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A B S T R A C T   

The larvae of Spodoptera litura (Fabricius) were reared on five host plants, Brassica oleracea, Nicotiana tabacum, 
Ricinus communis, Gossypium hirsutum, and Arachis hypogaea. The larvae were immunized with Bacillus thur-
ingiensis to observe the immune response. The results of total and differential hemocyte count were increased in 
B. oleracea, N. tabacum, and R. communis fed S. litura larval hemolymph. Similar results were observed in the 
parameter of nodulation, melanization, and phenoloxidase. Total protein was higher in R. communis fed larvae. 
Antioxidant levels like Catalase (CAT), Superoxide dismutase (SOD), Glutathione S- transferase (GST), Peroxi-
dase (POX), Lipid peroxidase (LPO), and Esterase (EST) was found in moreover all plant-feeding insect. High CAT 
activity was observed 2–6 h in R. communis, G. hirsutum, and A. hypogaea fed S. litura larval midgut and fatbody 
samples. Increased SOD activity in both midgut and fatbody at 2–12 h of B. oleracea, G. hirsutum, and A. hypogaea 
fed. GST activity was increased initially 2− 6 h in G. hirsutum and A. hypogaea. Increased POX activity was 
observed initially in all treated groups. Highest LPO observed at 6 h in N. tabacum in both midgut and fatbody. 
Whereas increased EST activity was observed in N. tabacum and B. oleracea. The results of the present study 
shows that nature of food influence the immunity against Bt infection. This information can be very useful for 
incorporating biological control program for insect pest.   

1. Introduction 

Insects are consumed varies types of host plant species and have 
varied types of nutrient quality in their food [1]. These plant nutrients 
play a vital role in insect development, reproductive, fecundity and also 
improve the immune defense mechanisms against their microbial in-
fections [1,2]. In previously reported the relationship between host 
plant food and insect immunity has concentrated on the quality and 
quantity of food nutrients [3,4]. 

Insect immune system is aimed at eliminating the invading patho-
gens and parasites by the response of cellular and humoral immunity 
[5]. This activates the several immune parameters against the microbial 
infections like alteration of hemocytes, coagulation, microaggregation, 
increasing phenoloxidase, and formation of melanin surrounding with 
toxic particles [6,7]. Humoral responses like, antimicrobial peptide 
production from fatbody cells have an effective role in killing the toxi-
cants [8]. Including, the antioxidant enzymes as part of an immune 
response against the pathogens [9,10]. This enzymes to control the ROS 

(Reactive oxygen species) generation from biotic and abiotic stress in 
insects [11,12]. ROS including, free radicals, oxygen ions, and organic, 
inorganic molecules. These molecules are increased when the exposure 
to pathogens and damage the cell structure [13–15]. In many studies, 
the antioxidant system shows a defense mechanism against ROS pro-
duction induced by pathogens [16,17]. The major antioxidant enzymes 
in insects are catalase, glutathione-S-transferase, superoxide dismutases, 
peroxidases, and esterase [18–22]. These enzymes are mostly found in 
lepidopteran larvae on infection with pathogens [23]. 

Spodoptera litura (Lepidoptera: Noctuidae) is a notorious insect pest it 
causes severe economic loss in crop fields [24]. Insect pest management 
has become increasing difficult nowadays and most insecticides are 
ineffective. Insect control has mainly relied on chemical insecticides for 
decades, which had led to the development of insecticide resistance. 
Using microbes and their metabolites are cheap and safe methods for 
control the insects for example, Bacillus thuringiensis (Bt). Bt is spores 
forming gram-positive bacteria that produce several insecticidal activ-
ities [25]. This biopesticide is mostly used to control lepidopteran insect 
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larvae [26]. Recently, the few studies reported that lepidopteran insects 
getting resistant to Bt by improving their immune status [27–29]. 

The ability of an insect to survive against any insecticide depends on 
its ability to produce a structural modification in receptors and to pro-
duce detoxification enzyme which can sequester/metabolize the toxins 
[30,31]. For this, the insect diet may play a vital role in the supply of 
nutrients required for increased protein synthesis [32]. The composition 
or the types of diet may influence an insects ability to survive the 
infection. A further immune response is also related to improving the 
defense mechanism of the individual. Hence the present study un-
derstands the influence of different plant diet on the immunological and 
physiological mechanisms in a Bt challenged S. litura larvae. 

2. Materials and methods 

2.1. Maintenance of insect 

The tobacco cutworm, S. litura eggs were purchased from National 
Bureau of Agricultural Insect Resources (NBAIR), Bangalore, India. 
Purchased eggs were transferred into the plastic tray (8 cm in diameter 
and 10 cm in height) and allow to hatching. The newly hatched larvae 
transfer on another plastic tray (30 cm in diameter and 55 cm in height). 
Caster leaves were provided daily to larvae until the larvae reached 
pupae. Pre-pupae were collected and transfer into a big plastic tray (30 
cm in diameter and 55 cm in height) containing soil for the complete 
pupal stage. Male and female pupae were identified to transfer into 
another plastic tray for adult formation. One male has two female pupae 
ware provide in a tray and covered with net cloth and allow to complete 
mating. The adults were fed with sugar solution through cotton balls and 
placed on top of the tray. Complete mating, the female adult were 
transferred to another plastic tray mentioned above and provide a 10 % 
sugar solution. The female adults produce the eggs masses were 
collected daily and hatched first instar larvae from this generation as 
used for testing. Newly hatched larvae were maintained with different 
plant leaves (Brassica oleracea (cabbage), Nicotiana tabacum (tobacco), 
Ricinus communis (castor), Gossypium hirsutum (cotton), and Arachis 
hypogaea (peanut)) up to 3 generations. Each treated plants have 30 
larvae and each 3 replicates. The maintaining procedure of S. litura was 
mentioned above. Same procedure were applied to control experiment 
(artificial diet containing, chickpea flour (200 g), yeast powder (30 g), 
ascorbic acid (3.5 g), sorbic acid (1 g), formaldehyde solution (2.5 ml), 
methyl-p-hydroxybenzoate (2 g), agar (14 g) and distilled water (500 
ml)). 

2.2. Microbial culture 

Bacillus thuringiensis (Bt) 4D1 strain was obtained from plant and 
microbial biotechnology laboratory, Periyar University, Salem. The 
culture was maintained on Luria Broth (LB) at 37 ◦C in a 50 ml conical 

flask with shaking at 200 rpm. 50 μl of mother culture transfer into 50 ml 
fresh LB medium and incubate at 37 ◦C for several hours. 10 ml of log- 
phase culture was centrifuged for 10 min at 7000 rpm in 4 ◦C. Collected 
bacterial pellet washed with 10 ml of cold sterile 5 mM phosphate buffer 
saline (PBS). After a wash the pellet was dry for 10 min and stored at 
− 20 ◦C for further use. 

2.3. Treatment with Bt cells 

The 3rd generation, the 5th instar S. litura larvae were used for 
experimental study. Larvae were immunized with an injection of Bt 4D1 
cells. The thin-micro syringe needle was dipped in bacterial pellet and 
injected to larval prolegs. Then the larvae were kept in 30 ◦C in dark and 
the hemolymph, midgut, and fatbody were collected at 2–24 h of 
exposure. The collected hemolymph sample were used for immunolog-
ical assay and tissue samples, midgut and fatbody were used enzyme 
activity. The same procedure was applied for the control experiment 
except it was injected with PBS without bacteria. The experiments 
conducted by 3 replicates and each replicates having 10 larvae from the 
each treated plant groups. 

2.4. Immunological assay 

2.4.1. Total hemocyte count (THC) 
The hemocytes were counted by using a hemocytometer, neubauer 

chamber. Collected hemolymph sample form 2–24 h was diluted twenty 
times with phosphate buffer saline (PBS) containing, 3.8 g of Na2HPO4, 
5.47 g of K2HPO4, making at 1 L of distilled water, with pH 6.6. 20 μl of 
hemolymph sample was placed on coverslip edge of hemocytometer and 
counted four corners ruled squires under phase contrast microscope 
(PCM) at 40× magnification. The total hemocyte was counted by the 
method of Jones [33]. 

Formula: 

THC (Cells/mm3) =
X × dilution factor x depth factor

Number of squares counted  

X = Total number of cells count, 
20= Dilution factor, 
10 = Depth factor, 
4= Number of squares count 

2.4.2. Differential hemocyte count (DHC) 
Collected hemolymph sample was fixed on glacial acetic acid for 2− 3 

min and the addition of PBS for 15 min to neutralize the hemocyte 
content. A drop of hemolymph sample was placed on a sterile glass slide 
to making a smear and added a few drops of Giemsa staining for 5 min. 
DH was counted under PCM with 40X magnification. The identification 
of DH count followed by Gupta [34]. 

Fig. 1. Total hemocyte count of Bacillus thuringiensis challenged Spodoptera litura larvae. The values are expressed as mean (±S.D) analyzed by Two-Way ANOVA. 
Asterisk (*) indicates significant difference among treatments with respect to control. (*) indicates (p<0.05), (**) indicates (p<0.001), (***) indicates (p<0.0001). 
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2.4.3. Microaggregation (nodulation) 
Nodulation assay was followed by Franssens et al. [35]. A drop of 

collected hemolymph sample was immediately placed on hemocytom-
eter for nodule/microaggregation count and the dark melanized nodules 
were observed under PCM with 40× magnification. 

2.4.4. Melanization activity 
Collected 2− 24 h of hemolymph sample was immediately centri-

fuged at 5000 rpm for 2 min to separate the plasma from the hemo-
lymph. 100 μl of melanized plasma was added into 96 well plates and 
measured at 450 nm. 2.5 mM of phenylthiourea (PTU) was added into 
collected hemolymph and centrifuged. The PTU supplemented plasma 
used as a negative control. The melanization activity was calculated by 
Freitak et al. [36]. 

2.4.5. Phenoloxidase activity assay (PO) 
PO activity followed by the method of Harizanova et al. [37]. 10 μl of 

hemolymph sample was diluted in 1 ml of ice-cold PBS and frozen at 48 
h. PO activity was measured by a frozen hemolymph sample was 
thawing at 37 ◦C for 5 min and centrifuged at 5000 rpm for 5 min. 
Collected the 100 μl of supernatant was added into 200 μl of 3 mM 
DL–dihydroxyphenylalanine (DL-DOPA) and incubated at 15 min in 
dark. The enzyme activity was measured at 490 nm for 45 min, using a 
spectrophotometer with dopamine as a substrate and enzyme expressed 
as unit/min/mg of protein. 

2.4.6. Total protein 
The protein was estimated by using the method of Lowry et al. [38]. 

2.5. Antioxidant and detoxification enzyme assay 

2.5.1. Sample preparation 
The collected tissue samples (midgut and fatbody) were homoge-

nized in 1 ml of ice-cold 50 mM PBS with 10 % glycerol. Sample mix-
tures centrifuge at 8000 rpm for 15 min in 4 ◦C. The collected 
supernatant was used for enzyme and metabolite assays. 

2.5.2. Catalase activity (CAT) 
CAT activity was followed by the method of Luck [39]. The enzyme 

mixture contained, 0.4 ml of 10 mM H2O2, 2.6 ml of 50 mM ice-cold PBS, 
and 40 μl of an enzyme. Measurement of enzyme reaction at 240 nm 
using a spectrophotometer. CAT enzyme expressed as 1 μmol of H2O2 
decomposition/min/mg of protein. 

2.5.3. Superoxide dismutase (SOD) 
SOD enzyme activity was determined by using the method of Mar-

klund and Marklund [40]. 3 ml of enzyme mixture contains, 2.8 ml of 
Tris-EDTA buffer, pH at 8.2 and 50 μl of enzyme extract. The enzyme 
mixture makes at final volume 2.9 ml of Tris-EDTA buffer and added 100 

Table 1 
Number of nodule formation counted in S. litura larval hemolymph after injec-
tion of with B. thuringiensis.  

Experimental 
Groups 

Time (Hours) 

2h 4h 6h 12h 24 h 

Control 6.3 ± 2.5 6.3 ± 2.5 8.6 ± 3.5 – – 
B. oleracea 64.33 ±

3.5*** 
94.6 ±
2.5*** 

125 ± 
5.0*** 

130.6 ± 
6.0*** 

84.3 ±
1.1*** 

N. tabacum 31.66 ±
2.8*** 

61 ±
3.7*** 

74.3 ±
3.5*** 

84.6 ±
5.5*** 

50 ±
1.1*** 

R. communis 35.33 ±
3.5*** 

60 ±
1.1*** 

98 ±
2.6*** 

117.6 ± 
2.5*** 

62.6 ±
1.1*** 

G. hirsutum 13.33 ±
3.5 

36 ±
2.6*** 

47.33 ±
2.8*** 

31 ±
4.5*** 

26 ±
1.7*** 

A. hypogaea 24.33 ±
3.5*** 

50.33 ±
3.5*** 

64 ±
4.6*** 

85 ±
4.5*** 

61 ±
1.7*** 

The values are expressed as mean (±S.D) analysed by Two-Way ANOVA. 
Asterisk (*) indicates significant difference among treatments with respect to 
control. Note: (***) indicates (p<0.0001). No nodules were found in the control 
treatment at 12 h and 24 h. 

Fig. 2. Melanization rate of Bacillus thuringiensis challenged Spodoptera litura larvae. The values are expressed as mean (±S.D) analyzed by Two- Way ANOVA. 
Asterisk (*) indicates significant difference among treatments with respect to control. (*) indicates (p<0.05), (**) indicates (p<0.001), (***) indicates (p<0.0001). 

Fig. 3. ProPO rate of Bacillus thuringiensis challenged Spodoptera litura larvae. The values are expressed as mean (±S.D) analyzed by Two-Way ANOVA. Asterisk (*) 
indicates significant difference among treatments with respect to control. (*) indicates (p<0.05), (**) indicates (p<0.001), (***) indicates (p<0.0001). 
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μl of 15 mM pyrogallol solution. The rate of SOD was measured at 440 
nm using a spectrophotometer and the total SOD was expressed as 
units/min/mg of protein. 

2.5.4. Glutathione-S-transferase (GST) 
GST activity was followed by the method of Habig et al. [41]. Re-

action mixture contains, 20 μl of an enzyme, 50 μl of 50 mM CDNB 
(1-chloro-2, 4-dinitrobenzene), 150 μl of 50 mM GSH (reduced gluta-
thione) and 2.78 ml of PBS. The mixtures was incubated for 2-3 min at 
20 ◦C and OD at 340 nm using a spectrophotometer. The rate of GST was 
calculated by 1 μmol of GSH with CDNB/min/ mg of protein. 

2.5.5. Peroxidase activity (POX) 
POX estimation was carried out using the method of Reddy et al. 

[42]. 0.5 μl of enzyme added into 2 ml of PBS, 1 ml of pyrogallol solu-
tion, 1 ml of 0.005 M hydrogen peroxide. The reaction mixture was 
incubated for 5 min at 25 ◦C and the enzyme reaction terminated by the 
addition of 1 ml sulphuric acid with 2.5 normality. The enzyme reaction 

was observed at 420 nm in a spectrophotometer and the rate of POX was 
calculated by Unit/min/mg of protein. 

2.5.6. Lipid peroxidase (LPO) 
LPO activity was estimated by the method of Esterbauer and 

Cheeseman [43]. The reaction mixture contains, 0.1 ml of an enzyme, 
1.9 ml of PBS was incubated at 37 ◦C for 1 h and addition of 10 % tri-
chloroacetic acid for precipitating the sample. The mixture was centri-
fuged at 5000 rpm for 15 min and collected supernatant into 1 ml of 1 % 
thiobarbituric acid (TBA). The samples allow to the boiled water bath for 
10 min and after that, the collected supernatant allows it to cool. The 
formation of malondialdehyde (MDA) concentration was measured at 
532 nm in a spectrophotometer and MDA concentration expressed as 1 
μmol/min/mg of protein. 

2.5.7. Esterase activity (EST) 
EST activity was determined by using the method of Kranthi [44]. 

The reaction mixture contains, 0.2 ml of an enzyme into 0.1 ml of 0.3 

Fig. 4. Total protein of Bacillus thuringiensis challenged Spodoptera litura larvae. The values are expressed as mean (±S.D) analyzed by Two-Way ANOVA. Asterisk (*) 
indicates significant difference among treatments with respect to control. (*) indicates (p<0.05), (**) indicates (p<0.001), (***) indicates (p<0.0001). 

Fig. 5. Catalase enzyme levels in Bacillus thuringiensis challenged Spodoptera litura larvae. The values are expressed as mean (±S.D) analyzed by Two-Way ANOVA. 
Asterisk (*) indicates significant difference among treatments with respect to control. (*) indicates (p<0.05), (**) indicates (p<0.001), (***) indicates (p<0.0001). 
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mM a-naphthyl acetate was incubated for 20 min in 30 ◦C dark. The 
mixture sample added with 1.0 ml of fast BB salt and sodium dodecyl 
sulfate (SDS) solution at a 2:5 ratio. EST activity was measured at 590 
nm using a spectrophotometer. The enzyme activity expressed as 1 
μmol/min/mg of protein 

2.6. Statistical analysis 

All experimental assays were performed using three replications, and 
the obtained assays data were analyzed by Bonferroni post-test (two- 
way ANOVA) using PRISM 5 software. The P-value (<0.05) was 
considered significant. 

3. Results 

3.1. Immunology assays 

3.1.1. THC and DHC count 
Increased total hemocyte count was found in B. oleracea and 

N. tabacum fed insects after 6 h and thereafter the hemocyte level was 
reduced. R. communis fed larval hemocyte level was increased in 4 and 6 
h of exposure and after that, the hemocyte level can decrease has come 
back to normal. Total hemocyte level was low in G. hirsutum and 
A. hypogaea fed larvae (Fig. 1). 

Identify the five types of differential hemocytes based on 
morphology (Fig. S1). Prohemocyte (PR) is a small cell with a large 
central nucleus and thin cytoplasm (Fig. S1(A)). Plasmatocyte (PL) is 
large and varies in size, with have a small nucleus and few granules in 
the cytoplasm (Fig. S1(B)). Granulocyte (GR) is the ellipsoidal shape and 
large nucleus and a high granule present in the cytoplasm (Fig. S1(C)). 

Oenocyte (OE) is an oval shape with a large unconventional nucleus 
within the cytoplasm (Fig. S1(D)). Spherule cell (SP) has a circular cell 
which have several spherules in the cytoplasm (Fig. S1(E)). 

Differential hemocyte count from 2− 24 h shows, Prohemocyte were 
increased after 12 h of B. oleracea, N. tabacum, and R. communis fed 
larvae. While decreased count was observed in G. hirsutum and 
A. hypogaea fed larvae when compared to the control. Increased Plas-
motocyte were observed in 2, 12 and 24 h of B. oleracea and N. tabacum 
fed larvae. 2− 24 h of increased plasmatocyte were observed in 
R. communis. Increased Granulocytes were found in 2− 6 h of 
R. communis fed larvae and after 6 h the hemocyte levels were reduced 
and come back to normal. 

Oenocyte count was increased in 2 h of R. communis after that there 
was a reduction level observed in till 12 h. The increased spherule cells 
were observed in 2 and 24 h of R. communis fed larvae (Fig. S2). 

3.1.2. Nodulation 
B. oleracea and R. communis fed larvae were found to induce maximal 

nodule formation in 6 h and 12 h after the injection (Fig. S3). Whereas 
the control group nodule formation was very low and after 6 h there 
were no nodules were found (Table 1). 

3.1.3. Melanization 
Melanization was significantly increased from the 2 h infection in 

N. tabacum and 4 h infection B. oleracea and R. communis, while 
G. hirsutum and A. hypogaea showed the low level of melanization when 
compare to the control (Fig. 2). 

3.1.4. Phenoloxidase 
Increased PO activity was observed between 2–12 h of infection and 

Fig. 6. SOD enzyme levels in Bacillus thuringiensis challenged Spodoptera litura larvae. The values are expressed as mean (±S.D) analyzed by Two-Way ANOVA. 
Asterisk (*) indicates significant difference among treatments with respect to control. (*) indicates (p<0.05), (**) indicates (p<0.001), (***) indicates (p<0.0001). 
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decreased activity was observed in after 12 h in all treatment groups 
(Fig. 3). 

3.1.5. Total protein 
Total protein content was observed after Bt exposure in 2–24 h of 

S. litura. Increased protein level was observed after 2–6 h of all treated 
groups. Total protein content was highest in N. tabacum and R. communis 
(Fig. 4). 

3.2. Antioxidant and detoxification enzymes assay 

Increased CAT activity in R. communis, G. hirsutum, and A. hypogaea 
fed S. litura in 2–6 h of midgut and fatbody sample (Fig. 5). SOD activity 
increased at 2–12 h of B. oleracea and 2, 4 and 12 h of G. hirsutum in 
midgut sample, whereas decreased activity was found in R. communis, 
N. tabacum, and A. hypogaea fed larvae. In fatbody, increased SOD ac-
tivity was found in 4–12 h of G. hirsutum and 4–24 h of A. hypogaea when 
compare to other treatment groups (Fig. 6). 

Increased GST activity in midgut, 2–24 h of G. hirsutum and 
A. hypogaea, while other treatments observed the decreased activity. In 
fatbody, increased activity was observed in all treated groups initially 
2–4 h and after that, it decreased activity was observed (Fig. 7). POX 
activity initially increased in 2–4 h of all treated groups and increased 
till 6 h of B. oleracea and G. hirsutum. After that, there was decreased in 
all groups. In fatbody, increased activity was in 6 h only of B. oleracea, 
N. tabacum and A. hypogaea (Fig. 8). 

LPO activity was increased at 6 h in N. tabacum in both midgut and 
fatbody. After that there was a decreased activity was observed (Fig. 9). 
Midgut, EST activity was increased in till 12 h of exposure in B. oleracea 
fed larva. Fatbody, increased in 2− 6 h of N. tabacum (Fig. 10). 

4. Discussion 

Lepidopteran insects are usually pests of crops. S. litura lepidopteran 
insect is a polyphagous pest feeding on several crops. In the present 
study, the S. litura larvae maintained on five different plants (diet) was 
analyzed after Bt exposure. Larval defense mechanism was assessed 
based on immunological, antioxidant and detoxification enzymes. 

Plant diet plays a vital role in the physiological mechanisms of 
vertebrate and invertebrate and also improve immunity [45,46]. The 
quality and quantity of plant diet determine insect fitness. Insects have a 
robust immune system comprising of hemocytes, AMPs, phenoloxidase, 
lysozyme, and other mechanisms that are activated in response to 
infection [5,7]. In this study, we found an increased THC in B. oleracea, 
and N. tabacum, and R. communis fed larvae when compared with control 
and other plant groups. This may the reason of food plants have suffi-
cient nutrient value and high utilization of food. Therefore enhance the 
immunity of S. litura when compare to the other two plants, G. hirsutum 
and A. hypogaea (Fig. 1). In other reports, the fluctuating hemocytes 
have seen in G. mellonella [47], Reticulitermes flavipes [48], Oxya 
japonica, Eurygaster integriceps [49] and Chilo suppressalis [50] after mi-
crobial exposure. While decreased THC was observed in Aspergillus flavus 
exposure on S. litura [51]. 

There is also a change in DH composition in insect hemolymph 
following microbial exposure. Identification of five hemocytes, prohe-
mocyte, plasmatocyte, granulocyte, oenocyte, and spherule cells are 
usually found in lepidopteran insects [52,53]. These hemocytes having a 
different functions in insect immunity, prohemocyte forms a putative 
stem cell population [54], plasmatocyte participate in nodulation, 
encapsulation, and in wound healing [55], granulocyte activates 
cell-mediated immunity. Oenocyte is involved in the melanization pro-
cess [56]. Whereas spherule cells are not much involved in immune 

Fig. 7. GST enzyme levels in Bacillus thuringiensis challenged Spodoptera litura larvae. The values are expressed as mean (±S.D) analyzed by Two-Way ANOVA. 
Asterisk (*) indicates significant difference among treatments with respect to control. (***) indicates (p<0.0001). 
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Fig. 8. POX enzyme levels in Bacillus thuringiensis challenged Spodoptera litura larvae. The values are expressed as mean (±S.D) analyzed by Two-Way ANOVA. 
Asterisk (*) indicates significant difference among treatments with respect to control. (**) indicates (p<0.001), (***) indicates (p<0.0001). 

Fig. 9. LPO enzyme levels in Bacillus thuringiensis challenged Spodoptera litura larvae. The values are expressed as mean (±S.D) analyzed by Two-Way ANOVA. 
Asterisk (*) indicates significant difference among treatments with respect to control. (*) indicates (p<0.05), (**) indicates (p<0.001), (***) indicates (p<0.0001). 
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functions [53]. In our previous study reported the five hemocyte types 
are a response to pesticide exposure on S. litura larvae [57]. In this study, 
identify the DH type against Bt exposure on S. litura larvae. Increased 
granulocyte and plasmatocyte levels in B. oleracea, N. tabacum, and 
R. communis when compared with G. hirsutum, and A. hypogaea fed 
larvae which suggest an increased cell-mediated immunity and nodu-
lation and encapsulation. Other previous studies was reported prohe-
mocyte, granulocyte, and oenocyte were observed in the pea aphid, 
Acyrthosiphon pisum against parasite exposure [58]. 

Nodulation is one of the cellular responses of insects against mi-
crobes [47]. Bt toxin initiates nodule formation in S. litura larvae, the 
highest nodulation was observed in B. oleracea and R. communis fed 
larvae and no nodules were found in control group after 12 h and 24 h of 
treatment. A similar result was found in fungal pathogen exposure to 
Chilo suppressalis larvae [49]. Less number of the nodule was found in 
G. hirsutum, and A. hypogaea fed larvae, it may the reason of reduced 
THC. Gillespie et al. [59] has well established about the correlation 
between THC and nodule formation against pathogen infection. 

PO and melanization is a part of immune the response against the 
wounding/infection of invading microbes [60]. These enzymes hydro-
lyze the tyrosine to L-dihydroxyphenylalanine and oxidize the o-diphe-
nol to form a quinone [61]. The conversion of melanin inhibits the Bt by 
forming of encapsulation was observed in S. exigua and Heliothis vir-
escens [62]. In our experiments, the highest PO and melanization were 
observed in B. oleracea, N. tabacum, and R. communis fed larvae when 
compare to the control and other treated groups (Figs. 2 and 3), which 
corresponds to the increasing of hemocyte and nodulation. These results 
may suggest that melanin deposition also is complementary to nodule 
formation. Therefore, in insects, PO, melanization, and nodulation are 
important immune functions against microbial toxins [63–65,47,48]. 

Based on the immune response the total protein level was higher in 
N. tabacum and R. communis fed larvae. These host plants have rich 

nutrients that enhance the protein content in the larval hemolymph. 
CAT enzyme is involved in oxidative stress and H2O2 scavenging 

mechanism in insects [66]. Here, the highest CAT activity was observed 
in R. communis, G. hirsutum, and A. hypogaea fed larvae because this 
plant leaves may be containing high antioxidants levels when compared 
to the other plant leaves (Fig. 5). In previous study, increased CAT ac-
tivity was observed in silkworm (Bombyx mori) fat body [67], and other 
lepidopteran insects, G. mellonella [17], Helicoverpa armigera [68], 
S. litura [50], and including other hemiptera insect, Bemisia tabaci [69]. 

SOD and GST pay a protective role from oxidative stress [70–73]. In 
this study, the highest SOD and GST activity was observed in G. hirsutum 
and A. hypogaea (Figs. 6 and 7). Similar results, the increasing SOD ac-
tivity were observed in S. litura larvae [50] and increasing GST was seen 
in G. mellonella [67]. Therefore the results suggest that both enzymes 
play a vital role in the elimination of ROS. 

POX is an important antioxidant enzyme involved in the H2O2 break 
down in insects [74]. Our study, the POX activity initially increased at 
all treated groups in midgut sample when compare to the control 
(Fig. 8). Similar increased POX activity were observed in Apis mellifera 
against microbial exposure [75]. 

LPO is involved in the protection of cellular damage from toxin. In 
the present study, LPO activity was increased in 6–12 h of all treatment 
(Fig. 9). Therefore, the insect suffers from cellular damage within 6 h of 
Bt exposed. These similar results were observed in other species, Bac-
trocera dorsalis [73], and Scapharca broughtonii [76]. 

Insect EST is metabolized a wide range of xenobiotic. EST activity 
was increased in B. oleracea and N. tabacum fed larva in both midgut and 
fatbody when compare to the control (Fig. 10). Similar results were 
observed in E. integriceps species with microbial exposure [77]. From this 
study, we suggest that esterase had an important role in the metabolism 
or detoxification of microbes in the insect. 

Fig. 10. Esterase enzyme levels in Bacillus thuringiensis challenged Spodoptera litura larvae. The values are expressed as mean (±S.D) analyzed by Two-Way ANOVA. 
(*) indicates significant difference among treatments with respect to control. (*) indicates (p<0.05), (***) indicates (p<0.0001). 
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5. Conclusions 

In this study, the effect of Bt on S. litura fed with five host plant were 
evaluated. R. communis, B. oleracea, and N. tabacum fed larvae S. litura 
improve their defense mechanisms against the microbial infection when 
compared with other plant treatment G. hirsutum, and A. hypogaea 
including control. Therefore the host plant and their nutrients may be 
regulating S. litura survival ability to overcome pathogenic infections. 
The presence of host plants in the field, the condition needs to be 
considered to avoid plant pest infecting species. 
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