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ABSTRACT: Entropy is an important energetic quantity
determining the progression of chemical processes. We
propose a new approach to obtain hydration entropy directly
from probability density functions in state space. We
demonstrate the validity of our approach for a series of
cations in aqueous solution. Extensive validation of simulation
results was performed. Our approach does not make prior
assumptions about the shape of the potential energy landscape
and is capable of calculating accurate hydration entropy values.
Sampling times in the low nanosecond range are sufficient for
the investigated ionic systems. Although the presented strategy is at the moment limited to systems for which a scalar order
parameter can be derived, this is not a principal limitation of the method. The strategy presented is applicable to any chemical
system where sufficient sampling of conformational space is accessible, for example, by computer simulations.

■ INTRODUCTION

Entropy calculation is a crucial topic in computational
chemistry.1−3 The Gibbs free energy governing reactivity in
chemical processes comprises enthalpic and entropic terms.
Thus, an accurate estimation of changes in entropy facilitates
the computational investigation of chemical processes signifi-
cantly. Hydration entropy is of special interest in drug design
applications.4−6 The association of a hydrated biomolecule and
hydrated small molecules leads to displacement of surface-
bound water molecules into the bulk.7,8 Therefore, calculating
accurate reaction free energies for these displacement processes
is based on understanding the individual hydration entropy
contributions in the nonassociated state. The calculation of
entropic changes is complicated by the fact that entropy
contributions arise from the number of accessible states at a
certain temperature and are therefore an ensemble property.
Molecular dynamics (MD) simulations traverse these ensem-
bles in a manner proportional to the energetically determined
probability of the individual states. Hence, analyzing the
distribution of states from a MD trajectory provides access to
state probabilities.
Edholm et al.9 outlined how to split the system into

discernible states and subsequently perform an integration
procedure using histograms. Assuming converged sampling,
one can calculate entropy S by assessing the probabilities for
the states and integrating according to

∫= −S k P x P x x( ) log ( ) dB (1)

The key problem with using histograms derived directly from
simulation data is selecting the bin width of the histogram. Bin
width determines the resolution of features, which can be
detected. Hence, choosing a certain bin width will strongly
influence the integral in eq 1. Therefore we propose in this
work to employ a data-based automatic selection of a
smoothing criterion via Kernel Density Estimation (KDE).
Several other methods exist to estimate entropy for samples

from MD simulations. The most widely used approach is quasi-
harmonic analysis. It is based on the assumption, that the
system is in a temperature-dependent excited state around a
local minimum.10−12 Quasi-harmonic entropy calculations are
performed by diagonalizing the mass-weighted covariance
matrix of the system’s degrees of freedom. Two main problems
have been identified for this approach: Usually the harmonic
approximation is not satisfied for low-frequency modes. This is
addressed to some degree by including anharmonic correction
terms.13 Furthermore, quasi-harmonic analysis is not suited to
describe the influence of the solvent. Using permutation
reduction in conjunction with quasi-harmonic calculations
allows for the inclusion of solvent degrees of freedom from a
certain number of solvent positions. This takes into account
that the solvent molecules are interchangeable between
themselves.14

Further approaches to calculate hydration entropy are to a
large part based on decomposing the solvation process, which
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comprises cavity formation and subsequent solvent reorganiza-
tion due to the electrostatic charge of the solute.15 An
alternative approach includes the inhomogeneous solvation
theory developed by Lazaridis et al.16,17 This approach provides
an analytical value for simplified fluids. It is extensively applied
using restrained biomolecular simulations within the “Water-
map” package.6 Furthermore, entropy in the liquid state is
described by weighted contributions from solid-like and gas-like
states in a 2-phase thermodynamic model as proposed by Lin et
al.18 Moreover, direct evaluation of the partition function from
simulation trajectories has been proposed by Henchman et
al.19,20 This overview is not comprehensive, but illustrates the
complexity as well as the importance of the topic via the
broadness of approaches followed.
In this study we investigate a series of cations as test systems

to illustrate a novel approach to calculate hydration entropy
from MD simulation trajectories. Monoatomic ions were
chosen as a test set, because they exhibit several desirable
properties. Their spherical symmetry enables us to choose a
simple order parameter for the surrounding solvent mole-
cules.21 We calculated the distributions of relative angular
orientations of the dipole moment with respect to the gradient
of the electrostatic potential of the central ion within concentric
shells around the ion. This allowed us to represent the ordering
influence of the ion within a scalar parameter. We chose to use
the series of alkali ions and included Mg2+, Ca2+, and Mn2+ in
the test set due to the availability of consistent force field
parameters. Other bivalent cations were omitted, because no
consistent parameters were available within the sets of Aqvist et
al.22 and Bradbrook et al.23 for the AMBER simulation
package.24 This allowed us to include a number of systems
that differ in charge and have a different radius to hydration
entropy ratio than the progressive series of monovalent cations.
Overall, we present a novel method for calculating hydration

entropy from a discrete ensemble of states obtained by MD
simulations on the nanosecond scale. Our approach is based on
deriving a probability density function for a scalar parameter
representing the system’s order by kernel density estimation.
The density estimation procedure is nonparametric and based
on iterative refinement through cross-validation.25 Therefore, it
avoids prior assumptions about the system’s potential energy
surface. This method allows us to calculate hydration entropy
with a high degree of accuracy for a set of cations. Because of
the modularity of our approach, it is readily extensible to more
complex systems.

■ METHODS
Simulations. MD simulations of Li+, Na+, K+, Rb+, Cs+,

Mg2+, Mn2+ and Ca2+ were performed using the MPI
implementation of “sander” from the AMBER 11 simulation
package.24 Parameters for the ions were obtained by free energy
perturbation calculations of Aqvist et al.22 and from a study of
Bradbrook et al.23 (Mn2+, Ca2+). Several water models were
used to perform the simulations in order to assess the influence
of different water parameters. These models included the
TIP3P26 and SPC/E27 3-point models as well as the TIP4P26

and TIP4Pew28 4-point models. A single ion was set up in the
center of a cubic box and solvated with approximately 1000
water molecules using “leap” from the AMBER Tools package.
This resulted in box dimensions of approximately 35 Å edge
length. The system’s charge was neutralized by uniform plasma.
Initially, 1000 steps of steepest descent followed by 1000

steps of conjugate gradient minimization were performed. The

nonbonded force cutoff was set to 8.0 Å. Long-range
electrostatics were calculated using the Particle Mesh Ewald
procedure.29 After minimization, an equilibration for 1 ns in the
NPT ensemble was performed. Pressure was kept at 1.0 atm
pressure by isotropic scaling using the weak coupling algorithm
with a coupling frequency of 2.0 ps−1. Temperature was
controlled at 300.0 K using Langevin dynamics30 with a
collision frequency of 2.0 ps−1. The time step was set to 1 fs.
Shake constraints were enabled for all bonds involving
hydrogen. After initial equilibration, 5 ns of production
simulations were obtained with the same simulation parame-
ters; 50 000 frames at a time resolution of 0.1 ps were stored for
analysis.
Analyses included calculation of density and radial

distribution functions (RDF) for comparison with available
literature data of QM/MM simulations.31−37 The measure-
ments were performed using the “ptraj” program from the
AMBER tools package. These metrics are used to demonstrate
convergence and validity of the simulations.

Entropy Calculation. The entropy calculation procedure
consists of three steps: An order parameter representing the
change in structure is chosen. Subsequently, the system is split
into volume elements for which the parameter is assumed to be
constant. Finally, entropy for each volume element is evaluated
by calculating the probability distribution of the order
parameter within each volume element and subsequent
summation over all elements normalized by occupancy.
First, dipole moment vectors for all waters were calculated by

determining the vector from the center of mass of both
hydrogen atoms to the oxygen position. The vector from the
ionic center to the solvent molecule’s center of mass and the
dipole moment of the water molecule enclose an angle α. The
order parameter is depicted in Figure 1. It is expected that

Figure 1. The chosen order parameter is used to describe the
rotational alignment with the local electric field of the ion. The angle α
between the dipole moment vector (DPM) of each water molecule
within a shell volume and the corresponding vector of the ion’s center
of mass (COM) to the water molecule’s center of mass is used to
derive a distribution within each shell volume.
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water molecules close to the ion exhibit a strong preferential
orientation, whereas distant waters will not. A similar procedure
was established by Lazaridis as a reference system for the
treatment of hydrophobic hydration.21

Second, the systems were split into concentric shell volumes
of 0.1 Å thickness centered at the respective ion. As the
subsequent density estimation procedure is based on cross-
validation, a sufficient data basis has to be present to obtain
reliable results. However, the inclusion of slices that are sparsely
populated is not a problem, as their contributions to the total
system entropy is almost negligible due to normalization by the
occupancy of the slices (see Discussion).
Finally, based on the lists of relative orientation for each shell

volume, nonparametric kernel density estimation was per-
formed to obtain a continuous probability density distribution
for the relative dipole orientations within each shell volume.
Kernel density estimation is based on expansion of discrete data
points by kernel functions of a specific broadness, the so-called
bandwidth.38 The Gaussian kernel function K with the
bandwidth parameter h around a data point χi is defined in
eq 2.

χ = χ− −K h( , ) ei
x h( ) /i

2

(2)

Subsequent summation over all kernel-expanded points yields a
continuous probability density function. It has been demon-
strated, that the choice of kernel function is not relevant for the
quality of the resulting probability density function.39 This
quality solely depends on the choice of bandwidth parameter.
Botev et al. developed the employed kernel density estimation
procedure as a nonparametric density estimator based on
Gaussian kernel functions designed to preserve rare events.40 It
iteratively improves the bandwidth parameter of the kernel
function by cross-validation. Computing eq 3 calculates the
kernel density estimate P(x) of a set of observations χ.

∑ χ=
χ

P x K h( ) ( , )i
(3)

The resulting probability distributions were normalized by 1/
sin(x) to account for Haar’s measure,41 to correct for a
geometric preference of π/2 angles for the chosen measure of
order. Integration of this probability density function according
to eq 1 yields an entropy contribution for each shell volume. To
obtain hydration entropy for the whole system, each shell
volume was multiplied by the occupancy calculated from the
RDF times the respective shell volume. This normalization
ensures that the contributions are weighted by the respective
number of particles. Summation over the occupancy-
normalized entropy contributions yields the hydration entropy
of the total system.

■ RESULTS
For each of the eight systems (Li+, Na+, K+, Rb+, Cs+, Mg2+,
Ca2+, and Mn2+) 5 ns of simulation trajectories with 50 000
frames each at 0.1 ps intervals were stored for analysis. These
trajectories were centered on the ion and imaged to the (0,0,0)
simulation box. Each trajectory was split into five sequential
parts of 1 ns each for all subsequent analyses. Splitting was
performed to demonstrate convergence and to calculate a
statistical error estimate.
Reference data for this study consist in experimentally

obtained values for the hydration entropies of the above-
mentioned ions. These measurements have been carried out by

a variety of methods, for example, by Peschke et al.42 or
Noyes.43 Reference parameters of Marcus44 were used as they
were consistently available for all systems.

Validation. All simulations were validated in respect to
densities and solute−solvent RDFs. Densities are converged at
approximately 1.0 g/mL with a root-mean-square fluctuation
below 0.0060 g/mL indicating that temperature and pressure
were properly equilibrated within 1 ns. RDF plots depicting the
metal (M)−solvent oxygen (O) distribution function g(M−O)
of all simulations are given in the Supporting Information.

Probability Distributions. For all systems derived
distribution functions of angular orientations show distinct
maxima at an angle of 0 for the inner shells. For the outer
shells, the distributions are almost uniform and without
discernible maxima. Increases at the edges are normalization
artifacts due to dividing by sin(x). The general shape of these
distributions can be seen in Figure 2. A sharp maximum around

0 is present within the inner hydration shell at 2.4 Å of the Na+

system. At 15.0 Å no preferential orientation is discernible. The
nonzero entropy contributions in the outer shells depicted in
Figure 3 result from small deviations from the equal
distribution for bulk water. All per-water contributions are
available in the Supporting Information.

Entropy. Integration of probability distributions according
to eq 1 yields the entropy contribution per water molecule for
each shell volume. Exemplary, the per-water entropy for each
shell versus the distance for Na+ is depicted in Figure 3.
Corresponding plots for all other systems can be found in the
Supporting Information.
Integration of the normalized probability density functions

yields per-shell hydration entropy for each system in J mol−1

K−1. These parts were used as a basis for determining the
statistical error. Reference values from Marcus44 and computa-
tional results of this study are depicted in Table 1. Graphs of
calculated versus experimental hydration entropy for the

Figure 2. Shape of obtained probability distributions after 1/sin(x)
normalization. The black line is the calculated probability distribution
of the dipole moment angle relative to the electrostatic potential
gradient of the ion within the 2.4−2.5 Å shell around Na+. It exhibits a
sharp maximum at 0. The orange line depicts the distribution of dipole
orientations of the same system within the 15.0−15.1 Å shell. Except
for small normalization artifacts at the edges, the distribution is almost
uniform.
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different water models are given in Figure 4. Linear fit
parameters are given in Table 2. Predictions of hydration
entropy resulting from these regression models are given in
Table 3.

■ DISCUSSION
Within this study we introduced a new method to calculate
hydration entropy from state space probability distributions.
This method does not rely on any prior assumptions about the
shape of the free energy landscape and can be applied to
solvent degrees of freedom as well as to internal molecular
coordinates. Though using a one-dimensional parameter to
reflect the change in ordering in the system cannot capture the
entirety of the change in entropy, it has been demonstrated that
the resulting change in entropy is directly proportional to
experimentally observed values for hydration entropy. The
slopes for the regression calculations to experimental values
indicate that the dipole ordering accounts for around 0.23 to
0.3 of the total change in entropy of the systems. One needs to
consider at this point, that the chosen parameter of order
completely neglects any translational restrictions and all many-
body effects created by the formation of structured hydration
shells. Furthermore, the mapping of system ordering onto a
one-dimensional parameter from three rotational degrees of
freedom is consistent with calculated entropy being approx-

imately 1/3 of experimental values. The intercepts of all
calculated linear fits lie within 1.5σ of 0, which indicates that the
bulk value (apart from numerical noise related to the 1/sin(x)
normalization) is captured correctly.

Water Models. The observed solvent structure within MD
simulations crucially depends on the choice of solvent model.
We investigated the effect of different water models by
performing identical calculations on trajectories obtained with
TIP3P, SPC/E, TIP4P, and TIP4Pew models. No marked
differences within the simulation behavior (e.g., density,
solute−solvent RDF) could be identified. However, the 3-
point water models TIP3P and SPC/E are susceptible to a
more pronounced charge-induced ordering than their 4-point
counterparts TIP4P and TIP4Pew. This phenomenon is
documented in literature, for example, by Henchman.19

However, the relative position of resulting calculated hydration
entropy data is almost identical. Hence, squared correlation
coefficients are almost identical between the sets (0.942, 0.953,
0.920, and 0.946). Although this changes the total values
obtained for the hydration entropy, it does not affect the quality
of the overall correlation. This suggests, that even if absolute
hydration entropy remains difficult to obtain, the quantitative
differences between the investigated systems are correctly
reflected in the results.

Density Estimation. To demonstrate the validity of the
parameter-free density estimation procedure, several data sets
from this work were selected. Subsequently, entropy calcu-
lations were performed on subsets of an initial sample by
randomly selecting approximately 0.5, 1, 5, 10, and 50% of data
points. Several examples of this variability are shown in Figure
5. We postulate that above a lower limit of approximately 500
data points, our density estimation procedure yields a reliable
estimate of the underlying probability density functions. We
further show that the procedure is indeed parameter-free, as the
probability density functions converge against a common target
distribution even if parts of the data are omitted for validation
purposes. This indicates the numerical robustness of our
approach.

General Applicability. With the presented methodology
we provide an approach to entropy calculation, which does not
require an assumption of harmonic potential energy surfaces.
Furthermore, the density estimation procedure allows gen-
eration of a nonparametric estimate of state space probability
density functions from a limited amount of state space samples.
It should be noted that the proposed procedure in its presented
form is applicable only to systems wherein the ordering can be
expressed within a one-dimensional parameter, which is the
case for the spherically symmetric potential of the ions within
this study. This limitation originates from the density
estimation procedure used in this study. Using multidimen-
sional density estimation, one can extend the approach to more
complex systems. However, the density estimation procedure is

Figure 3. Per-water contributions to hydration entropy for Na+ for
different water models. Ordered regions coincide with the hydration
shells at 2.4 Å and 4.8 Å, respectively. The transition region between
these shells shows almost bulk-like ordering. The statistical uncertainty
in the innermost shells is significantly larger than in the outer regions
as the occupancy is smaller. Subsequently, volume-normalized
integration is performed.

Table 1. Experimental versus Calculated Hydration Entropy. Experimental Values Are Taken from Marcus.44 All values Are
Given in J mol−1 K−1

Li+ Na+ K+ Rb+ Cs+ Mg2+ Mn2+ Ca2+

exp −142 −111 −74 −65 −59 −331 −292 −252
TIP3P −45.7 −33.5 −28.9 −27.0 −24.8 −94.3 −108 −93.7
SPC/E −42.9 −31.0 −27.0 −24.1 −22.5 −91.8 −102 −88.9
TIP4P −37.2 −30.2 −25.4 −23.7 −22.2 −72.8 −81.5 −80.3
TIP4Pew −36.5 −29.2 −23.8 −22.9 −21.8 −73.2 −78.3 −75.5
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the computationally most demanding part of these calculations
besides the MD simulations. The computational complexity of
the parameter derivation scales with the square of the
dimensions. This scaling results from the extensive cross-
validation calculations involved in fitting the kernel parameters.

■ CONCLUSIONS
In this paper we presented a novel approach to calculate
changes in entropy from MD simulation trajectories. Derived
entropy values show an excellent correlation with experimen-
tally determined values. However, calculated absolute hydration
entropy values deviate from the experimentally obtained values,
which can be attributed to the mapping of all change in

Figure 4. Comparison of calculated vs experimental hydration entropy for different water models. Calculated results amount to one-third of
experimentally determined values. Although the water model affects the slope, relative distances are well preserved. (left to right: Mg2+, Mn2+, Ca2+,
Li+, Na+, K+, Rb+, Cs+) The squared correlation coefficients R2 of linear fits to experimental hydration entropy values of Marcus are calculated to be
between 0.92 and 0.95 for all water models. Correlation of experimentally obtained values and calculated results is depicted in Figure 4.

Table 2. Regression Parameters. Linear Regression
Parameters and Correlation Coefficients for the Fit of
Experimental versus Calculated Hydration Entropy for the
Individual Water Modelsa

water model intercept slope R2

TIP3P −5.0 (6.1) 0.31 (0.03) 0.942
SPC/E −3.3 (5.0) 0.30 (0.03) 0.953
TIP4P −8.0 (5.5) 0.23 (0.03) 0.920
TIP4Pew −7.3 (4.3) 0.23 (0.02) 0.946

aIntercepts are given in J mol−1 K−1. Standard errors of the fit
parameters where obtained by error propagation of the data point
errors and are given in parentheses.

Table 3. Predictions of Hydration Entropy for all Solutesa

model Li+ Na+ K+ Rb+ Cs+ Mg2+ Mn2+ Ca2+

exp −142 −111 −74 −65 −59 −331 −292 −252
TIP3P −142 −103 −88 −82 −75 −299 −343 −297
SPC/E −140 −100 −87 −77 −72 −303 −337 −293
TIP4P −154 −123 −102 −95 −89 −309 −346 −341
TIP4Pew −151 −120 −96 −92 −87 −311 −333 −321

aBased on the regression models derived for all water models, predictions of hydration entropy for the individual ionic solutes are given. All values
are given in J mol−1 K−1.

Figure 5. Dependence of calculated entropy on the number of data
points. All entropy values are given in arbitrary units (AU). Starting
from a representative test set from our simulations, we select random
points, retaining approximately 0.5, 1, 5, 10 and 50% of the original
94500 data points. We observe a significant deviation from the
expected sine-like distribution only at the 0.5% level.
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ordering to a single one-dimensional parameter. Extending the
density estimation procedure to higher dimensions will allow
for the inclusion of many-body effects relevant to entropy of
the entire system.
From the presented data we conclude that the chosen

simulation parameters represent the systems well. The radial
distribution functions and the localization of ordering effects of
the ions behave as expected. The presented density estimation
procedure reliably calculates probability density functions even
with limited data sets. This convergence property has been
demonstrated analytically by Botev et al.45

Differences in hydration entropy can be reproduced
quantitatively with high fidelity. Generally, the approach allows
quantifying entropy differences for systems, where the state
change can be mapped to a limited set of relevant dimensions.
Possible extensions for this method are the study of
biomolecular hydration and entropy contributions from
internal degrees of freedom.
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