the rate of formazan production at the single-cell
level as discussed earlier in Section 2.1.1. In other words, the higher density of cells and
their proximity to each other may have increased the metabolic activity of PC-3 cells and
thus accelerated MTT reduction and formazan production at the single-cell level. Therefore,
the saturation level in OD levels, through the above-mentioned mechanisms, has been
reached at an earlier time point.
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The tested treatment can also change the saturation timepoint and/or saturation level
and thus can potentially confound the comparative analysis between different conditions.
For instance, a treatment with enhancing effect on cell metabolism can cause the plateau
level to be reached earlier compared to non-treated cells, while a metabolism-inhibitor
treatment can delay the saturation time point. Therefore, OD measurement at each different
time point can potentially result in different and even contradictory conclusions (Figure 5).
Measuring the OD levels at more time points therefore can give us more accurate infor-
mation on how each treatment affects the cells’ behavior in terms of MTT reduction as a
function of time and prevents erroneous conclusions.
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Figure 5. The optimum OD measurement time depends on how the OD levels change as a function of
incubation time in all the tested conditions. A hypothetical graph showing OD levels as a function of
MTT incubation time in two different conditions A and B. Each condition has resulted in a different
saturation level and saturation time point and thus measurement time points (t1, t2, and t3 defined
by dotted lines) that can affect the comparison of two conditions. Therefore, considering incubation
time in comparative analysis gives us more accurate information on how each condition affects the
behavior of the cell over time.

2.1.3. MTT Concentration

Our results from the MTT assay on PC-3 cells applying a range of MTT concentra-
tions (0, 0.1, 0.2, 0.3, 0.4, 0.5 mg/mL) showed that increasing the MTT concentration up
to 0.4 mg/mL caused an increase in the measured OD levels, regardless of cell number
and measurement time point (Figure 6). At higher cell numbers and longer time points
though, the OD difference between MTT concentrations is more obvious (Figure 6). How-
ever, increasing MTT concentration from 0.4 to 0.5 mg/mL did not result in any further
increase in OD levels, regardless of cell number and measurement time point (Figure 6).
A decrease [16] or plateau [18] in OD levels above a certain MTT concentration was also
reported previously and shown to vary depending on the tested cell type. A likely expla-
nation for these observations is an acceleration of MTT-induced cell death at higher MTT
concentrations. In other words, above a certain level of MTT concentration, the accelerated
rate of cell death is at a level that does not allow cells to reduce MTT as much as they do at
lower MTT concentrations. Hence, the MTT concentration at which the maximum level of
formazan is produced before MTT-induced cell death should be selected as the optimum
MTT concentration for each specific cell type, cell number, and incubation time. However,
as we earlier discussed the measurement time point, the tested treatment may also change
the pattern of cell response to increased MTT concentration. Therefore, when the optimum
MTT concentration is meant to be selected to perform a comparative analysis between
different treatments, the OD levels need to be measured as a function of MTT concentration
under all the conditions. Overlooking the importance of optimizing MTT concentration
could result in biased measurements in the MTT assay as previously shown [16].
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OD was measured following 2 h (a), 3 h (b), and 4 h (c) of incubating cells with MTT. Data shown as mean OD of triplicate 
wells and error bars represent SD (standard deviation). 
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MTT incubation time: 3 h, and MTT concentration: 0.4 mg/mL). For toxicologic studies, 
however, these parameters need to be optimized considering the tested treatments as well 
as the control conditions. 
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Figure 6. OD depends on cell seeding number/density, MTT concentration, and incubation time: OD changes with
increasing MTT concentration. PC-3 cells were seeded at different numbers in 96-well plates and were allowed to grow for
26 h before adding 10 µL MTT–PBS solution of different concentrations (0–0.5 mg/mL) to 100 µL of each well content. OD
was measured following 2 h (a), 3 h (b), and 4 h (c) of incubating cells with MTT. Data shown as mean OD of triplicate wells
and error bars represent SD (standard deviation).

The main aim of our study was to assess the potential confounding effect of various
factors including the tested treatment (i.e., Au-PEG nanoparticles) and not to measure the
treatment toxicity. Therefore, we performed our later experiments based on the parameters
that our preliminary results showed would represent the maximum capacity of each
cell population in reducing MTT (cell seeding number: 20,000/well of 96-well plate, MTT
incubation time: 3 h, and MTT concentration: 0.4 mg/mL). For toxicologic studies, however,
these parameters need to be optimized considering the tested treatments as well as the
control conditions.
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2.1.4. Cell Lysate and Secretome

The MTT assay is based on the intracellular reduction of MTT to purple formazan
granules. Other than the intracellular granular form of formazan, microscopic studies have
also reported formazan aggregates to appear as needle-shaped crystals on the cell surface or
extracellularly. Some studies have proposed that these crystals are products of extracellular
reduction of MTT by the culture media or the assessed treatment [42,43]; or reduction
inside the plasma membrane [15,44]. An intracellular origin of these crystals has also
been shown in many studies proposing their extrusion or extension into the extracellular
space through perforating plasma membrane [1], exocytosis [5,40,41], or physicochemical
processes at the molecular level [13]. Given the contradictory reports, however, it is not
clear if formazan crystals cause plasma membrane injury [5,13,15,40,41].

We questioned if the active viable cells’ secretome or the released intracellular contents
from dead/lysed cells might also contribute to MTT reduction and formation of formazan
crystals in the extracellular space. To address this question, we performed the MTT
assay on the lysate and supernatant of PC-3 cells (20,000 cells seeded per well of a 96-
well plate) cultured in phenol red-free RPMI with or without fetal calf serum (FCS). The
corresponding cell-free culture media and non-lysed PC-3 cells cultured with the same
density were, respectively, used as negative and positive control samples. As shown in
Figure 7, we did not observe any significant difference in the OD levels between PC-3 cells’
lysate, supernatant, and the corresponding culture media samples, while the OD levels by
the non-lysed PC-3 cells were significantly higher than the corresponding cell-free samples.
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well as intracellular formazan granules, were observed in the cell-containing wells. 

This data shows that MTT reduction is not mediated by the enzymes released from PC-
3 cells as a result of active secretion or cell lysis using a RIPA buffer or at least, it is not at a 
significant level detectable by the microplate reader or light microscopy. Even though, it 
should be considered that lysis buffers can denature proteins. Therefore, cell lysis by a RIPA 
buffer might not accurately mimic other mechanisms of loss of cell membrane integrity and 
release of intracellular contents. Pulsed-sonication is another method of lysing cells that 
might cause less denaturation of proteins. This method was used by Liu et al. [5] to lyse 
erythrocytes and B12 (glial) cells and assess MTT reduction by cell lysate. They proposed 
that the lysate of these cells reduces MTT, reporting a very low OD value of 0.081 for 
erythrocyte lysate and a range of OD values for B12 cell lysate (0.509 to 1.226 for different 
protein concentrations) measured at 570–630 nm. However, it was not mentioned if (or how) 
the reported OD values have been normalized. It has not either been clarified if any of the 
cell lysate samples correspond to the same number of cells used in measuring the OD of 
non-lysed cells. In addition, it has not been assessed if the OD differences between the 
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Figure 7. Intact, viable cells were necessary for MTT reduction. OD by lysate and supernatant of PC-3 cells compared to
PC-3 cells (as positive control) and cell-free media (as negative control) following 3 hours of incubation with 0.4 mg/mL
MTT. 20,000 cells were seeded per well of 96-well plates and were allowed to grow in phenol red-free FCS-containing
RPMI for 24 h. The media was then replaced with fresh media of the same type with or without FCS. Two hours later, cells
supernatant and lysates were isolated, and all samples had MTT added. Data shown as mean OD of triplicate wells and
error bars represent SD (standard deviation). *** p-value < 0.0001.

Furthermore, using phase-contrast microscopy with magnifications of 4× and 20×, we
did not observe any formazan crystals in the wells containing cell lysate, cell supernatant,
and culture media after 3 h of incubation with MTT, while needle-shaped extracellular
crystals, as well as intracellular formazan granules, were observed in the cell-containing
wells.

This data shows that MTT reduction is not mediated by the enzymes released from
PC-3 cells as a result of active secretion or cell lysis using a RIPA buffer or at least, it is not
at a significant level detectable by the microplate reader or light microscopy. Even though,
it should be considered that lysis buffers can denature proteins. Therefore, cell lysis by
a RIPA buffer might not accurately mimic other mechanisms of loss of cell membrane
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integrity and release of intracellular contents. Pulsed-sonication is another method of
lysing cells that might cause less denaturation of proteins. This method was used by Liu
et al. [5] to lyse erythrocytes and B12 (glial) cells and assess MTT reduction by cell lysate.
They proposed that the lysate of these cells reduces MTT, reporting a very low OD value of
0.081 for erythrocyte lysate and a range of OD values for B12 cell lysate (0.509 to 1.226 for
different protein concentrations) measured at 570–630 nm. However, it was not mentioned
if (or how) the reported OD values have been normalized. It has not either been clarified if
any of the cell lysate samples correspond to the same number of cells used in measuring the
OD of non-lysed cells. In addition, it has not been assessed if the OD differences between
the different concentrations of cell lysate and non-lysed cells were simply a result of optical
differences or indicate different levels of MTT reduction. Nevertheless, the data of the two
studies are not comparable due to the differences in the studied cell types, the cell lysis
method, and the range of wavelength at which the OD was measured.

The possible contribution of the released intracellular content to MTT reduction is of
more importance when the tested condition or treatment causes cells to lose membrane
integrity and release a considerable amount of intracellular biomolecules. This can also be
a potential concern raised from the presence of reactive oxygen species in the secretome of
radio/chemo-induced growth-arrested giant cells (SASP, mentioned earlier in Section 2.1.1)
that may contribute to MTT reduction [13,35,37]. This possibility should be considered and
investigated to prevent biased measurements of cell viability based on OD values.

2.1.5. Washing Cells’ Supernatant Following MTT Reduction

The fact that we did not observe extracellular needle-shaped formazan crystals in cell
lysate, cell supernatant, and cell-free culture media samples suggests that the observed
needle-shaped crystals in the cell-containing wells were not a result of extracellular abiotic
reduction of MTT, but their origin is intracellular. This is in agreement with previously
published studies where the appearance of needle-shaped formazan crystals was associ-
ated with the gradual decrease in the intracellular granular form of purple formazan [41]
and even continued for up to 3 h after washing out the remaining MTT from the cells’
supernatant [5]. Therefore, despite controversies on the mechanism of formation of extra-
cellular formazan, it appears most likely that they are of intracellular origin in our case,
and therefore ought to be considered in the final measurement in the MTT assay.

This is however commonly overlooked in performing MTT assays when cells are
washed before adding the formazan-solubilizing reagent. Extracellular formazan crystals
have even been assumed as a source of false positivity in cell viability measurements [2].
The washing step has also been justified as a way to remove the remaining non-reduced
MTT in the supernatant. This does not seem to be necessary because firstly, adding
surfactant would stop the process of MTT reduction by disrupting the integrity of the cells,
and secondly, MTT cannot interfere with the OD measurements as we later show in this
study. We, therefore, questioned if the washing step could introduce a significant error
in the MTT assay measurements by excluding, at least a part of, intracellularly formed
extracellular formazan crystals. To answer this question, we compared the MTT assay
results on PC-3 cells with and without performing the washing step. As shown in Figure 8,
our results showed that removing the supernatant and washing cells before adding DMSO
caused a significant decrease in the OD levels (p-value = 0. 02) in serum-fed cells (using a
one-tail T-test). However, washing the cells did not significantly affect the OD in cells that
were serum-starved for 26 h before MTT addition (Figure 8, p-value = 0.7).
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Figure 8. Washing cells after incubation with MTT removes extracellular formazan crystals: The
effect of washing the cells’ supernatant on the OD levels. 20,000 PC-3 cells were seeded per well of
96-well plates and were allowed to grow in phenol red-free RPMI with or without FCS for 26 h. The
cells were then incubated with 0.4 mg/mL MTT for 3 h. Wells were then divided into two groups: (i)
Non-washed wells: 85 µL of supernatant in each well was removed before adding DMSO so that
25 µL was left in each well. (ii) Washed wells: Supernatant was totally removed. Then wells were
washed two times with PBS and 25 µL of fresh media was added before adding DMSO. Data shown
as mean OD of triplicate wells and error bars represent standard deviation. * One-tail t-test p-value =
0.025.

This result indicates that the washing step could act as a confounder variable when
there is a considerable amount of extracellular formazan (as in serum-fed cells). Therefore,
washing the supernatant could result in eliminating a significant proportion of intracellu-
larly formed extracellular formazan from the OD measurements. However, as the level of
MTT reduction and extracellular formazan was extremely low in severe serum starvation,
the washing step did not significantly affect the OD measurements. This shows that the
confounder effect of washing depends on the level of MTT reduction and subsequent
extrusion of crystals into the supernatant. In other words, the level of formazan that wash-
ing excludes from OD measurements is not consistent and controllable between different
samples and could result in misleading data. Hence, our data suggests it is preferable not
to wash the cells.

It should be noted that in our experiment we only assessed the effect of washing, and
not just removing the supernatant. Based on light microscopic observations (Figure 9) we
could observe that needle-shaped crystals were suspended in the supernatant, and we
therefore expect that removing the supernatant will also reduce OD. Comparing the mean
OD of cells normalized to the corresponding cell-free media in two separate experiments
also showed that media removal before adding DMSO (even with no washing step) can
cause a significant decrease in the OD levels (Figure S3). Furthermore, as shown in Figure 9,
the washing step also appears to cause a decrease in the cell density probably as a result of
removing loosely-attached cells by washing the supernatant. Therefore, the washing step
can cause the removal of a portion of both intracellular and extracellular formazan that are
both products of intracellular MTT reduction. Although the scale of this effect is required
to be tested, it seems removing/washing the supernatant is a potentially error-producing
extra step for which there is no convincing justification as previously suggested [45].
Removing or washing the cells’ supernatant before adding formazan-solubilizing solvents
(such as DMSO), therefore, should be avoided to include the effect of both intracellular and
extracellular formazan into the light absorption measurements.
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Figure 9. Washing cells following MTT incubation removes intracellularly formed extracellular 
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solubilizing formazan on removing formazan crystals. 20,000 PC-3 cells were seeded per well of 96-
well plates and were allowed to grow in phenol red-free RPMI with FCS for 26 h. The cells were 
then incubated with 0.4 mg/mL MTT for 3 h. The wells were then divided into 2 groups: (a) Non-
washed wells, (b) Washed wells in which the supernatant was totally removed, and then cells were 
washed two times with PBS and fresh media (with the same volume as non-washed wells) was 
added to each well. Red arrows show the extracellular needle-shaped formazan crystals which are 
much fewer than the non-washed sample. 
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It has been previously shown that experimental conditions could affect the produced 

formazan UV-Vis spectrum and cause a shift in its peak absorbance wavelength [18]. 
Hence, to make the OD measurements a more accurate representation of formazan 
concentration, it is ideal to optimize the measurement wavelength for each experimental 
condition. On the other hand, using a standard measurement window is also important 
for the sake of data comparisons. In this study, we measured the OD at 570/10 nm which 
is roughly around the peak absorbance wavelength reported for formazan [18] and is the 
most commonly applied measurement window for the MTT assay [43,45–47]. 

All the components present in the microplate wells could potentially affect optical 
density if they scatter or absorb light at the same wavelength as the assay measurement 
window. We, therefore, assessed if culture media including RPMI, phenol red, FCS, as 
well as the MTT reagent itself could interfere with OD measurements. 
• RPMI and MTT 

As shown in Figure 10a, the UV-Vis spectroscopy showed that RPMI with or without 
MTT did not show a notable absorbance at 570/10 nm. The peak absorbance of MTT-RPMI 
solution at shorter wavelengths is consistent with the MTT–DMSO solution having a peak 
at 410 nm as shown previously [18]. 

Figure 9. Washing cells following MTT incubation removes intracellularly formed extracellular formazan. Light microscopy
images (×4) showing the effect of washing the cells’ supernatant before solubilizing formazan on removing formazan
crystals. 20,000 PC-3 cells were seeded per well of 96-well plates and were allowed to grow in phenol red-free RPMI with
FCS for 26 h. The cells were then incubated with 0.4 mg/mL MTT for 3 h. The wells were then divided into 2 groups: (a)
Non-washed wells, (b) Washed wells in which the supernatant was totally removed, and then cells were washed two times
with PBS and fresh media (with the same volume as non-washed wells) was added to each well. Red arrows show the
extracellular needle-shaped formazan crystals which are much fewer than the non-washed sample.

2.1.6. Culture Media

The components present in culture media could potentially affect the MTT assay
measurements. This could conceivably arise due to optical interference such as light
absorbance or scattering, chemical reactions such as abiotic reduction of MTT, and biological
effects on the cells’ viability, growth, and metabolic activity which could consequently
affect the total level of MTT reduction. To investigate such effects, we measured the UV-Vis
absorption spectrum as well as the OD levels of different compositions of the cell-free
culture media with and without MTT. We also compared the results of the MTT assay on
PC-3 cells grown in different compositions of culture media.

Optical Interference

It has been previously shown that experimental conditions could affect the produced
formazan UV-Vis spectrum and cause a shift in its peak absorbance wavelength [18]. Hence,
to make the OD measurements a more accurate representation of formazan concentration,
it is ideal to optimize the measurement wavelength for each experimental condition. On the
other hand, using a standard measurement window is also important for the sake of data
comparisons. In this study, we measured the OD at 570/10 nm which is roughly around
the peak absorbance wavelength reported for formazan [18] and is the most commonly
applied measurement window for the MTT assay [43,45–47].

All the components present in the microplate wells could potentially affect optical
density if they scatter or absorb light at the same wavelength as the assay measurement
window. We, therefore, assessed if culture media including RPMI, phenol red, FCS, as well
as the MTT reagent itself could interfere with OD measurements.

• RPMI and MTT

As shown in Figure 10a, the UV-Vis spectroscopy showed that RPMI with or without
MTT did not show a notable absorbance at 570/10 nm. The peak absorbance of MTT-RPMI
solution at shorter wavelengths is consistent with the MTT–DMSO solution having a peak
at 410 nm as shown previously [18].
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Figure 10. Optical and chemical interference by culture media components. (a) UV-Vis absorbance spectrum of RPMI with 
and without phenol red (PR) or 0.4 mg/mL MTT, (b) UV-Vis absorbance spectrum of RPMI without and with 10% fetal 
calf serum (FCS). Grey regions indicate the analysis window for OD measurements. Measurements in UV-Vis (a,b) were 
made against PBS for background, (c) OD of cell-free RPMI/PBS incubated with different concentrations of MTT for 2 to 4 
h, (d) OD of cell-free RPMI with and without PR and/or FCS (10%) incubated with MTT-free PBS or 0.4 mg/mL MTT–PBS 
solution for 3 h before OD measurements in the MTT assay, (e) Effect of phenol red on MTT assay results on PC-3 cells. 
20,000 PC-3 cells were seeded per well of 96-well microplate and allowed to grow for 26 h before 3 h of incubation with 
0.4 mg/mL MTT. Corresponding cell-free media were used as negative control, (f) The OD of RPMI with and without FCS, 
incubated with MTT-free PBS or 0.4 mg/mL MTT–PBS solution for 3 h before OD measurements. Data shown as mean OD 
of triplicate wells and error bars represent standard deviation. 

As shown in Figure 10c, the OD level of RPMI (containing phenol red and 10% FCS) 
is similar to the PBS OD level. In addition, absence or presence of different concentrations 
of MTT within the culture media or PBS did not notably affect the OD levels. 

Taken together, these data suggest that RPMI itself as well as the presence of MTT in 
the cells’ supernatant do not cause an optical interference with MTT assay measurements. 
Therefore, there is no need to remove the remaining MTT before solubilizing formazan as 
we mentioned earlier. 
• Phenol red 

As shown in Figure 10a, the presence of phenol red in RPMI caused an absorption 
peak around 560 nm which falls within the assay measurement window. Microplate 
reader measurements showed that the scale of the effect of adding phenol red to cell-free 
media of the same type on the OD levels depended on the presence or absence of FCS and 
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Figure 10. Optical and chemical interference by culture media components. (a) UV-Vis absorbance spectrum of RPMI with
and without phenol red (PR) or 0.4 mg/mL MTT, (b) UV-Vis absorbance spectrum of RPMI without and with 10% fetal
calf serum (FCS). Grey regions indicate the analysis window for OD measurements. Measurements in UV-Vis (a,b) were
made against PBS for background, (c) OD of cell-free RPMI/PBS incubated with different concentrations of MTT for 2 to 4 h,
(d) OD of cell-free RPMI with and without PR and/or FCS (10%) incubated with MTT-free PBS or 0.4 mg/mL MTT–PBS
solution for 3 h before OD measurements in the MTT assay, (e) Effect of phenol red on MTT assay results on PC-3 cells.
20,000 PC-3 cells were seeded per well of 96-well microplate and allowed to grow for 26 h before 3 h of incubation with
0.4 mg/mL MTT. Corresponding cell-free media were used as negative control, (f) The OD of RPMI with and without FCS,
incubated with MTT-free PBS or 0.4 mg/mL MTT –PBS solution for 3 h before OD measurements. Data shown as mean OD
of triplicate wells and error bars represent standard deviation.

As shown in Figure 10c, the OD level of RPMI (containing phenol red and 10% FCS) is
similar to the PBS OD level. In addition, absence or presence of different concentrations of
MTT within the culture media or PBS did not notably affect the OD levels.

Taken together, these data suggest that RPMI itself as well as the presence of MTT in
the cells’ supernatant do not cause an optical interference with MTT assay measurements.
Therefore, there is no need to remove the remaining MTT before solubilizing formazan as
we mentioned earlier.

• Phenol red



Int. J. Mol. Sci. 2021, 22, 12827 16 of 30

As shown in Figure 10a, the presence of phenol red in RPMI caused an absorption
peak around 560 nm which falls within the assay measurement window. Microplate reader
measurements showed that the scale of the effect of adding phenol red to cell-free media
of the same type on the OD levels depended on the presence or absence of FCS and MTT
in the media (Figure 10d). When we cultured PC-3 cells in the FCS-containing RPMI, the
presence of phenol red in the culture media did not cause a significant change in the OD
levels (p-value > 0.05, Figure 10e) as suggested in previous studies [3,45,48]. This can be due
to the change that occurs in the color of phenol red to yellow as a result of acid production
by cells. Therefore, the absorbance spectrum of phenol red would alter in the presence of
cells and may not anymore interfere with the assay measurements. However, this color
change may not be consistent between different cell types, culture conditions, and/or
tested treatments. Regardless, the presence of phenol red is not essential for incubating
cells with MTT. We, therefore, suggest using phenol red-free media before incubating cells
with MTT to minimize the measurement errors as a result of any possible interference from
phenol red.

• FCS

The UV-Vis absorbance peak of RPMI containing 10% FCS at around 410 nm did
not overlap the assay measurement window (570/10 nm). However, the presence of 10%
FCS in RPMI caused a negligible rise in the RPMI OD levels (0.007) within the assay
window (Figure 10b). As for phenol red, the microplate reader measurements showed
that adding FCS to cell-free media of the same type resulted in various effects on the OD
levels depending on the presence or absence of the phenol red and MTT in the media
(Figure 10d,f). Long-term serum starvation could affect the metabolic behaviour of cells
and the level of MTT reduction. However, as we show later, the effect of starving cells from
serum for a short time appears to be negligible on the assay measurements. Hence, we
recommend to grow cells in serum-containing media and replace the media with serum-
free media before MTT addition to minimise any error in measurements. Using a single
serum batch for each experiment is also recommended to avoid inconsistencies in growth
conditions between tested samples.

Chemical Interference

Culture media components can potentially act as a confounder in the assay measure-
ments not only through direct optical interference but also through unforeseen chemical
reactions with MTT such as reducing MTT or catalyzing MTT reduction. Such reactions can
result in the production of new chemicals, such as formazan, that can change the measured
optical density. We earlier showed MTT itself does not optically interfere with the assay
measurement. Therefore, observing a difference in OD as a result of MTT addition to the
media could be an indicator of a chemical reaction between MTT and the media compo-
nents such as abiotic reduction of MTT by the media components. Hence, we compared
the OD levels between cell-free media with and without MTT to assess potential chemical
interference by culture media components.

As shown in Figure 10d,f, the presence or absence of MTT in RPMI did not significantly
affect the OD levels regardless of the presence or absence of FCS and/or phenol red (p-
value > 0.1). The OD levels of culture media (RPMI containing phenol red and 10% FCS)
incubated with varying concentrations of MTT solution (0 to 0.5 mg/mL) for 2 to 4 h before
adding DMSO were also similar (Figure 10c). These results suggest that no remarkable
abiotic reduction of MTT was mediated by RPMI, FCS, and/or phenol red for at least
up to 4 h of incubation. This is consistent with data from a previous study suggesting
that RPMI does not contribute to MTT reduction [49]. A similar result was reported for
RPMI up to 6 h of MTT incubation when measuring OD at 490 nm [49]. The effect of MTT
concentration on the OD levels of FCS-containing RPMI (5% FCS) was also shown to be
small with up to 6 h of MTT incubation [43]. The same study however reported an increase
in the enhancing effect of MTT concentration on the OD values from 17 to 24 h of MTT
incubation. Notably, MTT incubation in all the samples in this study was followed by 24 h
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of SDS incubation [43] which means the actual MTT incubation lasted even longer than the
mentioned times. As formazan absorbance is typically measured at or before 4 h of MTT
incubation, the probable chemical effect of media at longer time points would not be an
issue in the assay measurements. The MTT reduction by other types of culture media was
also proposed including photocatalytic reduction of MTT by DMEM (Dulbecco’s Modified
Eagle Medium) [42] and MTT reduction by M199 due to the presence of reducing agents
such as ascorbic acid and retinol in the media [49].

Abiotic reduction of MTT by human serum albumin (HSA) was also suggested by
Funk et al. [50], where they observed an increase in OD with increasing HSA concentration.
However, they did not exclude the optical interference of HSA, and OD was measured
at 540 nm rather than 570 nm [50] so their data remain inconclusive. Variability between
batches of FCS may also cause diversity in chemical interference of serum in MTT assay
measurements.

Not only is it possible that culture media and serum directly reduce MTT, but they may
also influence MTT reduction that is mediated by tested chemicals such as plant extracts [51]
and flavonoids [47,52]. Such influence has been attributed to the presence of components
such as glucose, vitamins, and enzymes in the culture media [47,52]. Other forms of
chemical interference by culture media components with MTT assay measurements have
been also reported such as the reaction of EMEM (Eagle’s Minimum Essential Medium)
with a formazan–DMSO solution [48] and the interaction of serum proteins with some
tested drugs [53]. This further highlights the importance of considering and testing the
potential interferential effect of culture media in MTT assay measurements, data analysis,
and data interpretation.

Biological Effects

Culture media provides nutrients for cell growth, proliferation, and metabolism.
Consequently, the composition of culture media, such as the presence or absence of serum,
could influence the MTT assay measurements by influencing the cells’ biological behaviour
such as the level of metabolic activity and thus MTT reduction. To investigate how the effect
of serum starvation on the metabolic activity of cells would be reflected in the MTT assay
measurements, we compared the MTT assay results between cells grown in serum-free and
serum-containing media. We also aimed to investigate the effect of the commonly applied
serum-free conditions on the assay measurements.

To assess the effect of short-term starvation, we seeded PC-3 cells in phenol red-free
serum-containing RPMI and allowed them to grow for 24 h. Then, we changed the media
with serum-free or serum-containing (10% FCS) media and incubated the cells for a further
2 h before the addition of MTT. Corresponding cell-free media were used as negative
controls. We also imaged these cells from 2 h before changing the media up to 3 h after
MTT addition using live phase-contrast imaging microscopy (Incucyte ZOOM).

In a separate experiment, we investigated the effect of long-term starvation on PC-3
cells to assess the effect of extreme nutritional stress on the MTT assay results. We seeded
PC-3 cells in phenol red-free RPMI with or without 10% FCS and allowed them to grow
for 26 h before MTT addition. We also imaged these PC-3 cells after 3 h of incubation with
MTT using light microscopy.

As shown in Figure 11a, serum-fed cells’ OD (normalised to 1.0) was slightly higher
than short-term serum-deprived cells (0.96), but not significantly (p-value = 0.5). Contrarily,
serum starvation of cells for 26 h caused a decrease in OD (from 1.0 to 0.41 OD) compared
to cells grown with FCS (Figure 11b). No difference was observed over the same time
if cells were not present (both 0.35–0.36 OD). Therefore, the difference in OD between
serum-fed cells and cells starved of serum for 26 h was most likely due to a difference
in intracellular MTT reduction and formazan production, and not optical or chemical
interference of FCS. The underlying mechanism could be attributed to the effect of the
presence of serum in the culture media on the cells’ nutritional state, intracellular signaling,
metabolic activity/pathways, and the level of oxidative stress, cell cycle, cell viability, and
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cell proliferation [54–57]. The effect from two hours of serum starvation was not at a level
to cause a significant change in the OD level.
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could also result in diverse biological responses. Therefore, eliminating serum has been 
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Figure 11. Serum starvation can affect MTT reduction. 20,000 PC-3 cells were seeded per well of 96-well plates and grown
in phenol red-free RPMI with 10% FCS for 24 h. The media was then replaced with serum-free or serum-containing (10%)
RPMI and cells were incubated for 2 h (a) or 26 h (b). Cells were then incubated with 0.4 mg/mL MTT for 3 h before
OD measurements. Data shown as normalized mean OD of triplicate wells and error bars represent standard deviation.
** p-value = 0.005.

As shown by light microscopy (Figure 12) the majority of cells that were serum-starved
for 26 h showed a round morphology (some with blebbing) compared to the normal spindle
shape of the majority of serum-fed cells. While the spindle shape of PC-3 cells could be
indicative of a viable status and adherence, the round shape indicates cell detachment and
can be a morphological indicator of cell apoptosis [58–61]. However, cell death is a staged
process usually taking a few hours to complete [59] and cells with a round shape could
be at different stages of cell death, where at earlier stages, they still show some level of
metabolic and enzymatic activity and could reduce MTT as shown by formazan formation
in these cells (Figure 12) which is consistent with previous studies [62]. Therefore, while
it could be that all cells are undergoing apoptosis, there is still metabolic activity that
could erroneously be interpreted as representing viable cells. Here, however, we observe
that most cells appear to be undergoing apoptosis with a 26-h starvation and that the OD
measurements appear consistent with this observation (Figure 9b).

Contrary to the long-term serum starvation, the morphology of the majority of short-
term serum-deprived cells seemed to be normal as for serum-fed cells. This is consistent
with the OD measurements showing no significant difference in OD between serum-fed and
short-term serum-deprived cells and suggests that 2 h of serum starvation does not affect
the biological status of the cells (i.e., cell viability and metabolic activity) at a significant
level. This further confirms that biological activity, rather than optical/chemical effects
of FCS, impacted the assay measurements. This also highlights the capability of the MTT
assay to reveal major differences in viability between the two cell populations. However,
the contribution of round cells in the earlier stages of apoptosis to MTT reduction could
confound the quantitative measurement of cell viability using the MTT assay. The cell
death process provides a spectrum of viable to non-viable and apoptotic cells rather than a
binary living versus dead status. Therefore, morphological studies along with the MTT
assay could give more accurate information on the viability percentage of a cell population.
Complementary assays on cell viability or metabolic activity could also be considered to
provide more robust data.

The response of cells to serum starvation is a diverse, dynamic, and complicated
process and depends on different factors such as incubation time, experimental conditions,
and cell type [56]. This could explain the inconsistency in reports on the effect of serum
starvation on MTT assay measurements. For instance, Twentyman et al. reported higher
OD values in serum-starved cells compared to serum-fed cells [48]. On the other hand, the
variability in the composition between batches of serum in the culture media could also



Int. J. Mol. Sci. 2021, 22, 12827 19 of 30

result in diverse biological responses. Therefore, eliminating serum has been proposed to
lead to greater homogeneity and synchronicity between different cells/cell populations [56].

Taken together, these observations further show the necessity of optimization experi-
ments before performing the MTT assay for different experimental conditions, cell types,
and types of culture media.
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formazan crystals which are much fewer in serum-starved cells. 
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compared the OD levels between the media solutions of the same Au-NP concentrations 
with and without MTT (Figure 13b). We observed a small, but significant increase in OD 
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p-value < 0.005 for cell supernatant and <0.0001 for culture media). The OD of cell lysate 
after treatment with different NP concentrations (0, 0.05, 0.5, and 5 nM) were very similar 
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evaluating the cytotoxic effect of gold nanoparticles [63–66], we found that washing is 
necessary to remove this interference. If NP uptake is much greater, such as at longer time 

Figure 12. Extremely serum-starved cells show apoptotic morphologic features, yet still reduce MTT to formazan. Light
microscopy images (×4) comparing cell morphology and formazan formation in serum-fed (a) and 26-h serum-starved
cells (b) as per Figure 11. The purple color of cells is a result of formazan aggregation inside the cells. Red arrows show the
extracellular needle-shaped formazan crystals which are much fewer in serum-starved cells.

2.1.7. Tested Treatment (Gold Nanoparticles)

Many nanoparticles are well known to give rise to distinctively colored solutions. To
assess possible optical interference from red-color Au-PEG NP solutions on the MTT assay
measurements, we measured the UV-Vis absorption spectrum of 0.2 nM Au-PEG NPs in the
phenol red-free serum-free RPMI. We also measured the OD of the phenol red-free RPMI
incubated with a concentration series of Au-NPs (0, 0.05, 0.5, and 5 nM) with and without
MTT to investigate possible optical and chemical interference in the MTT assay. We then
compared MTT assay measurements on PC-3 cells containing different NP concentrations.
We also did the same comparison on the lysate and supernatant of these cells.

Figure 13a shows the UV-Vis spectra of NP-containing media exhibiting an absorption
peak in the range of ~500–600 nm with the highest absorption at 520 nm. Adding the NPs
to the media up to a concentration of 0.05 nM did not cause a significant change in OD
(Figure 13b). However, the highest concentration of 5 nM resulted in a significantly greater
OD (p-value < 0.0001) indicating interference of Au-NPs at 5 nM.

There are some NPs known to catalyze redox chemistry at their solid–liquid interface
and could reduce MTT [34,42]. To assess if our Au-PEG NPs have a similar effect, we
compared the OD levels between the media solutions of the same Au-NP concentrations
with and without MTT (Figure 13b). We observed a small, but significant increase in OD
from 0.54 to 0.59 when adding MTT to the 5 nM Au-PEG NP solution (p-value = 0.003). In
lower concentrations of NPs though, adding MTT did not cause a difference in OD. This
could suggest a minor catalytic effect on MTT reduction or abiotic reduction of MTT that is
mediated by Au-PEG NPs in our case.
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points or concentrations, we would also expect that NPs within the cells themselves will 
also interfere with OD measurements. In this case, an artificially high OD measurement 
could erroneously suggest greater biocompatibility. 

The NPs could potentially affect the intracellular reduction of MTT if they interfere 
with cellular biochemistry. To investigate such a possibility, we first needed to exclude 
the optical confounding effect of Au-NPs on the OD. In this regard, we calculated the fold 
change in OD in the presence of cells, compared to cell-free media containing the same 
NP concentrations (Figure 13d). The results showed small differences in the fold change 
between non-treated and treated cells with 0.05 and 0.5 nM NP concentrations. However, 
the fold change decreased from 3.5–3.7 times to 2.1–2.3 times when the Au-NP 
concentration increased to 5nM (Figure 13d). This could indicate that 2 h of incubating 
PC-3 cells with 5 nM of Au-PEG NPs decreases the MTT reduction by cells. 

Measuring the cytotoxic effect of AuNPs using the commonly used approach for 
inferring cell viability or IC50 (half maximal inhibitory concentration), based on the MTT 
assay results [63–72], however, would erroneously show an increase in cell viability when 
cells were treated with 5 nM NPs. For instance, calculating cell viability percentage based 
on the OD measured for PC-3 cells grown in FCS-free phenol red-free RPMI (Figure 13c) 
would show around a 22% increase in cell viability ([treated cell OD (1.53)/non-treated 
cell OD (1.257)] × 100 ≈ 121.72%). By considering the confounding effect of Au-NPs on OD 
(Figure 13d), MTT reduction in cells treated with 5 nM Au-NP have actually decreased 
around 60% compared to non-treated cells, [fold change in OD for treated cells 
((2.165)/fold change in OD for non-treated cells (3.763)] × 100 = 57.53%). This shows the 
importance of using cell-free samples as negative controls to exclude the potential 
confounding effect of Au-NPs, or any other tested treatments, to prevent erroneous 
measurements. Nevertheless, it has been a common practice to overlook this effect in 
measuring cytotoxicity or biocompatibility of Au-NPs [63,64,67–71], including PEG-
coated or PEG-containing gold NPs/nanocomposites [65,66,72], for diagnostic or 
therapeutic purposes. While we have shown the confounding effect of Au-NPs on MTT 
assay measurements, such effects need to be considered for any other kind of treatments, 
as shown for TiO2 nanoparticles [34,42], silicon nanowires [73], flavonoids [47,52], and 
plant extracts [51]. 

 
Figure 13. Au-PEG NPs can interfere with MTT assay measurements. (a) UV-Vis absorption 
spectrum of RPMI with and without 0.2 nM Au-PEG NPs. Grey regions indicate the analysis 
window for OD measurements in the MTT assay. Measurements in UV-Vis were made against PBS 

Figure 13. Au-PEG NPs can interfere with MTT assay measurements. (a) UV-Vis absorption spectrum of RPMI with
and without 0.2 nM Au-PEG NPs. Grey regions indicate the analysis window for OD measurements in the MTT assay.
Measurements in UV-Vis were made against PBS for background, (b) OD of cell-free phenol red-free FCS-free RPMI
containing different concentrations of Au-PEG NPs after 3 h of incubation with MTT-free PBS or 0.4 mg/mL of MTT–PBS
solution, (c) OD of PC-3 cells treated with Au-PEG NPs compared to their lysate, supernatant, and cell-free culture media.
20,000 PC-3 cells were seeded per well of 96-well plates in phenol red-free RPMI with 10% FCS for 24 h. Media was then
replaced with serum-free RPMI containing different concentrations of Au-PEG NPs and cells were incubated with NPs for
2 h. The supernatant of some cells was then removed and loaded in separate wells for MTT incubation. The remaining
cells were lysed using the RIPA (Radioimmunoprecipitation assay) lysis buffer and covered with the same volume of
NP-free media. The wells containing cells, cell lysate, cell supernatant, and cell-free culture media were then incubated with
0.4 mg/mL MTT for 3 h before OD measurements, (d) The fold change in OD levels for PC-3 cells in Figure 13c compared
to their corresponding cell-free culture media with the same concentrations of Au-PEG NPs. The same data is presented
as dark bars for cells incubated with the same concentrations of Au-PEG NPs in serum-containing media (RPMI + 10%
FCS). Data shown as mean OD of triplicate wells and error bars represent SD (standard deviation). ** p-value < 0.005,
*** p-value < 0.0001.

The MTT assay on PC-3 cells cultured in phenol red-free serum-free RPMI also showed
a non-significant increase in OD (from 1.25 to 1.53) when comparing 0.5 nM to 5 nM NP
concentration (Figure 13c). On the other hand, significant increases in OD were measured
for the cells’ supernatant and culture media containing 5 nM NPs (Figure 13c, p-value
< 0.005 for cell supernatant and <0.0001 for culture media). The OD of cell lysate after
treatment with different NP concentrations (0, 0.05, 0.5, and 5 nM) were very similar (~0.3
OD, Figure 13c). In this case, the greatest influence of NPs on OD measurements was
due to NPs in the supernatant. While it is not uncommon to skip the washing step when
evaluating the cytotoxic effect of gold nanoparticles [63–66], we found that washing is
necessary to remove this interference. If NP uptake is much greater, such as at longer time
points or concentrations, we would also expect that NPs within the cells themselves will
also interfere with OD measurements. In this case, an artificially high OD measurement
could erroneously suggest greater biocompatibility.

The NPs could potentially affect the intracellular reduction of MTT if they interfere
with cellular biochemistry. To investigate such a possibility, we first needed to exclude
the optical confounding effect of Au-NPs on the OD. In this regard, we calculated the
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fold change in OD in the presence of cells, compared to cell-free media containing the
same NP concentrations (Figure 13d). The results showed small differences in the fold
change between non-treated and treated cells with 0.05 and 0.5 nM NP concentrations.
However, the fold change decreased from 3.5–3.7 times to 2.1–2.3 times when the Au-NP
concentration increased to 5 nM (Figure 13d). This could indicate that 2 h of incubating
PC-3 cells with 5 nM of Au-PEG NPs decreases the MTT reduction by cells.

Measuring the cytotoxic effect of AuNPs using the commonly used approach for
inferring cell viability or IC50 (half maximal inhibitory concentration), based on the MTT
assay results [63–72], however, would erroneously show an increase in cell viability when
cells were treated with 5 nM NPs. For instance, calculating cell viability percentage based
on the OD measured for PC-3 cells grown in FCS-free phenol red-free RPMI (Figure 13c)
would show around a 22% increase in cell viability ([treated cell OD (1.53)/non-treated
cell OD (1.257)] × 100 ≈ 121.72%). By considering the confounding effect of Au-NPs on
OD (Figure 13d), MTT reduction in cells treated with 5 nM Au-NP have actually decreased
around 60% compared to non-treated cells, [fold change in OD for treated cells ((2.165)/fold
change in OD for non-treated cells (3.763)] × 100 = 57.53%). This shows the importance
of using cell-free samples as negative controls to exclude the potential confounding effect
of Au-NPs, or any other tested treatments, to prevent erroneous measurements. Never-
theless, it has been a common practice to overlook this effect in measuring cytotoxicity or
biocompatibility of Au-NPs [63,64,67–71], including PEG-coated or PEG-containing gold
NPs/nanocomposites [65,66,72], for diagnostic or therapeutic purposes. While we have
shown the confounding effect of Au-NPs on MTT assay measurements, such effects need
to be considered for any other kind of treatments, as shown for TiO2 nanoparticles [34,42],
silicon nanowires [73], flavonoids [47,52], and plant extracts [51].

2.2. MTT Reduction Measurement at the Single-Cell Level Using Image Cytometry

Image cytometry has been used in a few studies to measure intracellular formazan pro-
duction at the single-cell level, called MTT Image cytometry [14,42,62]. The measurement
has been done either by measuring the intracellular light intensity in inverted grayscale
images taken by bright-field microscopy [14] or by calculating the light absorbance us-
ing optical filters within the formazan absorption spectrum wavelength range (around
500–570 nm) [42,62].

Single-cell cytometry is generally a valuable tool for assessing cell population het-
erogeneity [74], identifying subpopulations involved in macroscale observations [75], and
modeling the stochastic nature of cell biology [76]. The MTT Image cytometry can also
address the confounding effect that some non-cellular variables (such as interference from
culture media) have on the bulk MTT assay measurements. Moreover, single-cell cytometry
could address some pitfalls of the MTT bulk assay by assessment of changes in the cell
morphology along with the single-cell level MTT reduction. This was for instance previ-
ously shown by detecting cisplatin-induced growth-arrested giant cells known as dormant
cancer cells that can reduce MTT 10 times more than non-treated cells and cause an un-
derestimation of the proliferation block caused by cisplatin in the bulk measurements [35].
However, MTT Image cytometry may still have some of the limitations of the bulk MTT
assay such as the optical interference from treatments uptaken by cells (e.g., Au-PEG
nanoparticles) or MTT reduction by apoptotic cells. Moreover, the probable presence of
intracellularly formed extracellular crystals and the confounder effect of excluding them
from single-cell level measurements should not be overlooked. The MTT Image cytometry
studies, however, have been limited to the analysis of intracellular formazan [42,62].

Imaging PC-3 cells after 3 h of MTT incubation using light microscopy, we observed
a considerable number of extracellular formazan crystals (Figures 11a and 13). While
some of the crystals appeared to be attached to the cell surface, others appeared to be
suspended in the supernatant as they were observable at a different focal plane from the
attached cells (Figure 14). In a separate experiment using the Incucyte live-cell imaging
system (phase-contrast microscopy, ×10 magnification); however, we observed many
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fewer extracellular crystals at around the same incubation time (Figure S4). This could
be explained by the Incucyte system using a focal plane fixed at the bottom of the wells.
Therefore, the imaging system capabilities should also be considered in interpreting the
data in MTT Image cytometry.
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Figure 14. The heterogeneous location and morphology of intracellularly formed MTT-derived
formazan. Light microscopy image (×20) showing formazan aggregates in PC-3 cells incubated with
0.4 mg/mL MTT for 3 h. Purple formazan aggregates are granular inside the cells (dashed arrows),
but needle-shaped when located on the cell surface (red arrows), or suspended in the supernatant
(stars).

While the common assumption in light microscopy imaging studies has been that
the needle-shaped crystals remain attached to the cell surface [5,40,41], our observations
indicate that they can detach from the cell surface over time and suspend in the supernatant.
Therefore, using light microscopy, it is difficult to associate any observed crystal aggregate
with a specific cell. To include all the intracellularly formed formazan in the measurements,
the imaging time needs to fall before the extrusion of intracellular formazan for every
single cell. Imaging all the single cells also needs to be done at the same time point after
MTT addition, when a sufficient level of MTT has been reduced to enable comparative
analysis between single cells and evaluating intercellular heterogeneity. Imaging PC-3 cells
from 4 h before up to 3 h after MTT addition, using the Incucyte live imaging system (×10
magnification), we observed that the first needle-shaped extracellular formazan crystals
appear at ~2.5 h after MTT addition (Figure S4)—that was close to our measurement time
point for the bulk assay. However, the appearance of extracellular formazan crystals at
the cell surface has been reported to be very time-dependent and vary dramatically across
different cell lines as well as cells of the same population [5,40,41]. While in some studies,
no or a few extracellular crystals were observed after 1.5–4 h of MTT incubation [14], in
other studies, the crystals have been reported to appear on the surface of 2–10% of cells as
soon as 30 min after MTT addition [5,41], the majority of cells between 2 [41] and 3 h [5]
after incubation, and 100% of the cells after 3–6 h of incubation with MTT [5,40]. The
gradual appearance of these extracellular crystals was associated with a gradual decrease
in intracellular formazan-containing granules that started to form as soon as 5 min after
MTT addition [5,40,41]. These time variations could be attributed to the dependence of the
formazan extrusion rate on the cell type [5,77], the cell growth phase (slower in exponential
phase compared to stationary phase) [5], and the tested treatments [40]. Hence, determining
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an optimum imaging time point generalizable to all or at least the majority of cells can be
difficult.

3. Materials and Methods
3.1. Defining the Optimum Cell Density, MTT Concentration, and MTT Incubation Time in the
Bulk MTT Assay on PC-3 Cells

To assess the effect of cell density, MTT concentration, and MTT incubation time on the
MTT assay results and find the optimal values for these parameters, we seeded PC-3 cells
(ATCC, Manassas, VA, USA) of passage number 12 on three 96-well Microplates (Corning®,
New York, NY, USA) with an area per well of0.32 cm2, varying the cell seeding density
(0, 5000, 10,000, and 20,000 cells per well, respectively, corresponding to an estimated 0%,
22.5%, 45%, and 90% of confluency for PC-3 cells at the time of the OD measurements
(27–30 h after seeding) based on our light microscopy observations) and allowed them to
grow in a humidified incubator at 37 ◦C with 5% CO2 for 24 h (the doubling time of PC-3
cells) in phenol red (PR)-containing RPMI (Gibco Roswell Park Memorial Institute 1640,
Thermo Fisher Scientific, Waltham, MA, USA), containing 10% fetal cow serum (Gibco™
Fetal Bovine Serum, Thermo Fisher Scientific, Waltham, MA, USA) and 1% penicillin–
streptomycin (Gibco™ Penicillin-Streptomycin, Thermo Fisher Scientific, Waltham, MA,
USA), of 100 µL per well in total. Although no nanoparticle was added to the cells at
this stage, to make the conditions consistent with our later experiments with Au-NPs, we
considered the required time of 2 h for incubating the cells with Au-NPs, so MTT reagent
(Invitrogen™, Thermo Fisher Scientific, Waltham, MA, USA) was added to cells 26 h after
seeding. We added 10 µL of a concentration series (0, 1, 2, 3, 4, and 5 mg/mL) of MTT
solution in PBS to each well. Each condition (considering both MTT concentration and cell
density) was repeated in triplicates in each 96-well plate. We also loaded 6 wells per plate
with 100 µL of PBS- as negative controls to 3 of which we added 10 µL of PBS (no MTT), and
to the other 3 we added 10 µL of 5 mg/mL MTT–PBS solution. Each of the 3 plates was used
to assess the MTT reduction and formazan crystal formation at a specific time point of 2, 3,
and 4 h after MTT addition. At each time point, 50 µL of DMSO (Sigma-Aldrich, Burlington,
MA, USA) was added to each well of the according plate following removing 85 µL of the
supernatant. The DMSO was then mixed with the cell–MTT suspension for 10 s using a
plate shaker followed by incubating the mixture at 37◦ C for 10 min to allow DMSO to
solubilize the formed crystals making a homogenous solution. The 570/10 nm wavelength
light absorption in each well was then measured in the OD (optical density) unit using the
FlUOstar Optima Microplate Reader (BMG LABTECH, Ortenberg, Germany).

3.2. The Effect of Au-PEG NPs and Culture Media Components In-Solution

To assess the possible interference of the used cell culture media and polyethylene
glycol (PEG)-coated gold nanoparticles (Au-NPs) in the light absorption measurement via
light absorption or abiotic reduction of MTT by the media components, we first measured
the UV-Vis absorption spectrum of RPMI, with or without FCS, PR, and/or PEG-coated Au-
NPs (PEG-Au-NP). The PBS with or without PEG-Au-NP samples were used as negative
controls. The PEG-Au-NP solution in Milli Q water (see the description of synthesis [78]
and characterization of the nanoparticles in the Supplementary Materials) was added
to RPMI solutions or PBS to make the final NP concentration of 0.2 nM, while the same
volume of Milli Q water with no NPs was added to the corresponding RPMI solutions
as NP-free negative controls. The volume of 2250 µL of each solution with or without
NPs was loaded per well of two 12-well plates in duplicates and incubated at 37 ◦C for
2 h. The volume of 225 µL of MTT–PBS solution or just PBS was then added to each of
the duplicates and incubated at 37 ◦C for a further 3 h. The UV-Vis absorption spectrum
was then measured using the Evolution™ 300 UV-Vis Spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). The PBS with no MTT was used as the blank sample.
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We also measured the 570/10 nm wavelength light absorption by the same solutions
without and with 3 different dilutions of Au-PEG-NPs (0.05, 0.5, and 5 nM). The volume
of 100 µL of each solution was loaded in each well of two 96-well plates. Each condition,
considering the presence or absence of FCS or PR in media as well as the NP concentration,
was repeated in triplicates in each plate. After 2 h of incubation of the solutions at 37 ◦C,
10 µL of 4 mg/mL MTT solution in PBS or just PBS was added to each well of respectively
the first and the second plates. The plates were then incubated at 37 ◦C for further 3 h. The
570/10 nm wavelength light absorption in each well was then measured in OD (optical
density) unit using the FlUOstar Optima Microplate Reader (BMG LABTECH, Ortenberg,
Germany).

3.3. The Effect of Supernatant Washing, Serum Starvation, and Phenol Red in Cells and
In-Solution

Based on our results in experiment 1, the optimum values of the cell seeding density,
stock MTT concentration, and cell–MTT incubation time for performing the MTT assay on
PC-3 cells were shown to be, respectively, 20,000 cells/well of a 96-well plate, 0.4 mg/mL,
and 3 h.

To assess the validity of the MTT assay in the assessment of the viability of PC-3 cells,
we evaluated the effect of serum starvation on the MTT assay results. We also aimed to
evaluate the effect of the presence of PR in the culture media in both serum-fed and serum-
starving cells. In this regard, we seeded 20,000 PC-3 cells/well in two 96-well plates using
100 µL/well of PR-free or PR-containing RPMI (containing 1% Penicillin–Streptomycin)
and containing none or 10% FCS as the culture media. The same volume of the same types
of culture media was loaded in wells with no cells as corresponding negative controls.
Each condition was repeated in one (considering the presence of PR) or two (considering
the presence of cells and/or FCS) series of triplicates in each plate. The cells were allowed
to grow in a humidified incubator at 37 ◦C with 5% CO2 for 24 h. Twenty-six hours after
seeding, 10 µL of 4 mg/mL MTT solution in PBS or just PBS were added to each well, and
the plates were incubated at 37 ◦C for a further 3 h. After 3 h of incubation, in the first
triplicate series of each condition as well as in PR-containing wells, we removed 85 µL of
the supernatant from each well and added 50 µL DMSO per well, mixing following the
same protocol in the previous experiment.

As in many studies and MTT routine protocols, all or a volume of supernatant is
removed and/or cells are washed immediately before adding DMSO; therefore we ques-
tioned if removing the media and washing the cells could change the measured light
absorption by washing out some of the extracellular formazan crystals and if this decrease
in absorption level would be consistent between samples or act as a confounder variable.
To address this question, in the second triplicate series of each condition (considering the
presence of cells and/or FCS), we washed each well twice with 100 µL of PBS and then
added 25 or 110 µL of fresh media of the same type to each well of respectively the first
and the second plate. In the first plate, DMSO was added as for the first series of wells,
and the 570/10 nm wavelength light absorption was then measured in each well using
the FlUOstar Optima Microplate Reader (BMG LABTECH, Ortenberg, Germany). The
second plate was used for imaging using the light microscopy mode of the Olympus IX83
Fluorescence microscope, so no DMSO was added to the second plate since DMSO destroys
the cells and solubilizes formazan crystals. For non-washed wells in the first plate, 85 µL of
media was removed before adding DMSO. In the second plate that was used for imaging,
however, no media was removed in non-washed wells.

3.4. The Effect of Au-PEG NPs, Cell Lysate, and Cell Secretome in Cells

To assess if the released intracellular enzymes following cell lysis or the viable cells’
secretome could also contribute to MTT reduction and the formation of formazan crystals,
we performed the MTT assay, respectively, on the PC-3 cells’ lysate and supernatant. We
seeded PC-3 cells in PR-free FCS-containing RPMI (including 1% penicillin–streptomycin)
in two 96-well plates. The cells were allowed to grow for 24 h in a humidified incubator at
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37 ◦C with 5% CO2 equipped with the Incucyte® ZOOM Live-Cell Analysis System (Sarto-
rius AG, Göttingen, Germany), where imaging of one triplicate series of cell-containing
wells in one of the plates was planned every 10 min starting from 2 h before NP treatment
up to 3 h after MTT addition. Imaging was performed in phase-contrast mode with ×10
magnification. Twenty-four hours after seeding, the cells’ supernatant was removed, and
cells were washed twice with PBS. A volume of 100 µL of FCS-free or FCS-containing
RPMI containing different concentrations of Au-PEG-NPs-water solutions (0, 0.05, 0.5,
5 nM) was then added to each well. Each condition (considering the NP concentration
and the presence of FCS in the media) was repeated in 2 series of triplicates. The same
solutions were also loaded in empty wells with no cells (100 µL/well) as negative controls
in triplicates.

After 2 h of incubation with NPs in the same incubator, the first series of the cells’
supernatant in one of the plates was removed and loaded in corresponding wells of a
separate empty plate one by one. Then the cells were washed once with PBS and were lysed
by adding 20 µL of RIPA buffer (containing no protease inhibitor) to each well followed by
a mechanical scratch using the 20 µL pipette tip. Then 80 µL of fresh media of the same
type, but with no NP was added to each well to make the total volume consistent with
the volume in other wells. The cells in the second series of wells, that were imaged by the
Incucyte ZOOM, were left intact as positive controls. Then 10 µL of 4 mg/mL MTT–PBS
solution was added to every well and the plates were incubated in the previously used
incubator at 37 ◦C for 3 h. After 3 h of MTT incubation, images were taken from all the
plates using the same live-cell analysis system. Then, without removing any supernatant,
150 µL of DMSO was added to each well. The DMSO was then mixed with the wells’
contents and the mixtures were incubated at 37◦ C for 10 min to allow DMSO to solubilize
the formed crystals. The 570/10 nm wavelength light absorption was then measured in
each well using the FlUOstar Optima Microplate Reader (BMG LABTECH, Ortenberg,
Germany).

4. Conclusions

In this study, we aimed to investigate the validity, reliability, and limitations of the
MTT assay at cell population (bulk assay) and single-cell (image cytometry) levels. We
also aimed to unfold some aspects of the underlying mechanism behind the MTT assay
and how these aspects need to be considered in designing and performing MTT assay
experiments, as well as analyzing and interpreting the assay results.

Cell number, MTT concentration, and MTT incubation time effect assay measure-
ments. Our results demonstrate the necessity to optimize these parameters for each cell
line/experimental condition. The optimum values of these parameters are achieved when
the assay could optimally reveal the differences between different cell populations by
allowing cells to show their maximal capability in MTT reduction but do not cause a
significant level of cell death/toxicity before the assay measurements. Furthermore, to
compare the effect of different treatments/conditions on MTT reduction, we recommend to
do the comparative analysis changing these parameters to avoid misleading comparisons
and have a broader perspective on the treatment response.

It is in such an optimum condition where the OD values could be applied as an
approximate estimation of the average level of MTT reduction in each cell population.
However, the OD level is not a simple representation of just one parameter such as cell
viability, cell proliferation, or metabolic activity, but is a sum of many factors at the single-
cell and cell population level as well as other cellular factors such as cell growth phase and
the rate of MTT uptake and formazan extrusion that all could be potentially affected by the
tested treatment(s)/culture media. This complexity could even cause false-positive results
when some treatments are being tested using MTT assay. For instance, radiation is known
to cause cell death through DNA damage, but it increases cell membrane permeability [73]
and mitochondria number [74] and activity [32] which both could enhance formazan
formation through increasing MTT uptake and reduction, respectively.
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To be able to relate the differences in OD measurements to changes in a specific
variable such as cell viability, we need to make sure of the consistency of other effective
variables among the conditions. The correlation pattern between the assessed dependent
variable and the OD values for each cell type/experimental condition also needs to be
assessed and referenced in the data analysis.

Other than the cellular factors affecting OD measurements, there are also potential non-
cellular confounders that need to be considered. These factors include the optical and/or
chemical interference of culture media components, tested treatment(s), and formazan-
solubilizing agents. Chemical interference includes abiotic extracellular reduction of MTT
and/or other types of chemical reactions that could indirectly affect the OD measurements.

The aim of our study was to identify potential confounding variables that may affect
the assay measurements. Therefore, all the measurements in this study are used as a tool
to represent potential pitfalls, limitations, and misinterpretations of the assay and the
necessity of optimization experiments. To gain a quantitative measure of the influence
of each of these variables, technical replication would be required and may be necessary
depending on the system being studied and for what purpose. Considering our model
system, our data indicate the optimum values for performing bulk MTT assays to be 3 h of
incubation of 20,000 cells/100 µL/well in a 96-well plate (seeding density) with 10 µL of
4 mg/mL MTT–PBS solution.

In our experiments, we did not observe any significant optical or chemical interference
by MTT or RPMI itself. Our data did not show any significant effect of the presence of
phenol red in the culture media on the MTT assay measurements on PC-3 cells. However,
presence of phenol red and 10% FCS caused some changes in the OD levels of media
solutions depending on the media composition. Therefore, we recommend replacing
media with phenol red-free serum-free media before MTT addition to minimize any pos-
sible error. Our results showed that long-term serum starvation significantly affects cell
viability (based on assessing cell morphology) and thus alters the MTT assay bulk mea-
surements. However, short-term serum starvation did not cause a significant change in
OD measurements. Our data also suggests that enzymes released by PC-3 cells did not
significantly contribute to extracellular MTT reduction and thus was not a confounder
variable in our MTT assay measurements. However, this may vary between different cell
types, experimental conditions, and treatments.

The Au-PEG NPs at 5 nM concentration led to significant optical interference. This
confounding effect could be minimized by removing the supernatant and washing the
cells before incubation with MTT or using proper cell-free controls with the same NP
concentration.

We showed that the origin of extracellular needle-shaped formazan crystals in our
experimental conditions is most likely intracellular and thus these crystals need to be
included in MTT assay measurements. This means that washing or removing the cells’
supernatant before DMSO treatment could result in biased measurements by excluding
intracellularly formed extracellular crystals as well as loosely-attached cells that have
contributed to MTT reduction.

While the direct confounding effect of some of the extracellular and cell population-
level variables (such as cell number/proliferation) could be addressed in image cytometry
by measuring only the intracellular absorbance/intensity along with cellular morphologic
assessments at the single-cell level, there are still some limitations and considerations to
use this approach: First, the extremely heterogeneous rate of formazan extrusion makes
the reliability of such a measurement questionable. Image cytometry, however, may still be
a valuable tool for specific cell types in which the rate of formazan extrusion is sufficiently
slow as to not cause bias in intracellular measurements. Second, observing formazan
granules inside the cells at different stages of cell death is another limitation of image
cytometry which could be addressed by considering cell morphological features along
with formazan intensity in the data interpretation. Third, the possible optical interference
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of the tested treatment(s) in the intracellular absorption measurements also needs to be
considered and tested.

To summarize, as a tool to measure the cell viability, metabolic activity of cells, and/or
treatment cytotoxicity, the MTT assay necessitates several considerations (Table 1). These
may be addressed by performing extra optimization experiments which could be a time-
consuming and tedious, yet important, process. In many cases, complementary assays are
recommended to assist in the interpretation of MTT assay measurements. Nevertheless,
the assay has been commonly used as the main basis of such measurements, overlooking
the limitations and the necessity of performing optimization assays.

Table 1. Considerations in performing MTT assay.

Does the MTT assay represent what you aim to measure?
Have you optimized the following parameters?

n cell seeding number and density
n MTT concentration
n MTT incubation time

Do your culture conditions (such as culture media type, presence of serum, and phenol red in the
media, etc.) affect your assay measurement by either optical or chemical interference?
Are any effects of tested treatments considered that could affect the final OD measurements in a
direct or indirect way?

n MTT uptake and/or extrusion (e.g., cell membrane permeability/integrity)
n Cell number (e.g., proliferation)
n Cell metabolism (e.g., chemo/radio-induced senescence-like phenotype)
n Cell secretome (e.g., chemo/radio-induced senescence-associated secretory phenotype)
n Background absorbance and scattering
n Abiotic reduction of MTT

If your aim is a quantitative measurement of cell viability, have you defined how OD values relate
to the number of cells?

Based on your answers to the above questions:

n Is MTT assay an appropriate tool to answer your research question?
n Have you considered using appropriate control samples to reduce risk of misinterpretation of
data?
n Have you considered complementary assays to confirm MTT assay results?
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