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In mammals, lipemic blood from sampling too soon after an animal feeds can have substantial effects on biochemical values.
Plasma biochemical values in reptiles may be affected by species, age, season, and nutritional state. However, fasting status is not
routinely considered when sampling reptile blood. In this paper, we evaluated 2-hour postprandial blood collection in two sea
turtle species to investigate the effects of feeding on hematological and plasma biochemical values. Feeding had no significant
effects on hematological values in either species, nor did it have an effect on plasma biochemistry values in Kemp’s ridley sea
turtles. In postprandial green turtles, total protein, albumin, ALP, AST, ALT, amylase, and cholesterol increased significantly, and
chloride decreased significantly. Although statistically significant changes were observed, the median percent differences between
pre- and postprandial values did not exceed 10% for any of these analytes and would not likely alter the clinical interpretation.

1. Introduction

Green sea turtles (Chelonia mydas) are found in tropical to
semitropical waters around the world and are the second
most abundant sea turtle found off the Eastern United Sates
[1, 2]. Juvenile green turtles found in coastal waters are in
a transition phase from a more carnivorous diet (shrimp,
snails, and ctenophores) to a primarily herbivorous diet (sea
grasses), which creates a physiological status unique from
other sea turtles [3]. Kemp’s ridley sea turtles (Lepidochelys
kempii) are the smallest and most endangered of all sea
turtles. They are found in waters along the eastern coast
of North America, ranging from Mexico to as far north as
New York and Massachusetts [2]. Kemp’s ridley turtles are
carnivorous and opportunistic, feeding primarily on crabs,
mollusks, and fish [3]. Juvenile green and Kemp’s ridley tur-
tles use shallow coastal waters for foraging grounds, making

them susceptible to a number of human-induced traumas
(e.g., boat strike and fishing interactions) and natural disease
processes (e.g., cold-stunning). Hundreds of juvenile turtles
are found dead or severely debilitated each year, with many
being brought into rehabilitation centers for treatments.

Hematology and plasma biochemistries are valuable
for monitoring animal health; however, environmental and
procedural factors can have variable affects on reported
values. Postprandial blood collection can yield lipemic
samples due to increases in serum triglycerides in the form of
chylomycrons. Several biochemical analytes change with diet,
feeding, and lipemia in a wide range of species, including
mammals [4–13], birds [14–19], sharks [20], and reptiles
[21, 22]. The observed alterations in biochemical values have
led to recommendations on prephlebotomy fasting times for
many species [4, 6, 17, 19]. However, few recommendations
have been made for reptiles.
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Table 1: Size data and time in rehabilitation for green (n = 10)
and Kemp’s ridley (n = 10) sea turtles investigated for the effects of
feeding on hematology and plasma biochemistry profiles.

Analyte
Green sea turtles Kemp’s ridley sea turtles

Median Range Median Range

Weight (kg) 6.0 3.8–9.3 6.4 2.5–13.3

SCL-N (cm)a 35.8 29.4–47.1 33.3 27.9–41.5

Days in rehabilitation 284 97–468 117 49–452
a
Straight carapace length (nuchal notch to pygal notch).

In reptiles, environmental and physiological factors,
including season, sex, age, size, and nutritional state, may
alter clinical pathology values [22–24]. In sea turtles,
hematological and plasma biochemistry values have been
investigated for several species [21, 25–34], and biochemical
values have been shown to be influenced by sex, size, age,
health status, and foraging [21, 31, 34–37]. However, there
is a paucity of data regarding the effects of postprandial
sampling on plasma chemistry analytes in sea turtles, leading
to uncertainty in the need for fasting blood samples.

Understanding whether, or how, feeding impacts clinical
pathology values in sea turtles would be helpful in both
captive and wild settings because of the great uncertainty
in knowing when a wild turtle last fed and occasional
difficulties fitting sample collection into the management
routines and logistics of a rehabilitation or aquarium facility.
This study evaluated the effects of postprandial sampling on
hematological and plasma biochemical values in green and
Kemp’s ridley sea turtles.

2. Materials and Methods

2.1. Animals and Environment. Ten juvenile green sea tur-
tles and ten juvenile Kemp’s ridley sea turtles undergoing
rehabilitation for various conditions at the Karen Beasley
Sea Turtle Rescue and Rehabilitation Center, Topsail Island,
North Carolina, were used for this study. Median and range
of weights, straight carapace lengths (nuchal notch to pygal
notch), and days in rehabilitation are shown in Table 1. Only
turtles that were active, eating well, and not on any major
treatments were included. Not all were considered ready for
release, as some were still being treated for minor shell lesions
(topical treatment) and for being under the desired body
condition for release. Turtles were individually housed in
variably sized plastic or fiberglass tanks containing filtered
saltwater. Larger tanks were plumbed into a communal
filtration system with multiple forms of mechanical and
biological filtration; smaller tanks were on a daily dump
and fill routine. Most of the turtles remained in indoor
tanks, but a few were placed in temporary outdoor enclosures
during the afternoons to facilitate daily operations of the
rehabilitation facility and provide UV light exposure. Water
temperatures ranged from 25◦C–29◦C.

2.2. Sampling and Feeding. Blood was collected in con-
junction with routine health monitoring and prerelease
examinations. Initial blood samples were taken first thing

in the morning following an approximately 24 hr fast prior
to any food items being offered. Turtles were manually
restrained on an exam table, and the head was restrained
in ventral flexion over the side of the table to facilitate
blood collection. A 22 ga × 2.54 cm needle and 3 mL syringe
were heparinized and used to collect 2-3 mL of blood
from the external jugular vein. After initial sampling, the
turtles were returned to their holding tanks and offered
food. A combination of frozen thawed capelin (Mallotus
villosus) with lesser amounts of squid (Loligo sp.), and/or
blue crab (Callinectes sapidus) was offered at 1.5%–9.0%
body weight. Based on proximate analyses of diet items
performed previously at this facility (squid and blue crab;
Microbac Laboratories, Inc., Southern Testing and Research
Division, Wilson, NC, USA) and previously published values
for capelin and squid [38], capelin contains a moderate
amount of lipid (7.0%–23.3% dry matter basis), while squid
and blue crab contain a lesser amount of lipid (squid 8.3%–
11.4%, blue crab 2.4% dry matter basis). All turtles were
given 30 min to feed, and all consumed a minimum of
50% or more of the diet offered. Two hours after feeding,
a second blood sample was collected. For turtles that took
longer than 10 min to consume the offered diet, the time
for the postprandial blood sample was calculated from the
time the turtle stopped eating or excess food was removed
from the tank. The median (range) time from feeding to the
postprandial blood draw was 126 min (113–142 min).

2.3. Blood Processing and Analysis. For each turtle, two blood
smears were made, two hematocrit tubes filled, and the
remainder of the blood was placed in a sterile 1.5 mL conical
vial with no additive (Fisher Scientific Company, Pittsburgh,
Pa, USA) on wet ice until centrifugation. All samples were
centrifuged within 67 min of collection. Hematocrit tubes
were centrifuged at 3900×g for 5 min, and packed cell
volume (PCV) determined. Total solids (TS) were deter-
mined by refractometer. The conical vials were centrifuged
at 1000×g for 10 min, and the plasma harvested. Plasma
samples were submitted along with two corresponding blood
smears to a commercial diagnostic laboratory (Antech Diag-
nostics, Memphis, Tenn, USA) for biochemistry analysis and
differential blood cell counts within one day of collection.
Plasma biochemistry panels were performed on a Hitachi
717 Chemistry Autoanalyzer (Hitachi Instruments Inc., San
Jose, Calif, USA). Details on plasma biochemistry assay
methodology are summarized elsewhere [39].

2.4. Statistical Analysis. All analyses were performed with
JMP 7 (SAS Institute, Cary, NC, USA). Median and range
were determined for all hematological and plasma biochem-
ical data. The Wilcoxon matched-pairs signed rank test was
used to compare differences between preprandial and post-
prandial values. The data were then grouped by hematologic
values (PCV, % heterophils, % lymphocytes, % monocytes,
% eosinophils, and % basophils), plasma enzymes (ALP, AST,
ALT, CPK, amylase, and lipase), metabolic indicators (total
protein, albumin, globulins, glucose, BUN, creatinine, uric
acid, cholesterol, triglycerides, and total bilirubin), and ions
(sodium, potassium, chloride, calcium, inorganic phosphate,
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Table 2: Medians and ranges for preprandial and postprandial plasma biochemical values from juvenile Kemp’s ridley sea turtles (n = 10).
System International and conventional units (in parentheses) are provided.

Analyte
Preprandial Postprandial

Median Range Median Range

Total protein g/L (g/dL) 40 (4.0) 34–45 (3.4–4.5) 40 (4.0) 35–48 (3.5–4.8)

Albumin g/L (g/dL) 15 (1.5) 13–18 (1.3–1.8) 16 (1.6) 13–19 (1.3–1.9)

Globulin g/L (g/dL) 24 (2.4) 20–30 (2.0–3.0) 24 (2.4) 22–31 (2.2–3.1)

Glucose mmol/L (mg/dL) 6.8 (122) 5.3–7.3 (95–131) 6.4 (116) 5.4–8.1 (97–145)

Urea nitrogen mmol/L (mg/dL) 43.6 (122) 26.4–60.0 (74–168) 43.6 (122) 27.5–58.9 (77–165)

Creatinine µmol/L (mg/dL) 18 (0.2) 18–26 (0.2–0.3) 18 (0.2) 18–35 (0.2–0.4)

Cholesterol mmol/L (mg/dL) 5.1 (198) 2.1–8.5 (80–328) 5.2 (202) 2.3–8.5 (88–329)

Triglyceride mmol/L (mg/dL) 3.8 (348) 0.3–7.3 (23–662) 3.9 (354) 0.3–8.6 (25–779)

Uric Acid µmol/L (mg/dL) 36 (0.6) 6–71 (0.1–1.2) 71 (1.2) 6–107 (0.1–1.8)

Calcium mmol/L (mg/dL) 1.8 (7.4) 1.6–2.0 (6.5–7.8) 1.8 (7.0) 1.6–1.9 (6.5–7.7)

Phosphate mmol/L (mg/dL) 2.4 (7.6) 1.5–2.9 (4.7–8.9) 2.5 (7.8) 1.5–2.8 (4.8–8.8)

Sodium mmol/L 154 150–158 155 153–164

Potassium mmol/L 4.1 3.9–4.4 4.4 3.6–4.7

Chloride mmol/L 127 120–131 124 120–127

Magnesium mmol/L (mg/dL) 1.7 (4.2) 1.2–2.5 (3.0–6.1) 1.7 (4.2) 1.2–2.3 (2.9–5.7)

ALPa U/L 98 40–197 96 41–211

ALTa U/L 6 1–35 6 0–45

ASTa U/L 491 66–3607 523 69–4128

CKa U/L 786 370–8289 812 361–8166

Amylase U/L 528 457–699 564 462–740

Lipase U/L 8 0–16 10 0–16
a
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CK, creatine kinase.

and magnesium), and the sequential Bonferroni technique
was applied within each group to reduce the chance of type
I error [40]. A P value of <.05 after sequential Bonferroni
correction was considered statistically significant. A median
difference of 10% or greater for an analyte was arbitrarily
chosen as a point at which a statistical difference may become
clinically relevant and, therefore, may lead to an alteration in
the clinical interpretation or therapeutic course.

3. Results

There were no significant differences between pre- and
postprandial PCV and differentials for either the green turtle
or the Kemp’s ridley sea turtle (data not shown). There
were no significant differences between preprandial and
postprandial values in the Kemp’s ridley sea turtles (Table 2).
In postprandial samples in the green turtles (Table 3), there
were significant increases in total protein (P = .0390),
albumin (P = .0351), alkaline phosphatase (ALP; P =
.0156), alanine aminotransferase (ALT; P = .0351), aspartate
aminotransferase (AST; P = .0120), amylase (P = .0100),
and cholesterol (P = .0312). In addition, there was a
significant decrease in chloride (P = .0234). Of these analytes
that were statistically different after feeding, none had a
median percent difference of greater than 10% between
pre- and postprandial samples (Table 4). Although median
percent differences were greater than 10% for globulin and
creatine kinase (CK) in green turtles, and for lipase and uric

acid in Kemp’s ridley turtles, the variability of data was high,
and those differences were not statistically significant.

4. Discussion

All hematological and biochemical values for both species of
sea turtles were consistent with values previously reported
for these species [25, 30, 31, 35, 41–43] except for inorganic
phosphate, AST, and ALT in the green turtles. Inorganic
phosphate was at the upper range or slightly higher than
reported values [25, 30, 35, 41, 43], which is likely related
to diet. The marked elevation in AST and ALT of most
of the green turtles, as compared to reported values, is
a phenomenon that has previously been observed in this
population (unpublished data). The underlying cause is
uncertain, but it may also be of dietary origin related to
a more carnivorous diet in captivity. Because postprandial
values were compared with preprandial values for each turtle,
the initial values were not a factor in the analysis.

No significant differences were found between prepran-
dial and postprandial hematological values for either the
green turtle or the Kemp’s ridley sea turtle. This finding
was expected, because postprandial sampling is linked with
lipemia and interference with analytes that utilize photomet-
ric analyses [4, 5, 12, 44]. Hematological values are obtained
through direct microscopic evaluation of cell numbers and
types; therefore, alterations due to postprandial sampling
would not be expected. Lipemia has also been linked with



4 Veterinary Medicine International

Table 3: Medians and ranges for preprandial and postprandial plasma biochemical values from juvenile green sea turtles (n = 10). System
International and conventional units (in parentheses) are provided.

Analyte
Preprandial Postprandial

Median Range Median Range

Total protein g/L (g/dL) 46 (4.6) 26–55 (2.6–5.5) 49 (4.9)a 25–60 (2.5–6.0)

Albumin g/L (g/dL) 19 (1.9) 10–25 (1.0–2.5) 21 (2.1)a 10–26 (1.0–2.6)

Globulin g/L (g/dL) 26 (2.6) 16–33 (1.6–3.3) 29 (2.9) 15–35 (1.5–3.5)

Glucose mmol/L (mg/dL) 8.2 (146) 5.4–10.3 (97–184) 8.3 (149) 6.8–9.6 (122–171)

Urea nitrogen mmol/L (mg/dL) 30.0 (84) 19.3–51.4 (54–144) 29.6 (83) 19.3–49.6 (54–139)

Creatinine µmol/L (mg/dL) 18 (0.2) 9–18 (0.1–0.2) 18 (0.2) 18–26 (0.2–0.3)

Cholesterol mmol/L (mg/dL) 5.4 (207) 2.4–8.1 (93–311) 5.5 (216)a 2.4–9.2 (93–352)

Triglyceride mmol/L (mg/dL) 1.7 (151) 0.9–4.4 (83–401) 1.7 (154) 0.8–4.8 (72–441)

Uric Acid µmol/L (mg/dL) 59 (1.0) 48–125 (0.8–2.1) 89 (1.5) 54–137 (0.9–2.3)

Calcium mmol/L (mg/dL) 1.7 (6.8) 1.4–2.0 (5.7–7.8) 1.8 (7.3) 1.4–2.2 (5.5–8.6)

Phosphate mmol/L (mg/dL) 2.9 (9.0) 2.0–4.3 (6.1–13.2) 3.0 (9.3) 2.3–4.4 (7.2–13.7)

Sodium mmol/L 154 148–162 154 148–159

Potassium mmol/L 4.3 3.5–6.7 4.1 3.2–5.3

Chloride mmol/L 121 116–131 116a 109–122

Magnesium mmol/L (mg/dL) 3.2 (6.3) 1.5–3.3 (3.7–8.1) 3.1 (6.2) 1.7–3.0 (4.1–7.4)

ALPb U/L 54 31–63 60a 32–68

ALTb U/L 90 14–237 108a 15–285

ASTb U/L 1486 396–3175 1684a 438–3491

CKb U/L 1072 145–1802 994 208–2540

Amylase U/L 1086 163–1470 1154a 194–1531

Lipase U/L 20 2–48 20 2–53
a
Indicates postprandial values that differ significantly from preprandial values (P ≤ .039).

bALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CK, creatine kinase.

increased hemolysis due to red cell fragility [4]; however,
little to no hemolysis was observed in any of the samples
used.

The green sea turtle showed more postprandial changes
in plasma chemistry values than were observed in the Kemp’s
ridley sea turtle. In the green turtle, total protein, albu-
min, ALP, AST, ALT, cholesterol, and amylase significantly
increased following feeding, but none changed to a degree
that would likely lead to alterations in medical management.
In the Kemp’s ridley sea turtle, there were no significant
differences between pre- and postprandial samples. The
differences between the two species could relate to differences
in their natural diets. Juvenile Kemp’s ridley turtles are
carnivorous, consuming primarily crustaceans [3], whereas
the juvenile green turtles shift from a carnivorous to a more
herbivorous lifestyle [3, 45]. However, in the rehabilitation
setting of the current study, both species are primarily fed
capelin with some squid, and with many Kemp’s ridleys also
being fed soft-shell blue crab. The difference observed might
then be due to each species’ specialized physiology for their
natural diet (i.e., inclusion of vegetation in the diet of the
juvenile green turtles of this size). Research on the effects of
natural diets on plasma biochemical profiles at different life
stages is warranted.

The increased values observed in green turtles con-
trast with what has been observed in the red-eared slider
(Trachemys scripta elegans), where no differences in any of
these analytes were found in 24 hr and 48 hr postprandial

samples [46]. Variable ALP, AST, and ALT activities have
been measured in multiple tissues in reptiles, resulting in
indeterminate degrees of clinical utility [47–49]. Despite
statistically significant increases, none of these enzymes
changed substantially (i.e., no median percent differences
>10%) in the current study, and both pre- and postprandial
ALP values were comparable to published ranges for green
sea turtles [25, 30, 41–43]. The initial plasma activity levels
for AST and ALT were higher than in previous reports
[25, 30, 41–43], but the median percent postprandial changes
were minor (<10%). Apartate aminotransferase and ALT
have been found in skeletal muscle to some extent [48, 49]. It
is possible that the initial phlebotomy caused mild muscle
damage and subsequent leakage of the enzymes from the
muscle cells. This leakage of the enzyme into the peripheral
circulation could account for mild increases in enzyme
activities observed in the postprandial samples. Changes
in CK, however, were highly variable and not consistently
supportive of the interpretation of muscle damage. These
same studies found these three enzymes in liver, kidney and
variable concentrations in other organ tissues [48, 49], and
postprandial elevations may be indicative of organs gearing
up for digestion (e.g., liver, pancreas, and gastrointestinal
tract). There are several isoenzymes of these tissue enzymes
that may contribute to the overall increase in plasma enzyme
activity. Although outside the scope of this paper, evaluation
of the isoenzymes would help to better characterize the
observed enzyme plasma activities.
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Table 4: Median % differences and ranges between postprandial
and preprandial plasma biochemical values from juvenile green
(n = 10) and Kemp’s ridley (n = 10) sea turtles.

Analyte
Green sea turtles Kemp’s ridley sea turtles

Median Range Median Range

Total protein 8.5 −3.8–21.6 3.7 −2.4–17.6

Albumin 7.0 0–22.2 6.1 −7.1–7.7

Globulin 11.2 −6.2–34.8 4.3 −7.7–23.8

Glucose 4.9 −23.8–25.8 −1.8 −13.1–16.9

Urea nitrogen −1.0 −4.9–3.4 −0.9 −5.9–4.8

Creatinine 0 0–100 0 −33.3–50.0

Cholesterol 6.5 0–17.5 5.3 −2.6–10.0

Triglyceride 4.1 −25.3–43.3 8.2 −11.8–25.1

Uric Acid 9.5 −11.1–35.7 56.3 −83.3–142.9

Calcium 6.9 −15.1–28.4 −2.6 −11.5–4.5

Phosphorus 3.7 −9.5–18.0 2.3 −1.1–6.9

Sodium 0 −3.7–4.1 0.6 −1.3–5.1

Potassium −8.2 −38.8–39.5 3.5 −7.7–14.6

Chloride −4.6 −9.2–0 −2.0 −4.7–0.8

Magnesium 2.9 −8.6–10.8 −3.3 −25.6–13.3

ALPa 8.7 0–21.1 4.5 −9.9–12.9

ALTa 8.6 −2.8–25.3 5.0 −100–50

ASTa 9.6 1.4–17.1 5.5 −3.9–14.4

CKa 46.5 −46.2–202.3 6.2 −2.4–15.8

Amylase 6.5 4.0–19.0 5.2 −3.7–11.0

Lipase 2.3 −25.0–33.3 13.9 −100–33.3
a
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; CK, creatine kinase.

Cholesterol and triglycerides may be increased in reptiles
due to hepatic lipidosis, vitellogenesis, and prehibernation
[50]. Pythons exhibited a 50-fold increase in triglycerides
and an 80% increase in cholesterol following a meal [51];
however, no time frame was provided. In red-eared slider
turtles fed a high-fat diet, triglycerides increased significantly
within 2 days and did not return to normal until 4 days
after feeding [52]. There was no evaluation of a normal
diet or cholesterol concentrations. In the current study, with
a moderate-to-low-fat diet, triglycerides did not increase
significantly in either species, and cholesterol significantly
increased 2 hr after feeding in the green turtle but not in
the Kemp’s ridley sea turtles. The postprandial cholesterol
concentrations were, however, increased by less than 10%,
and were at or minimally above published reference intervals
for cholesterol in green turtles [25, 41, 42, 50].

Although sea turtles have a long gastrointestinal transit
time (up to 7 or 8 days in the Kemp’s ridley turtle [53]
and can tolerate a prolonged fast (possibly months for
adults of some green turtle populations during reproductive
migration) [54]), the 24-hr fast used in this study of juvenile
sea turtles is ecologically and physiologically relevant. In the
wild, green turtles on foraging grounds feed once to twice
daily, and primarily during the daylight hours [3, 55, 56].
In Hawaii, green turtles have been found to feed primarily
at night in some areas, where they foraged from evening

twilight to around sunrise [57]. Green turtles in areas of
poor food availability, highly disturbed grass beds, fed more
continuously (approximately 9 hr) during daylight hours
[58]. Kemp’s ridley sea turtles feed primarily on more active
and mobile prey such as crabs [3, 53, 59–61] and, therefore
likely feed more sporadically throughout the day [61]. As
a result of their natural feeding behaviors, a 24-hr period
without food constitutes a valid fast for these two species.

None of the changes observed in hematologic and
plasma chemistry values between pre- and 2 hr postprandial
blood samples were considered sufficient to revise a clinical
interpretation or trigger a change in an animal’s course of
treatment. It is possible that a longer preprandial fast, or
following biochemical profiles for a longer period of time
after feeding, would yield greater alterations. However, for a
juvenile green or Kemp’s ridley sea turtle feeding once daily,
there is little consequence to sampling 2 hr postprandial
versus after a 24-hr fast. Timing of blood collection in
regularly feeding sea turtles appears to be less critical for
interpretation of clinical pathology values than in some other
species.
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