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Introduction
Epithelial cells play fundamental roles in separating composi-

tionally different compartments to regulate homeostasis and 

maintain physiological functions in multicellular organisms. 

These functions are established by organized junctional com-

plexes, cytoskeletal architecture, and highly polarized mem-

brane domains (Nelson, 2003).

During epithelial cell polarization, E-cadherin– and nectin-

mediated cell–cell contacts induce the formation of primordial 

“spot-like” adherens junction (AJ) complexes (Irie et al., 2004). 

Through interaction between actin fi laments and components of 

primordial AJs, these junctions are gradually fused side by side 

and fi nally become “belt-like” AJs (Yonemura et al., 1995; 

 Vasioukhin et al., 2000). In parallel with this event, tight junc-

tions (TJs) are formed at the apical side of AJs. However, how 

belt-like AJs and TJs are evolved from primordial AJs and sorted 

during the polarization process of epithelial cells remains mostly 

to be clarifi ed.

The molecular architecture of AJs and TJs has been 

 un raveled rapidly in recent years (Nagafuchi, 2001; Tsukita 

et al., 2001; Matter and Balda, 2003; Anderson et al., 2004; Furuse 

and Tsukita, 2006). Among them, ZO-1 and Par-3–Par-6–aPKC 

are unique in that they localize at primordial AJs in the initial 

phase of epithelial polarization (Ando-Akatsuka et al., 1999; 

Suzuki et al., 2002), but they eventually localize at TJs and not 

at belt-like AJs after the maturation of epithelial polarization 

(Stevenson et al., 1986; Itoh et al., 1993). Par-3–Par-6–aPKC 

protein complexes are known to be required for the formation of 

belt-like AJ and TJ formation in epithelial polarization (Macara, 

2004); however, our knowledge about the functional roles of 

ZO-1 in cell polarization is limited.

ZO-1/ZO-2/ZO-3 is a membrane-associated guanlyate 

 kinase (MAGUK) protein composed of the following domains: 

three PDZ (PSD95/Dlg/ZO-1) domains, an SH3 domain, a 

GK domain, an acidic domain, and an actin binding region 

(Gonzalez-Mariscal et al., 2000). The PDZ1 domain binds to 

claudins. ZONAB is localized to TJ plaque by binding to the 

SH3 domain. The GK domain is the binding site for occludin 

(Matter and Balda, 2003). SH3-GK domains are responsible for 

the binding to α-catenin and afadin (Yamamoto et al., 1997; 

Imamura et al., 1999). In addition to diverse interactions, the 

SH3-GK domain is thought to play a role in the dimerization 

of MAGUK proteins as reported for other MAGUK proteins, 

especially as shown by PSD-95 (McGee and Bredt, 1999) and 

Dlg/SAP90/SAP102 (Masuko et al., 1999), but direct evidence 
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is lacking in the case of ZO-1. The acidic domain has not been 

well characterized in previous studies. As ZO-1 binds to not 

only TJ proteins (such as claudins and occludin), but also to AJ 

proteins (such as α-catenin and afadin), we speculate that ZO-1 

may orchestrate the behavior of binding partners during epithe-

lial cell polarization and play a role in sorting belt-like AJs and 

TJs from primordial AJs.

We have previously established an epithelial cell line 

lacking the expression of all ZO-1/ZO-2/ZO-3 to clarify their 

function. Using mouse EpH4 epithelial cells in which ZO-3 was 

not expressed, we established cell lines with a knocked-out 

ZO-1 gene (ZO-1−/− cells) with homologous recombina tion 

(Umeda et al., 2004). As the next step, clones with sup-

pressed ZO-2 expression (1[ko]/2[kd] cells) were obtained from 

ZO-1−/− cells by stably expressing short interfering RNAs 

(Umeda et al., 2006). We previously reported that these cells 

possessed well-polarized cell architecture in terms of the dif-

ferentiation of apical/basolateral membranes and formation of 

belt-like AJs but lacked TJs completely in the confl uent state. 

The exogenous expression of N-terminal PDZ1-3 domains of 

ZO-1 was ineffi cient to rescue the formation of TJs in 1(ko)/

2(kd) cells; however, when N-terminal PDZ1-3 domains of 

ZO-1 were forcibly recruited to the lateral membrane by add-

ing a myristoylation signal and dimerized using the FKBP sys-

tem, claudins were polymerized in 1(ko)/2(kd) cells, indicating 

that dimerization of the PDZ domains of ZO-1 determine 

whether and where claudins are polymerized in epithelial cells 

(Umeda et al., 2006).

Figure 1. Retardation of the formation of belt-like 
AJs and linear actin cables in 1(ko)/2(kd) cells during 
epithelial polarization. Parental EpH4 cells (A) and 
1(ko)/2(kd) cells (B) were cultured overnight in low 
Ca2+ medium overnight, and their polarization was 
initiated by transferring to normal Ca2+ medium. After 
a 0, 2-, 4-, 8-, or 24-h incubation, cells were fi xed and 
stained with anti-afadin mAb, anti-E cadherin mAb, 
and phalloidin. Bars, 10 μm. 
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In the present study, we carefully observed the forma-

tion process of junctional complexes in 1(ko)/2(kd) cells 

and parental EpH4 cells using the Ca2+ switch assay and 

 examined the roles of ZO-1 in the formation of belt-like 

AJs and junction-associated linear actin cables besides TJs 

during epithelial polarization. Our data indicate that ZO-1 

plays crucial roles not only in TJ formation, but also in the 

conversion from “fi broblastic” AJs to belt-like “polarized 

epithelial” AJs during epithelial polarization. Furthermore, 

to examine whether ZO-1 itself mediates the formation 

of both belt-like AJs and TJs, we performed a mutational 

analysis of ZO-1.

Results and discussion
Formation of belt-like AJs and 
reorganization of actin fi laments 
during cell polarization are retarded 
in 1(ko)/2(kd) cells
We examined AJ formation carefully during epithelial cell po-

larization in 1(ko)/2(kd) cells and parental EpH4 cells using the 

Ca2+ switch assay. The cells were cultured in a low Ca2+ 

 medium containing 5 μM Ca2+ overnight under confl uent 

 conditions, and their polarization was initiated by transferring 

to a normal Ca2+ medium. The degree of AJ formation was 

Figure 2. Molecular assembly of junctions in 1(ko)/2(kd) 
cells. (A) Parental EpH4 cells and 1(ko)/2(kd) cells were co-
cultured and doubly stained with the indicated antibodies 24 h 
after relpating. Bar, 10 μm. (B) The retardation of the forma-
tion of belt-like AJs, TJs, and linear actin cables were canceled 
by the exogenous expression of GFP-tagged full-length ZO-1. 
Cells were fi xed and double stained with the indicated anti-
bodies 24 h after transfection. Bar, 15 μm.
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evaluated by immunofl uorescence staining with anti-afadin 

mAb and anti–E-cadherin mAb. As shown in Fig. 1 A, parental 

EpH4 cells began to form belt-like AJs at 2 h and appeared to 

have mostly completed the process at 4 h after being transferred 

to normal Ca2+ medium. In clear contrast, in 1(ko)/2(kd) cells, 

even after a 24-h incubation in normal Ca2+ medium, AJ stain-

ing was still punctate. The number of spots of primordial AJs 

increased in 1(ko)/2(kd) cells along the time course, but each 

spot of primordial AJs was not fused (Fig. 1 B).

The rearrangement of the actin fi laments during junctional 

maturation was also signifi cantly delayed in 1(ko)/2(kd) cells 

compared with parental cells. In parental cells, the cortical actin 

cytoskeleton was aligned in a linear fashion along the cell–cell 

junction 4 h after the Ca2+ switch. In contrast, actin bundles 

were not organized at the cell cortex even 24 h after Ca2+ reple-

tion in 1(ko)/2(kd) cells.

To confi rm the retardation of junction maturation in 

1(ko)/2(kd) cells, 1(ko)/2(kd) cells were cocultured with paren-

tal EpH4 cells and double stained with antibodies against com-

ponents of AJs or TJs, phalloidin and anti–ZO-1 antibody, 24 h 

 after replating (Fig. 2 A). We examined the behavior of integral 

membrane proteins of AJs (E-cadherin and nectin) and undercoat 

proteins of AJs (α-catenin and afadin) in 1(ko)/2(kd) cells 24 h 

after replating. Judging from their staining, belt-like AJs were 

formed between parental EpH4 cells; however, spot-like AJs 

were still present in 1(ko)/2(kd) cells, representing a general 

defect in the assembly of belt-like AJs in 1(ko)/2(kd) cells. Afadin 

and β-catenin normally colocalized at primordial AJs in 1(ko)/

2(kd) cells, indicating that the E-cadherin–catenin and nectin–

afadin complexes were associated even in the absence of 

ZO-1/ZO-2 (Fig. S1 A, available at http://www.jcb.org/cgi/

content/full/jcb.200612080/DC1). In addition, Par-3 is also nor-

mally colocalized with afadin at primordial AJs in 1(ko)/2(kd) 

cells (Fig. S1 B), and we concluded that molecular assembly of 

primordial AJs is normal in 1(ko)/2(kd) cells. TJ components 

(claudin-3, tricellulin, and cingulin) were not present at cell–

cell contacts of 1(ko)/2(kd) cells (Fig. 2 A).

These phenotypes of 1(ko)/2(kd) cells, the absence of TJ 

formation and delayed formation of belt-like AJs and junction-

associated linear actin cables, were rescued by recovery of ZO-1 

or -2 (Fig. 2 B and not depicted). The same results were ob-

tained in the case of F9 cells lacking ZO-1 and -2 by homologous 

recombination (unpublished data). The discontinuity of AJs 

in 1(ko)/2(kd) cells was decreased by further culture in normal 

Figure 3. Impaired activation of Rac1 in 1(ko)/2(kd) cells 
during epithelial polarization. (A) Immunoblotting of whole-
cell lysates of parental EpH4cells and 1(ko)/2(kd) cells with 
the indicated antibodies. (B) Parental EpH4 cells and 1(ko)/
2(kd) cells were cocultured and doubly stained with the indi-
cated antibodies 24 h after replating. Parental cells are 
indicated by asterisks. (C) Rac activity assays from parental 
EpH4 cells and 1(ko)/2(kd) cells after a Ca2+ switch for the 
indicated times. (D) 1(ko)/2(kd) cells were transiently trans-
fected with myc-Rac1-DA or Cdc42-DA. Cells were double 
stained for myc and anti–nectin -2 antibody (as an AJ marker) 
or anti–claudin-3 antibody (as a TJ marker) 24 h after trans-
fection. Bars, 10 μm. 
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Ca2+ medium judging from the staining of afadin, Par-3, 

and E-cadherin (Fig. S2, available at http://www.jcb.org/cgi/

content/full/jcb.200612080/DC1). Cortical actin cables were 

normally formed in 1(ko)/2(kd) cells 72 h after Ca2+ switch; 

however, junction-associated actin cables were not observed 

(Fig. S2 B). The staining of actin fi laments became sharp in 

more confl u ent state as shown in our previous paper (Umeda 

et al., 2006). The formation of TJs was not restored by long culture, 

and we confi rmed that ZO-1/ZO-2 is a structurally  essential 

component of TJs.

ZO-1/ZO-2 is required for the activation 
of Rac1 during cell polarization
Although 1(ko)/2(kd) cells fi nally became well-polarized epi-

thelial cells in a confl uent state after Ca2+ switch (Fig. S2 A), 

the retardation of belt-like AJ formation during cell polarization 

in 1(ko)/2(kd) cells clearly indicated that the loss of ZO-1/ZO-2 

affected the initial phase of epithelial cell polarization. The 

 polarity protein complex, which consists of Par-3, Par-6, and 

aPKCλ/ζ, has been shown to be required for the maturation 

of belt-like AJs and TJs from primordial AJs in epithelial cells 

(Suzuki et al., 2002; Macara, 2004). The newly discovered pheno-

type of 1(ko)/2(kd) cells, the persistence of primordial AJs, 

is similar to a previously reported phenotype of the dominant-

negative mutant of aPKCλ overexpressing epithelial cells 

(Suzuki et al., 2002). During epithelial cell polarization, the po-

larity protein complex is known to be recruited to primordial 

AJs, and its activation at primordial AJs triggers belt-like AJ 

and TJ formation (Suzuki et al., 2002). In addition to the polarity 

protein complex, several groups reported that the Rac1-specifi c 

guanine nucleotide exchange factor, Tiam-1, acts upstream of 

Par-3, Par-6, and aPKCλ/ζ during epithelial polarization (Chen 

and Macara, 2005; Mertens et al., 2005; Nishimura et al., 2005). 

We fi rst examined whether molecular assembly of the Par-3–

Par-6–aPKC complex and Tiam-1 at primordial AJs was changed 

in 1(ko)/2(kd) cells. There was no obvious difference in the ex-

pression levels of Par-3, Par-6, aPKCλ/ζ, and Tiam-1 between 

parental Eph4 cells and 1(ko)/2(kd) cells (Fig. 3 A). 24 h after 

replating, Par-3, Par-6, aPKCλ/ζ, and Tiam-1 localized at pri-

mordial AJs in 1(ko)/2(kd) cells, indicating that the localization 

of them at primordial AJs was not affected by the loss of ZO-1/

ZO-2 (Fig. 3 B and not depicted).

A small G protein, Rac1, is known to be activated upon 

E-cadherin and nectin mediated cell–cell contact formation 

(Yap and Kovacs, 2003; Irie et al., 2004). The activation of Rac1 

is required for the activation of aPKC and subsequent cell polar-

ization (Mertens et al., 2005). We examined whether the activa-

tion of Rac1 during cell polarization was altered in 1(ko)/2(kd) 

cells. We analyzed Rac1 activation in parental EpH4 cells and 

1(ko)/2(kd) cells upon a Ca2+ switch. In parental EpH4 cells, 

Rac1 activation occurred within 10–30 min, whereas Rac1 ac-

tivity was hardly stimulated in 1(ko)/2(kd) cells, suggesting that 

delayed cell polarization in 1(ko)/2(kd) cells was due to the im-

paired activation of Rac1 in primordial AJs (Fig. 3 C). Indeed, 

the exogenous expression of dominant-active (DA) Rac1 (but 

not Cdc42-DA) led to the maturation of belt-like AJs in 1(ko)/

2(kd) cells, whereas the polymerization of claudins was not 

 restored by the exogenous expression of Rac1-DA (Fig. 3 D). 

These data demonstrated that ZO-1 plays a critical role in the 

establishment of belt-like AJs through the activation of Rac1. 

The relationship between the activation of Rac1 and ZO-1 upon 

cell–cell contact should be clarifi ed in future studies.

ZO-1 functions as a molecular machine 
to segregate TJs and AJs
The aforementioned fi ndings suggested that ZO-1 plays crucial 

role in the conversion from fi broblastic AJs to belt-like polar-

ized epithelial AJs through activation of Rac1 at primordial AJs 

in the initial phase of epithelial polarization. On the other hand, 

1(ko)/2(kd) cells completely lacked TJs (Umeda et al., 2006). 

Because a previous study suggested that AJ formation was a 

prerequisite for the assembly of TJs (Gumbiner et al., 1988), we 

examine whether ZO-1 is directly involved in the establishment 

of two distinct junctional domains, belt-like AJs and TJs, during 

epithelial polarization. To determine whether ZO-1 itself might 

mediate the formation of both belt-like AJs and TJs, we per-

formed a mutational analysis of ZO-1. We tested whether these 

mutants could rescue belt-like AJ and/or TJ formation by tran-

siently expressing them in 1(ko)/2(kd) cells.

We fi rst examined whether the N-terminal half of ZO-1 

containing three PDZ domains, an SH3 domain, and a GK 

Figure 4. Schematic representation of ZO-1 deletion mutants. (A) Sche-
matic drawings of deletion constructs of ZO-1. Amino acid residues of ZO-1 
are shown in parentheses. (B) Total cell lysates derived from HEK293 cells 
transiently expressing each construct were separated by SDS-PAGE and 
immunoblotted with anti-GFP pAb. (C) Stable EpH4 lines expressing the 
deletion constructs of ZO-1 were stained with antibodies against GFP and 
claudin-3. Note that ZO-11-871, ZO-1516-1746, and ZO-1804-1746 were incor-
porated into TJs and did not affect the localization of claudin-3, whereas 
ZO-11-805 was distributed along the lateral plasma membrane and induced 
ectopic TJs. Bar, 10 μm.
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 domain (ZO-11-805) restored the formation of linear actin cables 

and belt-like AJs and TJs in 1(ko)/2(kd) cells. When ZO-11-805 

was expressed in parental EpH4 cells, ZO-11-805 localized at lat-

eral membranes (Fig. 4 C and Fig. S3, available at http://www

.jcb.org/cgi/content/full/jcb.200612080/DC1). Claudin-3 and 

occludin were incorporated into the ectopic TJs formed at cell– 

cell contacts between ZO-11-805 expressing parental EpH4 cells 

(Fig. 4 C and not depicted). ZO-11-805 localized at lateral mem-

branes in 1(ko)/2(kd) cells and did not induce reorganization of 

actin fi laments and formation of belt-like AJs, whereas ZO- 11-805 

induced claudin polymerization in 1(ko)/2(kd) cells (Fig. 5 A). 

TJs formed at cell–cell contacts between ZO-11-805 expressing 

1(ko)/2(kd) cells were abnormal in that the TJs were disconti-

nuous and expanded along the lateral membrane. Although 

ZO-11-805 was an artifi cial construct, ZO-11-805 induced TJ for-

mation without belt-like AJ formation, indicating that ZO-1 has 

a potential to form TJs independently of fully blown belt-like 

AJ formation in epithelial cells.

Because SH3 and GK domains of PSD-95, another mem-

ber of MAGUK homologues, were reported to interact with 

each other and dimerize through the intermolecular association, 

we considered that SH3-GK domains of ZO-1 also function 

as a dimerization module and contribute to the formation of a 

MAGUK network and the subsequent polymerization of clau-

dins. We confi rmed that ZO-11-805 (but not ZO-1804-1746) formed 

a self-dimer in vitro (Fig. S3 C). The ability to form a self-dimer 

of ZO-11-805 is consistent with the idea that SH3-GK domains 

of ZO-1 function as a dimerization unit and contribute to the 

formation of a MAGUK network.

Previously, we reported that the N-terminal half of ZO-1 

containing three PDZ domains, an SH3 domain, and a GK 

 domain was enough to induce the formation of normal TJs in 

1(ko)/2(kd) cells (Umeda et al., 2006). The construct used as 

the N-terminal half of ZO-1 in the previous study was charac-

terized by Itoh et al. (1997) and encoded 1–862 amino acid resi-

dues of ZO-1. More precisely, 805–871 amino acids of ZO-1 

comprise an acidic domain, and the construct contained most of 

an acidic domain.

Therefore, as the next step, a longer construct including 

ZO-11-805 and an acidic domain (ZO-11-871) was introduced into 

parental EpH4 cells and 1(ko)/2(kd) cells. In parental EpH4 

cells, exogenously expressed ZO-11-871 was incorporated into 

TJs effi ciently (Fig. 4 C). In 1(ko)/2(kd) cells, formation of belt-

like AJs and TJs was restored completely by exogenous expres-

sion of ZO-11-871 (Fig. 5 B). Our knowledge about the function 

of the acidic domain is limited so far. In the present study, for 

the fi rst time, we demonstrate that the acidic domain is required 

for the proper segregation of belt-like AJs and TJs during 

 epithelial polarization.

As PDZ domains of ZO-1 directly bind to the C terminus 

of claudins, we examined whether PDZ domains of ZO-1 are 

required for proper formation of belt-like AJs. The construct of 

Figure 5. Rescuing belt-like AJ and/or TJ 
formation by deletion constructs of ZO-1 in 
1(ko)/2(kd) cells. 1(ko)/2(kd) cells were trans-
fected with GFP-tagged ZO-11-805 (A), ZO-11-871 
(B), ZO-1516-1746 (C), and ZO-1804-1746 (D). 
Cells were fi xed and stained with the indicated 
antibodies 24 h after transfection. The forma-
tion of belt-like AJs was not observed at cell–
cell contacts between ZO-11-805 expressing 
1(ko)/2(kd) cells (arrowheads). Bar, 10 μm.
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ZO-1 lacking PDZ1-3 (ZO-1516-1746) did not rescue TJ formation 

but restored the formation of belt-like AJs and linear actin ca-

bles, judging from the staining of phalloidin and afadin in 

1(ko)/2(kd) cells (Fig. 5 C). The lines of actin cables induced by 

ZO-1516-1746 in 1(ko)/2(kd) cells were less sharp than those of 

parental EpH4 cells. This indicated that ZO-1516-1746 was insuffi -

cient for the formation of junction-associated actin cables. 

Finally, the construct containing an acidic domain and actin 

binding region (ZO-1804-1746) was not effective for the recovery 

of both belt-like AJs and linear actin cables, indicating that 

SH3-GK domains are indispensable for the formation of belt-

like AJ formation (Fig. 5 D).

Collectively, these data demonstrate that ZO-11-805 rescued 

at least polymerization of claudins independently of AJ forma-

tion, whereas ZO-1516-1746 rescued only belt-like AJ formation. 

Thus, the required domains for belt-like AJ and TJ formation 

differed. The SH3-GK domains of ZO-1 are essential for both 

belt-like AJ and TJ formation. As ZO-11-871 rescued both belt-

like AJ and TJ formation, future studies have to clarify how the 

acidic domain regulates the proper segregation of belt-like AJs 

and TJs during epithelial polarization.

In conclusion, our data demonstrate that ZO-1/ZO-2 is essen-

tial for the formation of both belt-like AJs and TJs during epithe-

lial polarization. ZO-1/ZO-2 plays a crucial role in the conversion 

from fi broblastic AJ to belt-like polarized epithelial AJs through 

Rac1 activation upon cell–cell contact formation. Furthermore, 

through domain analyses of ZO-1, we found that the require-

ment for ZO-1 differs between belt-like AJ and TJ formation. 

These fi ndings favor the notion that ZO-1 is directly involved 

in the establishment and sorting out of two distinct junctional 

domains, belt-like AJs and TJs, during epithelial polarization.

Materials and methods
Materials
Mouse anti–ZO-1 mAb (Itoh et al., 1993), rat anti-occludin mAb (Saitou 
et al., 1997), rat anti-tricellulin mAb (Ikenouchi et al., 2005), and rat anti-
cingulin mAb (Ohnishi et al., 2004) were raised and characterized previ-
ously. Rat anti–E-cadherin mAb (ECCD2) and rabbit anti-PAR-3/ASIP pAb 
were provided by M. Takeichi (Center for Developmental Biology, Kobe, 
Japan) and S. Ohno (Yokohama City University, Yokohama, Japan), 
 respectively. Mouse anti-afadin mAb and rat anti–nectin-2 mAb were pro-
vided by Y. Takai (Osaka University, Osaka, Japan). Rabbit anti–α-catenin 
and mouse anti–α-tubulin (DM1A) were purchased from Sigma-Aldrich. 
Rabbit anti–claudin-3 pAb and rabbit anti–ZO-2 pAb were purchased from 
Zymed Laboratories. Rat anti-HA mAb was purchased from Roche Applied 
Science. Rabbit anti-aPKC pAb and anti-Tiam1 pAb were purchased from 
Santa Cruz Biotechnology, Inc. Mouse anti-Rac1 mAb was purchased from 
Upstate Biotechnology.

Plasmids
pGEX4T1-CRIB-Pak for pull-down assay of Rac1 has been described previ-
ously (Matsuo et al., 2002) and was provided by F. Oceguera-Yanez and 
S. Narumiya (Kyoto University, Kyoto, Japan). pEF-BOS-myc-Rac-DA and 
pEF-BOS-myc-Cdc42-DA were provided by Y. Takai (Osaka University, 
Osaka, Japan) and T. Sasaki (University of Tokushima, Tokushima, Japan). 
A diagram of the expression constructs of deletion mutants used in this 
study is shown in Fig. 4 A. Each fragment was amplifi ed by PCR and sub-
cloned into the vector pCAGGS-NGFP or pCAGGS-NHA.

Cell culture and transfection
Mouse EpH4 epithelial cells, 1(ko)/2(kd) cells, and MDCK II cells were 
grown in Dulbecco’s modifi ed Eagle’s medium supplemented with 10% 
 fetal calf serum. EpH4 cells were a gift from E. Reichmann (Institute 

Suisse de Recherches, Lausanne, Switzerland). Transfection was per-
formed using Lipofectamine Plus Reagent (Invitrogen) according to the 
manufacturer’s instructions.

Immunofl uorescence microscopy
Immunofl uorescence microscopy was performed as described previously 
(Ikenouchi et al., 2005). In brief, cells cultured on coverslips were fi xed with 
3% formalin in PBS for 10 min at RT, treated with 0.2% Triton X-100 in PBS 
for 5 min, and washed with PBS. Blocking was done by incubating the fi xed 
cells with 5% BSA in PBS for 30 min at RT. After the antibodies had been 
diluted with the blocking solution, the cells were incubated at RT for 1 h with 
the primary antibody and for 30 min with the secondary antibody. For actin 
staining, Alexa Fluor 568 phalloidin (Invitrogen) was added to the second-
ary antibody. Specimens were observed at RT with a photomicroscope 
(BX51; Olympus) and with a confocal microscope (Axiovert 200M; Carl 
Zeiss MicroImaging, Inc.) equipped with a Plan-A P O C H R O M A T  (60/1.40 
N.A. oil-immersion objective) with appropriate binning of pixels and expo-
sure time. The images were analyzed with IPLab version 3.9.5 (BD Bio-
sciences) and LSM510 Meta version 3.0 (Carl Zeiss MicroImaging, Inc.).

In vitro binding assay, gel electrophoresis, and immunoblotting
The in vitro binding assay was performed as previously described (Itoh 
et al., 1997; Matsuo et al., 2002). Samples were resolved by SDS-PAGE and 
electrophoretically transferred to a nitrocellulose membrane (Schleicher & 
Schuell). This membrane was incubated successively with primary antibodies, 
which were visualized using a blotting detection kit (GE Healthcare).

Online supplemental material
Fig. S1 shows the colocalization of β-catenin, afadin, and Par-3 at primor-
dial AJs in 1(ko)/2(kd) cells. Fig. S2 shows that 1(ko)/2(kd) cells restore 
the formation of belt-like AJs and cortical actin cables 72 h after the Ca2+ 
switch. Fig. S3 shows that exogenous expression of ZO-11-805 induced ab-
errant TJs also in MDCK II cells and that ZO-11-805 formed a self-homodimer 
in vitro. Online supplemental material is available at http://www.jcb.org/
cgi/content/full/jcb.200612080/DC1.
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