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ABSTRACT: Water saturation plays a vital role in calculating the
volume of hydrocarbon in reservoirs and defining the net pay. It is
also essential for designing the well completion. Innacurate water
saturation calculation can lead to poor decision-making, signifi-
cantly affecting the reservoir’s development and production,
potentially resulting in reduced hydrocarbon oil recovery. Various
techniques to estimate the water saturation in both clean and shaly
formations. However, the most widely used approaches in the
petroleum industry rely on petrophysical models, including Archie’s
equation, Waxman-Smits, Simandoux, Indonesia, and dual-water
models. Most of these methods are only valid for clean sands or
carbonate, while the presence of clay significantly limits the accuracy of these models. On the other hand, the estimation of the water
saturation through core analysis does not usually cover a large interval of the well, is highly costly, and requires much time. In this
study, an empirical equation for predicting water saturation based on the weight and biases of the artificial neural networks (ANN)
was developed. 334 data points of the shale volume, formation deep resistivity, porosity, and permeability and their corresponding
water saturation collected from the Epsilon Field in Greece were considered for optimizing the ANN model. The ANN model was
trained on 252 data sets, where the water saturation was predicted with an average absolute percentage error (AAPE) of 0.90%.
Then, an empirical equation was developed based on the optimized ANN model and its weights and biases. The developed equation
predicted the water saturation for the remaining 82 data sets (testing data) with an AAPE of 1.08%. The newly established empirical
correlation enhances the precision of water saturation prediction and provides a cost-effective means to acquire a continuous water
saturation profile, a critical asset for oilfield management and hydrocarbon exploration.

1. INTRODUCTION
Most hydrocarbon reservoirs have two different fluids within
their pore spaces, and some have all three phases of gas, oil, and
water.1−3 Therefore, knowing water saturation (Sw) is essential
to determine the hydrocarbon content. Kamel and Mabrouk4

assumed that all reservoirs’ void spaces consist of water and
hydrocarbon; therefore, Sh = 1-Sw. Determining water saturation
is complex; it started in 1942 by incorporating some well logs in
clean sandstones.5 Then, many scientists proposed various
equations to validate this procedure in shaly sands and
carbonates. Later, many scientists proposed different relations
to validate the proposed correlation between shaly sands and
carbonates. The main challenge in this process is its dependency
on laboratory core analysis, which takes a lot of time and is
costly.6 In addition, it does not provide a continuous recording
through the well but only a discrete measurement at specific
depths. To tackle the dependency of water saturation estimation
on core analysis, researchers suggested using well logs and
performing formation evaluation to calculate the water
saturation as continuous values with depths. The relationship

between water saturation, formation resistivity, and porosity logs
is described by Archie’s equation,5 eq 1 and shown below:
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where Sw is the water saturation, Rt is the true formation
resistivity, Φm is the formation porosity Rw is the formation
water resistivity, and a, m, and n are constants (a: tortuosity
constant, m: cementation exponent, n: saturation exponent)
that are based on the pore geometry, cementation, and rock type.
It should be mentioned that the formation porosity (Φm), can

be estimated from neutron (NPHI), density,7 nuclear magnetic
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resonance (NMR),8 or acoustic logs.9 The self-potential log
(SP) can be used to calculate the formation water resistivity
(Rw).
Archie’s equation is restricted to the clean formation, which is

not the case in most hydrocarbon reservoirs since the existence
of clay causes some errors in resistivity measurements because
clay increases conductivity. Moreover, it is not common in oil
and gas fields to have SP logs for the Rw estimation. In addition, if
the rock matrix is unknown, then a low accuracy of porosity
estimation is expected. Furthermore, m and n constants cannot
be measured. Consequently, the estimation of Sw from Archie’s
eq 1 needs to be calibrated and corrected.
Other techniques, such as the Waxman−Smits, Indonesia, eq

2 and Simandoux, eq 3, and dual-water models, were proposed
to modify and revise Archie’s equation by considering the shale
factor into Archie’s equation.
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where Vsh is the shale volume, Rsh is shale resistivity, Φ is the
formation porosity, and Rt is the true formation resistivity.
Also, the existence of nonconductive kerogen underestimates

the water saturation. Table 1 compares the conventional
correlations’ application, advantages, and disadvantages. As the
comparison in this table indicates, each model applies to specific
formations and has low accuracy in others. Changing the
formation also requires calibration of some of the parameters
used in these equations to ensure high accuracy.
The conventional way to estimate the water saturation is by

applying the Special Core Analysis (SCAL) at specific depths,
which is accurate but requires time and is highly expensive10,11

Although conventional well logs provide the water saturation as
a continuous profile, not discrete as SCAL, estimating water

saturation is still challenging due to the uncertainty of the
constants’ calculations.
Artificial intelligence (AI) is probably the most general-

purpose technology rapidly entering industries, triggering and
leading to significant improvements in multiple sectors (i.e.,
energy, healthcare, transportation, retail, media, and finance) in
the international market and changing the competition rules.12

AI is a game-changer since companies are moving from
traditional and human-centered business processes to more
automated and real-time processes companies, minimizing the
risk and optimizing and/or maximizing the benefits of any
company using AI solutions. Advanced algorithms are trained in
large and multiparametric data sets. The algorithms can
automatically produce more accurate and reliable models by
adding more data.
Oil and gas (O and G) and mining companies are the

latecomers to digitalization. Still, they are rapidly becoming
more dependent on AI solutions to improve the efficiency of
production and exploration phases by utilizing advanced digital
technologies. In practice, enhancing the efficiency in O and G
typically means accelerating processes and reducing risks now
and in the coming years during the development of an oil
field.13−15 Machine learning techniques can play a vital role in
solving such difficulties properly.16,17 Various machine learning
methods such as artificial neural network (ANN),18−21 adaptive
neuro-fuzzy inference systems,16 functional neural net-
works,22−24 support vector machine,25,26 and random for-
ests27,28 were successfully applied for predicting various
parameters related to petroleum engineering and other fields
as well.29−32 Hence, they may have a potential application for
predicting water saturation without additional cost. An ANN is a
computing system designed to imitate the organizing principles
of the nervous system processes. For example, ANN can handle
a mapping problem by discovering a close approximation of the
connection between input and output data by learning
automatically from provided training patterns. This separates
it from other typical expert systems.16 An ANN computing
system comprises artificial neurons that act as fundamental
components and mimic the parallel process of a biological brain
to get the solution.

Table 1. Comparison of Application, Advantages, and Disadvantages of the Conventional Correlations for Prediction of Water
Saturation

Method Application Advantages Disadvantages

Archie’s
equation5

Applicable for homogeneous and
Clean formation

●Simplicity ●Not suitable for complex lithologies

●Sensitivity to cementation and saturation exponents
●It needs to be calibrated and corrected

Indonesia
equation

Can handle complex lithologies ●Suitable for a wide range of
reservoir conditions

●Limited historical use

●Incorporates salinity effects ●Calibration may be necessary to achieve optimal accuracy in specific
reservoirs, which can be time-consuming

●It relies on specific input parameters, including salinity, which must be
accurately measured

Simandoux
equation

Improved accuracy in shaly sands ●Suitable for reservoirs with
significant clay content

●Requiring the incorporation of clay-specific parameters, which can be
challenging

●Primarily intended for shaly sands and may not be the best choice for
other lithologies

dual-water
models

Widely used in mixed-wet
reservoirs

●Physically realistic ●Increased complexity

●Improved accuracy in mixed-
wet reservoirs

●Accurate capillary pressure and wettability data are needed for robust
application

●Primarily suited for mixed-wet reservoirs and may not be necessary or
applicable in water-wet or oil-wet reservoirs
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This paper developed an empirical correlation for water
saturation evaluation as a function of the weights and biases of
the optimized ANNmodel based on the well log data of the shale
volume, formation deep resistivity, porosity, and permeability.

2. STUDY AREA
The Prinos basin is currently the only active hydrocarbon-
producing oilfield in Greece, with the Epsilon oil field being the
most recently developed.33 The Epsilon oil field lies in the
northern Aegean Sea, situated between the Greek mainland and

the island of Thassos, about 11 km south−southeast of Kavala
(Figure 1).34,35 Production from this region began in 1976,
following a series of exploratory efforts. The initial discovery well
drilled in 1971 about 20 km east of Thassos island, encountered
oil, but it was extremely low-gravity. The following two wells in
1972−1973 focused on the area west of Thassos, which resulted
in the discovery of the South Kavala gas field at a water depth of
52 m. In late 1973, the fourth well was successfully drilled
targeting the central part of the Prinos basin, this leaded to
successfully uncovering the Prinos oil field in waters about 100

Figure 1. Location of the Epsilon oil field in the Northern Aegean Sea. The Epsilon oil field, positioned within the northern sector of the Prinos basin,
lies between the Greek mainland and Thassos island. The oil and the migration paths are shown.

Figure 2. A SW-NE geological section of the broader Prinos Basin is presented. The extensive faulting formed an anticline. The stratigraphic sequence
is also presented in different colors. Depths are in kilometers below mean sea level.
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feet deep. This field remains significant in Greece’s domestic
energy production.
The stratigraphy model of the taphrogenetic basin, as shown

in Figure 1, has been detailed by Pollak,36 Proedrou,37 and
Proedrou and Sidiropoulos38 (Figure 2). The model divides the
generalized stratigraphic column into three main series: the Pre-
Evaporitic Series, which consists of conglomerates, sandstones,
siltstone/shales, and localized limestone formations; the
Evaporitic Series, made primarily of salt and anhydrite deposits;
and the Post-Evaporitic Series, which is characterized by
siltstone/shales and sandstones. The taphrogenetic basin’s
overall structure is a dome-shaped anticline created by NW-
striking and SW-dipping syngenetic faults connected to the
trapping process.33,35 The primary reservoir rocks are sand-
stones and siltstones deposited during the lateMiocene, sourced
from deltaic, marine, and turbiditic settings,34,39,40 The entire
basin is capped by evaporites, which acts as impermeable seal for
the trapped hydrocarbons, except in areas like the South Kavala
and Ammodhis fields, where fault activation has likely facilitated
the upward migration of hydrocarbons.35

3. METHODOLOGY
Herein, we describe the methodology for training the ANN
model, extracting the weights and biases of the optimized ANN
model, developing the empirical equation, and testing the
developed equation.

3.1. Data Preparation. For the water saturation prediction,
364 data points of shale volume (Vshale), formation porosity,
permeability, deep resistivity measurement, and corresponding
water saturation were used from Well-1. It is essential to
mention that the permeability values considered are calculated
values based on well-log data and not measured permeability. In
the first stage, the data were preprocessed to remove all nonreal
(unexpected/outliers) values; for example, all inputs with water
saturation values less than zero or greater than 1.0 were
considered nonreal inputs and removed from the input data set.
For outliers removal, a statistical analysis was applied to all input
parameters, removing all values outside ±3.0 standard deviation
range. We also performed clustering and density analysis of the
data to ensure no outliers were present.

3.2. Training the ANN Model. After data preprocessing, 30
points were removed, leaving 334 valid data sets for model
training. The artificial neural network (ANN) was trained to
predict water saturation, with key design parameters like
learning function, number of layers, neurons per layer, and
transfer functions optimized. The training data percentage was
adjusted between 40% and 90% for best results. Several training
functions, including Levenberg−Marquardt,41,42 resilient back-
propagation, and Bayesian regularization, were assessed. Addi-
tionally, transfer functions like tangential sigmoidal, logarithmic
sigmoidal, and linear were evaluated for their effectiveness in
predicting water saturation. The study aimed to optimize these
parameters to improve the ANN model’s accuracy in predicting
water saturation in reservoirs.
For optimization and evaluation of all possible combinations

of these design parameters, inserted for loops were built using
MATLAB software; each loop is to optimize one of the design
parameters. The use of single, two, or three layers for learning
the model with 4 to 30 neurons per layer was also studied before
choosing and finalizing the optimum ANN model.
It is important to mention here that since this is the first paper

to optimize ANN model for water saturation prediction, our
objective was to try all possible combinations of the ANN

model, this is to help us understandingmore themodel, since the
automatic hyperparameter optimizationmethods will only select
specific combination of parameters, we just avoid it in this first
study. Incorporating methods like Bayesian optimization or grid
search in future studies would streamline the process and
potentially improve the model’s performance.
The learning stage results concluded that 70% of the data

could be used for training using a single learning layer associated
with five neurons. The Bayesian regularization backpropagation
function for training and the logarithmic sigmoidal function
were the optimum learning and transferring functions,
respectively, for water saturation. Figure 3 shows a schematic

of the optimized ANN model proposed for water saturation.
Other properties of this optimized model are summarized in
Table 2, whereas the statistical features and ranges of the training
data sets are listed in Table 3.
Since limited data was used to develop this model (252 data

sets for training and 82 for testing), it is very important to
monitor the changes in the training and testing errors to ensure
there was no overfitting issue. During the training process and

Figure 3. Schematic of the optimized ANN model for water saturation
prediction. The letter b denotes the biased nodes.

Table 2. Optimized Parameters for Water Saturation
Prediction

Parameter Optimum Value

Training layers Single
Number of neurons Five
Training function Bayesian regularization backpropagation
Transferring function Logarithmic sigmoidal function
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until iteration 42, both errors were decreasing. After 42
iterations, the testing error started increasing while the training
error was still decreasing. This indicated that the optimum
number of iterations to avoid overfitting should be 42.

3.3. Analytical eq Derivation from Optimized ANN.
The ANN model shown in Figure 3, with the properties shown
above in Table 2, was then considered for developing a new
equation for water saturation estimation. This model could be
generally expressed as shown in eq 4.
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where Sw,n is the normalized water saturation as estimated from
the input Y parameter, and I and J correspond to the total
number of neurons and input parameters, which in this case are
five and four, respectively. The variables w and b stand for the
weights and biases of the network, crucial for determining the
strength of connections between neurons. The symbol t refers to
the training layer, which handles the iterative adjustment of
weights through the learning process, while o signifies the output
layer43 responsible for producing the final prediction or
classification based on the trained network.
It is important to note that the parameters used in the ANN

model are typically normalized automatically using a two-point
slope method, as described by eqs 5 and 6. This normalization
process adjusts the parameter values to fall within the range of
−1 to 1, ensuring consistency and improving the model’s
performance by standardizing the input data for more effective
learning and prediction.
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In this context, Y represents the input parameter, which could
be any of the following parameters: Vshale, porosity, permeability,
resistivity, or water saturation. The subscript n indicates the
normalized version of the parameter, while min and max refer to
the minimum and maximum values for each input parameter, as
outlined in Table 3. For instance, since the input parameters are
normalized to fall within the range of −1 to 1, the minimum
normalized value Yn,min will be −1, and the maximum
normalized value Yn,max will be 1. Thus, eq 6 can be reformulated
and expressed in the same format as eq 7), reflecting the
normalized relationship between the original and normalized
input parameters, ensuring all values align with the normalized
scale.
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To derive the general normalization expressions for the four
input parameters used in this study, one can substitute the
corresponding minimum and maximum values for each
parameter, as presented in Table 3. By doing so, the resulting
equations are formulated, leading to the expressions outlined in
eqs 8−q 1111).

=V V2.383( 0.0121) 1nshale, shale (8)

= 11.89( 0.0052) 1n (9)

=K K0.144( 0.0003) 1n (10)

=Res 0.117(Res 2.537) 1n (11)

where Vshale,n, Φn, Kn, and Resn are the normalized shale volume,
porosity, permeability, and resistivity, respectively.
eq 4 can be expressed using normalized parameters. This

expansion and rewriting of the equation result in eq 12, which
now incorporates these normalized variables for further analysis
or calculation.
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Table 3. Statistical Features of the 252 Datasets used to Train the ANN for Water Saturation Estimation

Vshale(frac.) Porosity (frac.) Permeability (mD) Resistivity (Ohm.m) Sw(frac.)

Minimum 0.012 0.005 0.0003 2.537 0.174
Maximum 0.852 0.173 13.86 19.63 1.000
Average 0.291 0.096 3.494 6.624 0.489
Mean 0.227 0.087 2.443 5.790 0.448
Median 0.231 0.099 2.952 5.535 0.427
Sample variance 0.037 0.001 5.989 14.80 0.041
Standard deviation 0.193 0.036 2.447 3.847 0.203

Table 4. Extracted Weights and Biases for water Saturation estimation

Input Layer Output Layer

Weights (wt)

j = 1 j = 2 j = 3 j = 4 Biases (bt) Weights (wO) Biases (bO)

Number of neurons I = 1 1.765 −0.061 −0.113 −1.094 −2.308 −3.828 3.302
I = 2 0.569 7.871 0.855 −1.174 5.078 −0.579
I = 3 −0.269 −1.088 −1.479 −0.515 −2.930 3.360
I = 4 −2.487 −2.741 1.120 0.899 2.414 −3.865
I = 5 −0.346 −2.111 0.574 −3.528 −4.541 2.913
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The normalized parameters in eq 12 can be computed by
applying the formulas provided in eq 8 to eq 11. The
corresponding weights and biases required for this calculation
were obtained from the optimized ANN model and are detailed
in Table 4.
eq 12 provides a normalized water saturation, which needs to

be denormalized to determine the actual water saturation. To
achieve this, eq 7 is rearranged to solve for water saturation,
substituting it in place of the variable Y. This manipulation
results in eq 13, which can then be used to calculate the
denormalized water saturation.
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By substituting the minimum and maximum water saturation
values from Table 3, along with the normalized water saturation
from eqs 12 ,13, eq 14 can be derived.
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3.4. Testing the Developed Empirical Equation for
Water Saturation Estimation. The developed equation for
estimating water saturation, eq 14, was tested using 82 data
points from Well-1. The accuracy of the equation was assessed
using several evaluation metrics, including the average absolute
percentage error (AAPE), mean squared error (MSE), root
mean squared error (RMSE), and the correlation coefficient.
Additionally, a visual comparison was conducted to examine the
difference between actual and predicted water saturation values.
These metrics provided a comprehensive analysis of the model’s
performance, ensuring that the predictions made by eq 14 were
reliable and accurate.

4. RESULTS AND DISCUSSION
ANN model design parameters were optimized using 334 data
sets of the well logs input parameters of shale volume, deep
formation resistivity, porosity, and permeability. 70% of the data
(252 data sets were used for learning the ANN model, while the
remaining 30% of the data was considered for testing the
developed empirical equation. The following sections will
discuss the results of training the ANN model and testing the
modeled equation for water saturation prediction.

4.1. Training the Artificial Neural Networks Model.
Figure 4 illustrates the key input parameters used to train the

Figure 4. Training the ANN model to predict the water saturation from the shale volume, porosity, permeability, and resistivity logging data. The
permeability is calculated based on well log data and not measured permeability.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c07175
ACS Omega 2025, 10, 557−566

562

https://pubs.acs.org/doi/10.1021/acsomega.4c07175?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07175?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07175?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c07175?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c07175?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ANNmodel to predict water saturation. From left to right, these
parameters include shale volume, porosity, calculated perme-
ability, and deep formation resistivity. The rightmost track of
this figure compares the observed water saturation (depicted as
dark red diamonds) and the water saturation profile predicted by
the optimized ANN model, which is a function of the well log
inputs, represented by the black dotted line. This predictive
model is underpinned by the fundamental understanding that
these input parameters collectively influence water saturation.
Figure 5 shows the water saturation track, demonstrating the

remarkable concordance between the actual and predicted water

saturation values. This alignment underscores the robustness of
the ANN model’s predictions, which are rooted in the scientific
principles governing the interplay of shale volume, porosity,
permeability, and deep formation resistivity. The accompanying
cross plot in Figure 5 provides further validation, illustrating that
all data points closely adhere to the 45° line. This is a testament
to the model’s accuracy and ability to account for the complex
interactions between the input parameters and water saturation.
The low AAPE of 0.90% for this training data set (comprising
252 data points) underscores the reliability of the water
saturation predictions. At the same time, the high correlation
coefficient of 0.999 signifies the strong relationship between the
input logs and water saturation, thus affirming the scientific
soundness of the ANN model’s results. This figure also shows
that the MSE and RMSE of the predicted values were 0.57 and
0.75%, respectively.

4.2. Testing the Developed Empirical Equation. The
empirical equation developed for predicting water saturation
(referred to as eq 14 was subjected to rigorous testing on 30% of
the available data sets, totaling 82 data sets. This evaluation was
rooted in sound scientific principles to ascertain the equation’s
effectiveness in capturing variations in water saturation.
Figure 6 presents the input log data, revealing the parameters

influencing water saturation. These inputs were carefully
selected to encompass the key geological and petrophysical
factors that significantly affect water saturation. As can be
discerned from this figure, eq 14 produced highly accurate
predictions of water saturation. The ability of the equation to do
so is underpinned by the underlying scientific rationale that
these input parameters represent the complex processes
governing water saturation in geological formations. This
accuracy is reaffirmed by the remarkably low AAPE of 1.08%,
which reflects the minimal deviation of predicted values from

observed values. The high correlation coefficient of 0.999 further
strengthens the scientific credibility of eq 14, signifying a robust
and precise relationship between the input parameters and water
saturation. Notably, there is a perfect alignment between the
actual and predicted water saturation, providing visual evidence
of the equation’s reliability and consistent adherence to scientific
principles.
Figure 7, with its cross plot, serves as an additional scientific

validation, depicting the agreement between observed and
estimated water saturation values. Here, all data points tightly
adhere to the 45° line, further establishing the equation’s high
accuracy and ability to accommodate the complex interplay
between the input parameters and water saturation. This
alignment substantiates the scientific foundation of eq 14 and
underscores its efficacy in predicting water saturation with a high
degree of precision. As indicated in this figure also the MSE is
1.08 and the RMSE was 1.17%.
The future scope of this study holds significant potential for

advancing reservoir management and the broader field of oil and
gas exploration. By delving deeper into this research, the
development of more refined prediction models for water
saturation in diverse geological settings is expected. These
models can have transformative implications for the oil and gas
industry by offering heightened resource management and
production optimization precision.
Furthermore, the successful application of ANNs in

predicting water saturation in a Greek oilfield opens doors to
adopting ANNs in similar geological contexts worldwide.
Researchers may also investigate implementing different
artificial intelligence and machine learning tools for water
saturation estimation. This expansion of applicability may lead
to a paradigm shift in hydrocarbon exploration practices, making
them more adaptable and accurate. Additionally, the potential
integration of emerging technologies and data sources could
further enhance the predictive power of ANNs, presenting
exciting opportunities for future research in reservoir character-
ization and management. The findings from this study, coupled
with continued research and innovation, have the potential to
shape the future of hydrocarbon exploration, yielding profound
benefits for the energy industry and global sustainability.

5. CONCLUSIONS
This study presents the implementation of the artificial neural
network (ANN) technique to estimate water saturation using
conventional logging data, including well logs of shale volume,
porosity, permeability, and deep formation resistivity; this
makes water saturation very fast and cheap since none of the
inputs require any laboratory measurement. A new empirical
correlation for estimating water saturation has been formulated,
utilizing the weights and biases derived from the optimized
ANN model. The following are the main findings:

●Sensitivity analysis was performed during the ANN learning
stage. As a result, the optimum design parameter of the ANN
was selected as a combination of the parameters that were able to
predict the water saturation with the minimum error.

●For training the data, the correlation coefficient value
between the actual and estimated water saturation based on the
ANN model was 0.999, which is the same as the coefficient
between actual and estimated water saturation using the
developed ANN-based empirical correlation.

●Water saturation was predicted using the optimized ANN
model with an AAPE of 0.90% for training data.

Figure 5. Crossplot of the training data set’s actual and predicted water
saturation (252 data points).
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●The newly developed empirical equation for water
saturation estimation was validated using a separate data set
that was not involved in the training process. The resulting
correlation coefficient between the actual and the predicted

water saturation values was an impressive 0.999, with an AAPE
of 1.08%.

●This research highlights the effectiveness of the ANN-based
approach and the resulting empirical correlations in accurately
predicting water saturation from conventional well log data. The
near-perfect correlation coefficient of 0.999 and the minimal
error of 1.08% demonstrate the excellent fit and reliability of the
model in practical applications.

●The developed correlation can help geologists and reservoir
engineers to accurately predict the water saturation and its
distribution along the depth of the drilled formations. This is
very important since water saturation is an input parameter
needed by geologists and reservoir engineers to define the net
pay, and estimate the original oil in place and oil reserves. The
accurate estimation of water saturation is also critical for
completion engineers since it is important for optimizing the
design of the reservoir completion (i.e., optimum selection of
the preformation intervals). Hence, this will help the production
engineers to maximize the oil recovery by reducing water
encroachment.

●The developed empirical correlation will not only improve
the accuracy of predicting the water saturation, but it is also a

Figure 6.Testing the ANNmodel to predict the water saturation from the logging data. The rightmost track compares the actual water saturation with
those predicted by eq 14 developed in this study.

Figure 7. Cross plot of actual and predicted water saturation for the
testing data set (82 data points).
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noncostly method of obtaining a continuous water saturation
profile, which is important for oilfield management and
hydrocarbon exploration.

●Incorporating methods like Bayesian optimization or grid
search in future studies would streamline the process and
potentially improve the model’s performance.
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