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Abstract: Calcium as a secondary messenger regulates the phosphorylation of several membrane-bound
proteins in brain and liver mitochondria. Regulation of the activity of different protein kinases and
phosphatases by Ca2+ occurs through its binding with calmodulin. The protein phosphorylation is
strongly dependent on the Ca2+-induced mitochondrial permeability transition pore (mPTP) opening.
2′,3′-Cyclic nucleotide-3′-phosphodiesterase (CNPase) was phosphorylated by protein kinases A
and C. CNPase and melatonin (MEL) might interact with calmodulin. The effects of the calmodulin
antagonist calmidazolium and the inhibitor of protein kinase A H89 on mPTP opening in rat brain
mitochondria of male Wistar rats were investigated. In addition, the role of CNPase, serine/threonine
kinases, and MEL in the mPTP opening was examined. The anti-CNPase antibody added to rat
brain mitochondria (RBM) reduced the content of CNPase in mitochondria. The threshold [Ca2+]
decreased, and mitochondrial swelling was accelerated in the presence of the anti-CNPase antibody.
H89 enhanced the effect of anti-CNPase antibody and accelerated the swelling of mitochondria, while
CmZ abolished the effect of anti-CNPase antibody under mPTP opening. The levels of phospho-Akt
and phospho-GSK3β increased, while the MEL content did not change. It can be assumed that
CNPase may be involved in the regulation of these kinases, which in turn plays an important role in
mPTP functioning.

Keywords: permeability transition pore; protein phosphorylation; serine/threonine kinases; calmodulin;
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1. Introduction

The protein phosphorylation/dephosphorylation system regulates many cell functions and is
involved in signal transduction. It can significantly influence the structural and morphological features
of protein [1]. Many kinases and phosphatases responsible for phosphorylation and dephosphorylation,
respectively, accomplish their functions in the cell primarily outside mitochondria but it is known that
many protein kinases, phosphatases, and related proteins are also contained inside mitochondria [1].
One of the main protein kinases found in mitochondria is serine/threonine-activated kinase Akt,
also known as protein kinase B [2]. Several studies showed that mitochondrial Akt catalyzes a
phosphorylation and inactivates the pro-apoptotic protein BAD, and the recruitment of Raf-1 to the
mitochondria promotes cell survival [3,4]. Recent investigations discovered new targets for mitochondrial
Akt such as Complex V of the mitochondrial electron transport chain and hexokinase-II [5,6]. Akt also
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has a direct effect in mitochondria, which is mediated by phosphorylation of hexokinase-II, resulting
in the protection of mitochondria from oxidants or the opening of the Ca2+-induced mitochondrial
permeability transition pore (mPTP) [6]. The mPTP opening results in the inhibition of respiration,
mitochondrial swelling, the inner membrane depolarization, and the release of pro-apoptotic factors [7].
Another serine/threonine kinase, GSK3β, is present in mitochondria of the rat cerebellum [8]. GSK3β
regulates the function of mitochondrial proteins such as adenine nucleotide translocator (ANT) and
cyclophilin D [9–11]. It is known that the inhibition of GSK leads to a lag in the opening of mPTP in
response to oxygen radicals [12]. It has been suggested that the mPTP opening is a causative event
in cell death during myocardial ischemia/reperfusion impairment [13,14]. GSK3β is localized in the
cytosol and the nucleus but its action focuses on mitochondrial proteins; therefore, the knowledge
of its function is of great interest. It was reported that the content of total and phosphorylated
GSK3β in mitochondria of isolated rat hearts subjected to ischemia/reperfusion increases, and the
protein–protein interaction between GSK3β and VDAC or ANT enhances [15]. Phosphorylated GSK3β
inhibits mPTP opening by a variety of mechanisms [16,17]. Ca2+, as a second messenger, might regulate
the activity of different protein kinases and protein phosphatases through binding with calmodulin
(CaM) [18]. CaM is a Ca2+-binding protein, which interacts with a great number of target proteins and
regulates their functions. CaM is also found in great amounts in the nervous system where it interacts
most intensively with the myelin basic protein, which has been confirmed by structural studies [19–22].

Recently a neuroprotective protein has been identified as 2′,3′-cyclic nucleotide-3′- phosphodiesterase
(CNPase) in rat brain mitochondria (RBM), and it has been shown that CNPase protects mitochondria
from mPTP opening [23]. It is known that CNPase (CNP, EC 3.1.4.37) catalyzes the hydrolysis of
2′,3′-cyclic nucleotides to form the corresponding nucleoside 2′-monophosphates [24]. The functions
of CNPase in mitochondria are presently poorly understood. CNPase substrates (2′,3′-cAMP and
2′,3′-cNADP) were found to be able to accelerate mPTP opening in RBM as well as in rat liver mitochondria
(RLM) [23], which indicates potential interaction of CNPase with the modulators of mPTP in mitochondria.
CNPase interacts with RNA, CaM, and the cytoskeleton proteins [25]. It also inhibits translation to
modulate mitochondrial membrane permeability and has putative ATP/GTPase activity. The addition of
the anti-CNPase antibody to a mitochondrial suspension was found to protect mitochondria from mPTP
opening [26,27]. CNPase is phosphorylated by protein kinase A (PKA) and protein kinase C [28].

The hormone of the pineal gland melatonin (N-acetyl-5-methoxytryptamine, MEL) is a highly
conserved molecule found in a variety of organisms, from unicellular organisms to vertebrates [29,30].
Two isoforms of the melatonin receptor, MT1 and MT2, were found in the brain and peripheral
tissues of mammals [31–33]. Both isoforms are expressed in brain mitochondria. It is believed that
the interactions of MEL with its receptors may be involved in mitochondrial cell death, although
melatonin (MEL) may also have other, non-receptor-mediated targets. MT1 was reported to be
contained predominantly in the mitochondrial fraction [34,35]. Recently, we have found that MEL
retains CNPase inside mitochondria to protect cells against the deleterious effect of 2′,3′-cAMP in
aging [36]. Myllykoski and coworkers have shown that CNPase directly interacts with CaM in a
calcium-dependent manner [37]. MEL interacts with CaM, G-proteins, protein kinase A, and adenylyl
cyclase, which are involved in calcium signaling and the cAMP-signaling cascade [38]. The aim of
the present work was to study the effect of the CaM antagonist calmidozolium (CmZ) and the PKA
inhibitor H89 on the functional state of RBM upon mPTP opening and the role of serine/threonine
kinases, CNPase, and MEL in this process.

2. Results

We measured the parameters of mPTP function such as Ca2+ retention capacity, oxygen
consumption, and RBM swelling and compared them in different experimental conditions (in the
presence of CmZ (30 µM), H89 (5 µM), the anti-CNPase antibody (0.18 µg/mL) and their combination).

At first, we examined the influence of these agents on the Ca2+ retention capacity of RBM upon
mPTP opening (Figure 1). Under all experimental conditions, the first addition of Ca2+ (50 nmol/mg
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of protein) to RBM led to an intensive accumulation of Ca2+ in mitochondria (Figure 1a, curve 1).
However, in control conditions, the sixth addition of Ca2+ (each addition after the first, 100 nmol of Ca2+

per mg of protein) to RBM was not loaded and led to the mPTP opening. The release of accumulated
Ca2+ (mPTP opening) occurred after the sixth and fifth addition of Ca2+ to RBM in the presence of
CmZ (curve 2) and H89 (curve 3), respectively. The anti-CNPase antibody induced mPTP opening
after the fifth pulse (curve 4). The addition of CmZ and H89 to Anti-CNPase antibody-treated RBM led
to Ca2+ release after the sixth and fifth pulses, respectively (curves 5 and 6). Figure 1b demonstrates
quantitative changes in the Ca2+ retention capacity of Ca2+-loaded RBM under different conditions
(Figure 1a). The threshold Ca2+ concentration (a calcium concentration that leads to the mPTP
opening) was approximately 450 µM (Figure 1b, column 1). In the presence of Cmz, the threshold Ca2+

concentration in RBM increased by 10% (Figure 1a, curve 2, Figure 1b, column 2), while H89 (Figure 1a,
curve 3) did not change the threshold Ca2+ concentration compared to the control (Figure 2b, column
3 vs. 1). Recently we have identified the neuroprotective protein CNPase in RBM and showed that
CNPase protects mitochondria from mPTP opening [23]. Since, to our knowledge, there is no specific
inhibitor for CNPase, we tested whether our monoclonal anti-CNPase antibody [39] is able to modulate
CNPase-mediated effects on the functional parameters of mitochondria. We found that the threshold
Ca2+ concentration of RBM in the presence of the monoclonal anti-CNPase antibody (Figure 1a,
curve 4) was reduced by approximately 14% and was 390 µM (Figure 2b, column 4). The threshold
Ca2+ concentration of RBM did not change by the combined action of CmZ and the anti-CNPase
antibody (Figure 1a, comparison of curves 2 and 5; Figure 1b, columns 2 and 5). H89 strengthened the
inductive effect of the anti-CNPase antibody under their combined action when mPTP was opened
(Figure 1a, comparison of curves 3 and 6; Figure 1b, columns 3 and 6).
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an electrode chamber under conditions described in Materials and methods. (a) Representative traces 
of Ca2+ fluxes in RBM. Arrows show the times at which CaCl2 was applied (the first addition, 50 nmol 
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Figure 1. Effect of calmidozolium (CmZ), H89, anti-CNPase antibody, and their combined effect on
Ca2+ capacity in rat brain mitochondria (RBM). Isolated RBM (1.0 mg/mL protein) were incubated
in an electrode chamber under conditions described in Materials and methods. (a) Representative
traces of Ca2+ fluxes in RBM. Arrows show the times at which CaCl2 was applied (the first addition,
50 nmol of Ca2+ per mg of protein; the subsequent addition, 100 nmol each of Ca2+ per mg of
protein). (b) Quantitative analysis of Ca2+-capacity in the presence/absence of CmZ (30 µM), H89
(5 µM), and anti-CNPase antibody (0.18 µg/mL). The values shown are the means ± SD from three
independent experiments; * p ≤ 0.05 vs. the Ca2+ retention capacity without any additions, # p ≤ 0.05
compared with the Ca2+-capacity in the presence of anti-CNPase antibody. CNPase: 2′,3′-cyclic
nucleotide-3′-phosphodiesterase.
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Figure 2. Effect of CmZ, H89, and anti-CNPase antibody, and their combined effect on respiratory
activity in RBM. The conditions were the same as in Figure 1. (a) Representative curves of respiratory
activities. (b) A schema of calculation of oxygen consumption in states VO2

Ca St.2, VO2
Ca St. 3, VO2

Ca

St. 4. (c) Quantitative analysis of respiratory activity in the presence/absence of CmZ (30 µM), H89
(5 µM), and anti-CNPase antibody (0.18 µg/mL). The values shown are the means ± SD from three
independent experiments; * p ≤ 0.05 versus respiratory activity without any additions, # p ≤ 0.05
versus respiratory activity in the presence of anti-CNPase antibody.

Under the same conditions, the respiratory activity of the RBM was measured (Figure 2).
The experiments were carried out as described in Materials and Methods. Figure 2a shows the
curves of mitochondrial respiration in experimental conditions. Figure 2b shows a schema for the
calculation of oxygen consumption rates in state 2 (VO2

Ca St.2; ng-atom O min−1 mg−1 of protein),
state 3 (VO2

Ca St.3; ng-atom O min−1 mg−1 of protein), and state 4 (VO2
Ca St.4; ng-atom O min−1 mg−1

protein). The evaluation of oxygen consumption rates in different states is represented in Figure 2c.
As seen from the figure, no changes occur in the rate of substrate-dependent respiration (state 2) in all
experimental conditions used. The addition of Ca2+ (the first pulse) led to an increase in the respiration
rate in state 3 by 7% in the presence of CmZ and a decrease in the respiration rate by 7% and 20%
in the presence of anti-CNPase and anti-CNPase combined with CmZ, respectively. In the presence
of CmZ, the rate of oxygen consumption (State 4) in RBM was suppressed by 30% relative to the
control. The anti-CNPase antibody did not change the respiratory rate of RBM in state 4 (VO2

Ca St.4) in
comparison with control, while the combined effect of anti-CNPase antibody and CmZ decreased the
respiration rate (VO2

Ca St.4) by 15%. H89 also did not affect the activation of oxygen consumption in
RBM (VO2

St.4), but the combined action of the anti-CNPase antibody and H89 suppressed the oxygen
consumption in RBM (VO2

Ca St.4) by 15% compared to the control.
The addition of Ca2+ at the threshold concentration to the mitochondrial suspension incubated in

the standard medium described in Materials and Methods caused a decrease in light scattering, which
is indicative of mitochondrial swelling. At the next step, we compared the swelling of RBM in different
experimental conditions. Figure 3a shows the curves of Ca2+-activated swelling of RBM. In Figure 3b,
the average half-time of mitochondrial Ca2+-activated swelling (T1/2) is given. In the presence
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of CmZ and H89, the half-time of mitochondrial swelling increased by 45 and 37%, respectively.
Thus, the rate of swelling of RBM decelerated as compared to the mitochondrial swelling in control
conditions (without additions), while the time needed for the swelling of RBM after the addition of the
anti-CNPase antibody decreased by 30%. The anti-CNPase antibody tended to accelerate the swelling
of RBM compared with the swelling in the control. The combined action of the anti-CNPase antibody
and CmZ abolished the effect of anti-CNPase antibody used alone. RBM swelling slowed down two
times compared with the control (anti-CNPase antibody). The combined action of the anti-CNPase
antibody and H89 abolished the effect of the anti-CNPase antibody. RBM swelling decreased by 42%
compared with the control (anti-CNPase antibody alone).
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Figure 3. Effect of CmZ, H89, and anti-CNPase antibody, and their combined effect on RBM
swelling. (a) Curves of RBM swelling in the presence of CmZ (30 µM), H89 (5 µM), and anti-CNPase
antibody (0.18 µg/mL); (b) Average results of the half-time (T1/2) swelling. The values shown are
the means ± SD from three independent experiments; * p ≤ 0.05 vs. T1/2 without any additions,
# p ≤ 0.05 vs. T1/2 in the presence of anti-CNPase antibody. OD—optical density, A/2—half amplitude
of mitochondrial swelling.

The activation of pro-survival protein kinases (Akt, GSK3β, and others) has been implicated as
one of the signaling pathways. These pathways alter the mPTP that opens in response to oxidative
stress and is responsible for the induction of programmed cell death [14]. Here we analyzed alterations
in the ratio of the phospho-GSK3β-to-total GSK3β (pGSK3β/GSK3β) (Figure 4a) and the ratio of
the phospho-Akt-to-total Akt (pAkt/Akt) (Figure 4b) in different experimental conditions in RBM.
The pGSK3β/GSK3β ratio (Figure 4a) increased two times in the conditions when mPTP was opened
(column 2 vs. 1).

This ratio increased by 60% when CmZ at the threshold Ca2+ loading was added (column 3 vs. 2)
and did not change after the addition of H89 at the threshold Ca2+ loading compared with that in the
case of Ca2+-loaded mitochondria (column 7 vs. 2). In the presence of the anti-CNPase antibody, the
pGSK3β/GSK3β ratio increased 1.75 times (Figure 4a, column 4 vs. 1). Under the combined action
of the anti-CNPase antibody and Ca2+ loading (the mPTP is opened; Figure 4a, column 5 vs. 4), the
pGSK3β/GSK3β ratio rose by 17%. However, after the addition of CmZ (column 6 vs. 5) and H89
(column 8 vs. 5) in combination with the anti-CNPase antibody, the pGSK3β/GSK3β ratio diminished
by 16 and 35%, respectively.

The pAkt/Akt ratio (Figure 4b) did not change when mPTP was opened (column 2 vs. 1).
The addition of CmZ increased the pAkt/Akt ratio by 27% (column 3 vs. 2), and in the presence of
H89 it did not significantly change (column 7 vs. 2). In the presence of the anti-CNPase antibody, the
pAkt/Akt ratio (column 4 vs. 1) increased 4.5 times relative to the appropriate control.

On the other hand, the pAkt/Akt ratio was reduced 1.85 times in the presence of the anti-CNPase
antibody and Ca2+ loading (when mPTP was opened; column 5 vs. 4). When CmZ and H89 were
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used in combination with the anti-CNPase antibody, no significant changes in the Akt/Akt ratio were
observed (columns 6 and 8 vs. 5).
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Figure 4. The phosphorylation states of stress-activated protein kinases (GSK3β and Akt) in RBM.
(a) The ratio of pGSK3β to total GSK3β. (b) The ratio of pAkt to total Akt. Upper parts represent
Western blots of a mitochondrial suspension after the isolation of RBM (see Section 4). Membranes
were stained with antibody specific to pGSK3β, GSK3β, pAkt, and Akt. Lower parts—quantitation of
immunostaining using computer-assisted densitometry. Bar graphs represent the ratios of pGSK3β to
total GSK3β (a) and of pAkt to total Akt (b) in RBM after the addition of CmZ (30 µM), H89 (5 µM), and
anti-CNPase antibody (0.18 µg/mL). The protein band intensity was quantified after normalization
with respect to Cytochrome c oxidase subunit IV (COX IV). The values shown are the means ± SD from
three independent experiments; #/# p ≤ 0.05 vs. the pGSK3β/GSK3β ratio without any additions,
* p ≤ 0.05 vs. pGSK3β/GSK3β ratio in the presence of Ca2+, “p ≤ 0.05 vs. pGSK3β/GSK3β ratio in the
presence of anti-CNPase antibody, # p—versus pGSK3β/GSK3β ratio in the presence of anti-CNPase
antibody and Ca2+.

In our previous studies, we assumed that CNPase was capable of protecting cells [40], and
MEL is involved in the preservation of CNPase within mitochondria [36]. Here, we determined the
contents of CNPase and melatonin receptor A1 (MT1) in RBM in our experimental conditions (Figure 5).
The Western blot data presented in Figure 5 (upper part) show alterations in the MT1 and CNPase
levels in RBM in different conditions. The results of the quantitative analysis of MT1 and CNPase levels
are shown in Figure 5 (lower part). The intensity of protein bands was quantified after normalization
with respect to COX IV.

In the presence of the threshold Ca2+ concentration, the content of MT1 decreased by 25%, while
the content of CNPase did not change (columns 2 vs. 1). In the presence of CmZ upon mPTP opening,
the content of CNPase diminished by 22%, whereas the content of MT1 did not change (columns 3 vs.
2). Conversely, in the presence of H89 when mPTP was opened, the content of CNPase did not change
and the MT1 level decreased by 46% (columns 7 vs. 2).

The addition of the anti-CNPase antibody to RBM when the mPTP was closed did not influence
the MEL and CNPase levels (columns 4 vs. 1). The addition of Ca2+ at the threshold concentration
to anti-CNPase antibody-loaded mitochondria did not change the content of CNPase (columns 5 vs.
4), but the level of MEL increased by 30% compared with that in Ca2+-loaded mitochondria in the
absence of the anti-CNPase antibody (columns 5 vs. 2). However, the level of CNPase increased by the
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combined action of CmZ and the anti-CNPase antibody (when mPTP was opened) by 30% compared
with that in the presence of the anti-CNPase antibody alone under mPTP opening (column 6 vs. 5).
In these conditions, the level of MEL did not change. We noticed a decrease in the MEL level by 60%
and an increase in the CNPase level by 80% under the combined effect of H89 and the anti-CNPase
antibody (when mPTP was opened, columns 8 vs. 5).
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Figure 5. Effect of CmZ, H89, and anti-CNPase antibody, and their combined effect on the level of
MT1 and CNPase in RBM. Upper part—western blot of a mitochondrial suspension after the isolation
of RBM (see Materials and methods). Membranes were stained with antibody specific to Melatonin
receptor A1 (MT1) and CNPase. Lower part—quantitation of immunostaining using computer-assisted
densitometry. Bar graphs represent the immunoreactivity of MEL MT1 receptor and CNPase in RBM
after the addition of CmZ (30 µM), H89 (5 µM), and anti-CNPase antibody (0.18 µg/mL). The protein
band intensity was quantified after normalization with respect to COX IV. The values shown are the
means ± SD from three independent experiments; #/# p ≤ 0.05 vs. MT1 level in in control conditions
without any additions, * p ≤ 0.05 vs. the MT1 and CNPase levels in the presence of Ca2+. # p ≤ 0.05 vs.
MT1 and CNPase levels in the presence of anti-CNPase antibody and Ca2+.

3. Discussion

CNPase is one of the most abundant proteins in the central nervous system [41]. Recently, we have
shown that the protein identified as CNPase is localized in both mitoplasts and the outer mitochondrial
membrane of rat brain and liver mitochondria and supposed that the enzyme participates in the
regulation of mPTP opening. 2′,3′-cAMP and 2′,3′-cNADP (CNPase substrates) activated mPTP in
RBM and RLM [23]. Lappe-Siefke and coworkers studied the role of CNPase at the translation level in
knocked mice and found that CNPase causes the axonal swelling, which leads to the premature
death [42]. It was proposed that CNPase may be a partner for CaM [43]. CaM has different
target proteins in the brain [44,45]; thus, it is important for Ca2+-dependent phosphorylation of
proteins in synaptosomal membranes [46]. In the middle of the 1980s, Hatase et al. detected CaM in
mitochondria by immuno-electron microscopy. Using the complexes of anti-calmodulin antibody and
protein A-gold, the authors showed that CaM in ultra-pure mitochondria is localized on the inner
mitochondrial membrane and in the matrix space [47]. CNPase can interact with membrane surfaces,
cytoskeletal proteins, and CaM [25]. CNPase was shown to facilitate microtubule polymerization and
reorganization [48], and it can be hypothesized that CaM binding modulates this effect, depending on
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the intracellular calcium concentration [37]. CmZ is a general CaM antagonist, which prevents CaM
from mediating calcium signaling [49]. Here we demonstrated the effect of CmZ and anti-CNPase
antibody on mPTP opening. We found that CmZ increased the threshold Ca2+ concentration and
slowed down the mitochondrial swelling, whereas the anti-CNPase antibody, while binding to the
protein, decreased the threshold Ca2+ concentration, accelerated mitochondrial swelling and induced
mPTP opening. Evidence obtained earlier indicated that CNPase is localized in the outer membrane
and the matrix of RBM [23]. Presumably, in our case the anti-CNPase antibody is able to bind with
CNPase on the outer mitochondrial membrane and eliminate its protective action of CNPase on mPTP
opening. We supposed that the effect of CmZ on mitochondria might be due to its positive charge;
this makes likely its accumulation by coupled mitochondria that have a high negative ∆Ψm, on the
matrix side of the inner membrane. Recently we have shown that 32P-incorporation into the 17 kDa
protein and into the 3.5 kDa polypeptide was enhanced in the presence of CmZ [50]. We found that
CaM-dependent enzymes are involved in phosphorylation/dephosphorylation of these proteins [50].
In the present work, we showed that CmZ abolishes the stimulatory effect of the anti-CNPase antibody
on mPTP opening in RBM. Presumably, CmZ leads to the interruption of CNPase–CaM interaction.

Earlier, we have found CNPase to be phosphorylated by cAMP-dependent PKA in RBM [28].
Here, the effect of the PKA inhibitor (H89) and the combined effect of H89 with the anti-CNPase
antibody were investigated. We observed that H89 strengthened the effect of anti-CNPase antibody.
The effect of H89 on sensitivity to mPTP opening by the anti-CNPase antibody was consistent with
our recent findings that a decrease in CNPase expression leads to the induction of mPTP opening [23].

Several studies showed that the functioning of mitochondrial proteins such as adenine nucleotide
translocator (ANT) and cyclophilin D are regulated by GSK3β [9,11,51]. In mitochondria, a key
mitochondrial enzyme, pyruvate dehydrogenase, is phosphorylated and suppressed by GSK3β [52].
The role of GSK3β in determining the threshold for mPTP opening was demonstrated [12,53].
The pGSK3β/GSK3β ratio correlates with the threshold Ca2+ concentration needed to induce mPTP
opening in mitochondria isolated from rat cardiomyocytes [54]. In our conditions, CmZ retarded
mPTP opening, which led to the upregulation of the pGSK3β/GSK3β ratio. The addition of CmZ
to anti-CNPase antibody-loaded RBM abolished the acceleration of mPTP opening caused by the
anti-CNPase antibody and negligibly decreased the pGSK3β/GSK3β ratio. The addition of H89
to anti-CNPase antibody-loaded mitochondria even more enhanced the mPTP opening and notably
diminished the pGSK3β/GSK3β ratio. Besides, phospho-inactivation of the pro-apoptotic protein BAD
in mitochondria and the recruitment of Raf-1 to the mitochondria, which promoted cell survival, were
caused by another serine/threonine kinase, Akt [3,4]. Recently, new targets for mitochondrial Akt have
been discovered, in particular complex V of mitochondrial respiratory chain and hexokinase-II [5,6].
CNPase is associated with all respiratory chain complexes [55]. Moreover, structure of CNPase contains
the Walker A motif, which is involved in the ATP binding, and the Walker B motif, which is able to
coordinate Mg2+ ion that drives ATP hydrolysis [56,57]. We noticed that CmZ increased the pAkt/Akt
ratio in RBM when mPTP was opened, and the addition of CmZ to the anti-CNPase antibody-loaded
RBM abolished the effect. In the absence of anti-CNPase antibody we observed of correlation
between pAkt/Akt and pGSK3β/GSK3β ratios. On the other hand, correlation between pAkt/Akt
and pGSK3β/GSK3β ratios was broken when anti-CNPase antibody was added to mitochondria
suspension. We suggests that CNPase may be involved in the regulation of these kinases. Recently we
have shown that CNPase and MEL are interrelated in liver mitochondria isolated from old rats and
MEL retained CNPase inside mitochondria to protect cells against deleterious effects [36]. Besides, we
observed that the expression of CNPase did not change in RBM when mPTP was opened, whereas its
activity strongly decreased [23]. The data obtained in this study indicate that the antibody specific
to CNPase, did not decrease the CNPase level in phosphorylated samples of RBM when mPTP
opened/closed. However, after the addition of CmZ and H89 to anti-CNPase antibody-treated
mitochondria, the content of CNPase (when mPTP was opened) increased compared with that after
the addition of the antibody alone. CmZ did not influence MEL receptor level but the addition of H89
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to RBM led to a decrease in the level of MEL. After addition of H89 to anti-CNPase antibody-loaded
RBM resulted in a more intensive increase in the MEL content.

It is known that MEL cooperates with CaM, adenylyl cyclase, protein kinase, and G-proteins
which are participated in calcium signaling and the cAMP-signaling cascade [58]. CNPase has a
consensus sequence of G-proteins [59], participates in the adenosine pathway [60,61], and is involved
in the hydrolysis of toxic 2′,3′-cAMP in a CaM-dependent manner [62]. Gravel et al. suggested that
the activation of PKA is necessary for the induction of the CNP1 mRNA accumulation by dbcAMP in
glioma C6 cells [63]. We showed that CNPase is phosphorylated by PKA [28]. Thus, our data suggest
that CNPase might participate in a complicated signal transduction system in mitochondria.

In summary (Figure 6), the addition of the anti-CNPase antibody led to a decrease in the threshold
[Ca2+] decreased, and mitochondrial swelling was accelerated compared to the control, which agrees
with the earlier made assumption that CNPase is involved in mPTP regulation [23]. The level of
CNPase in the presence of the anti-CNPase antibody did not change, probably due to the binding of
the antibody to the protein on the outer mitochondrial membrane. H89 enhanced the effect of the
anti-CNPase antibody, while CmZ abolished the effect of the anti-CNPase antibody upon the mPTP
opening. The anti-CNPase antibody in the presence/absence of CmZ and H89 upon the opening of
mPTP in any event changed the level of pAkt and pGSK3β, which suggests the involvement of CNPase
in the regulation of stress kinases. In the absence of anti-CNPase antibody we observed of correlation
between pAkt/Akt and pGSK3β/GSK3β ratios. On the other hand, correlation between pAkt/Akt
and pGSK3β/GSK3β ratios was broken when anti-CNPase antibody was added to mitochondria
suspension. We suggest that CNPase may be involved in the regulation of these kinases. When the pore
opened, the level of MEL decreased, whereas the level of CNPase remained unchanged. If the addition
of CmZ to anti-CNPase antibody-loaded RBM did not alter the level of MEL, the level of CNPase
increased, whereas H89 had an opposite effect on the levels of MEL and CNPase under these conditions.
These results suggest the involvement of mitochondrial CNPase and MEL in the signal transduction
upon the functioning of mPTP. The mechanism by which this can occur needs to be established.
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Figure 6. A hypothetical scheme of the involvement of melatonin (MEL) and CNPase in the regulation
of mitochondrial permeability transition pore (mPTP) functioning. The figure shows possible protein
phosphorylation-mediated mechanisms in rat brain mitochondria. According to our concept, CNPase,
which is a target of the action of MEL, is capable to participate in the regulation of signaling pathways
in mitochondria by changing the level of phosphorylation. In particular, CNPase and MEL are involved
in the regulation of mPTP thereby inducing its opening. The regulation of mPTP opening is mediated
through the phosphorylation by protein kinase A (PKA) and implies the participation of stress kinases
(AKT and GSK 3β). CNP and MEL are also capable of binding CaM, indicating their involvement in
calcium signaling and cAMP signaling pathways.
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4. Materials and Methods

4.1. Animals

Mitochondria were isolated from the total brain of two-month-old male Wistar rats. All experiments
were performed in accordance with the “Regulations for Studies with Experimental Animals” (Decree
of the Russian Ministry of Health of 12 August 1997, No. 755). The protocol was approved by the
Commission on Biological Safety and Ethics of the Institute of Theoretical and Experimental Biophysics,
Russian Academy of Science (November 2014, protocol N45). A total of six male rats were used in
the experiments.

4.2. Isolation of Rat Brain Mitochondria

Rat brains were rapidly removed (within 30 s) and placed in a solution containing 320 mM
sucrose, 0.5 mM EDTA, 0.5 mM EGTA, 0.02% bovine serum albumin (fraction V, fatty acid free) and
10 mM Tris-HCl, pH 7.4. All solutions were used ice-cold; all manipulations were carried out at +4 ◦C.
The brain tissue was homogenized in a glass homogenizer; the ratio of brain tissue to isolation medium
was 1:10 (w/v). The homogenate was centrifuged at 2000× g for 3 min. The crude mitochondrial
pellet was obtained by centrifugation of the 2000× g supernatant at 12,500× g for 10 min. Then,
mitochondria were purified in a discontinuous Percoll gradient (3%–10%–15%–24%). Non-synaptic
RBM were suspended in an ice-cold solution containing 320 mM sucrose and 10 mM Tris-HCl, pH
7.4, additionally washed by centrifugation at 11,500× g for 10 min, and resuspended in the same
buffer. The protein concentration was determined by the Bradford method (Bio-Rad Protein assay;
Bio-Rad, Munich, Germany) using bovine serum albumin as standard and was 25–30 mg/mL in the
stock mitochondrial suspension. The integrity of non-synaptic mitochondria was investigated in some
experiments by electron microscopy [64].

4.3. Evaluation of Mitochondrial Functions

The Ca2+ retention capacity was determined with a Ca2+-sensitive electrode (Nico, Russia), and
the oxygen consumption rate was measured with a Clark-type O2 electrode that was integrated into
a 1-mL multifunctional chamber [65] for the simultaneous registration of Ca2+ flux and respiratory
activity. Mitochondria (1 mg protein/mL) were incubated in a medium containing 125 mM KCl
10 mM Tris-HCl, 0.4 mM K2HPO4, and 5 µM rotenone (inhibitor of mitochondrial electron transport—I
Complex), pH 7.4, at 25 ◦C. Succinate (5 mM potassium succinate) was used as a mitochondrial
respiratory substrate. PTP opening in non-synaptic RBM was induced by a threshold Ca2+ load
(the first addition of Ca2+ contained 50 nmoles per mg protein, the subsequent addition of Ca2+ was
100 nmoles per mg of protein). All experiments were performed in an opened chamber.

The swelling of non-synaptic RBM was determined by measuring changes in light scattering of the
mitochondrial suspension at 540 nm (A540) using a Tecan I-Control infinite 200 spectrophotometer at
25 ◦C. The standard incubation conditions for the swelling assay were 125 mM KCl, 10 mM Tris, 0.4 mM
KH2PO4, 5 mM succinate, and 5 µM rotenone. Swelling was initiated by the addition of 450 nmol of
Ca2+/mg protein. The concentration of protein in a well was 0.5 mg protein/mL. The swelling process
was characterized by the time needed to reach the half-maximal light scattering signal (T1/2). The top
and the bottom plateau for half-maximal light scattering signal (A/2) was assigned for each curve
individually using SigmaPlot functions.

4.4. Sample Preparation

Aliquots of a mitochondrial suspension (100 µL) taken from the chamber were placed in an
Eppendorf tube. For protein phosphorylation, the mitochondrial suspension was supplemented with
unlabeled Mg2+/ATP to achieve physiological concentrations of 2 mM Mg2+ and 400 µM ATP. Samples
were incubated for 3 min in the presence of 1.5 µM oligomycin. The reaction was stopped by the
addition of solubilization 4× Laemmli sample buffer (20 µL) and heated in a boiling water bath
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for 3 min. Twenty micrograms of mitochondrial samples was applied to the gel and subjected to
electrophoresis followed by Western blot analysis.

4.5. Electrophoresis and Immunoblotting of Mitochondrial Proteins

The samples obtained were separated under denaturing conditions by 12.5% SDS-PAGE and
transferred to a nitrocellulose membrane. Precision Plus Pre-stained Standards from Bio-Rad
Laboratories (Hercules, CA, USA) were used as markers. After overnight blocking, the membrane was
incubated with the appropriate primary antibody. The monoclonal anti-CNPase antibody (anti-CNPase
Ab) was obtained as described [66] (dilution 1:10,000); polyclonal rabbit phospho-Akt (Cat. #4058)
(Ser473), Akt (Cat. #9272), and phospho-GSK3β (Ser9) (Cat. #9356) antibody were from Cell Signalling
(dilution 1:500); the monoclonal GSK3β antibody was from Invitrogen (Cat. #AHO1302, dilution
1:500); and the polyclonal anti-melatonin receptor antibody was from Abcam (Cat. #ab128664,
dilution 1:1000). The monoclonal COX IV antibody (Abcam, Cat. #ab14744) was used as a loading
control. Immunoreactivity was determined using the appropriate secondary antibody conjugated to
horseradish peroxidase (Jackson Immuno Research, West Grove, PA, USA). Peroxidase activity was
detected with ECL chemiluminescence reagents (Pierce, Rockford, IL, USA).

4.6. Statistical Analysis

For statistical analysis, the relative levels of protein density were expressed as mean ± SD from at
least three independent experiments. The statistical significance of the difference between the mean
values was evaluated using the Student’s t-test. The difference was considered significant at p < 0.05.
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