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Abstract: Adhesion to extracellular matrix proteins is an important first step in host invasion,
employed by many bacterial pathogens. In mycobacteria, the secreted Ag85 complex proteins,
involved in the synthesis of the cell envelope, are known to bind to fibronectin (Fn) through
molecular forces that are currently unknown. In this study, single-molecule force spectroscopy is
used to study the strength, kinetics and thermodynamics of the Ag85-Fn interaction, focusing on the
multidrug-resistant Mycobacterium abscessus species. Single Ag85 proteins bind Fn with a strength
of ~75 pN under moderate tensile loading, which compares well with the forces reported for other
Fn-binding proteins. The binding specificity is demonstrated by using free Ag85 and Fn peptides with
active binding sequences. The Ag85-Fn rupture force increases with mechanical stress (i.e., loading
rate) according to the Friddle–Noy–de Yoreo theory. From this model, we extract thermodynamic
parameters that are in good agreement with previous affinity determinations by surface plasmon
resonance. Strong bonds (up to ~500 pN) are observed under high tensile loading, which may
favor strong mycobacterial attachment in the lung where cells are exposed to high shear stress or
during hematogenous spread which leads to a disseminated infection. Our results provide new
insight into the pleiotropic functions of an important mycobacterial virulence factor that acts as a
stress-sensitive adhesin.
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1. Introduction

Mycobacteria are important human and animal pathogens causing devastating diseases, such as
tuberculosis (Mycobacterium tuberculosis), leprosy (Mycobacterium leprae), Buruli ulcer (Mycobacterium
ulcerans), Johne’s disease (Mycobacterium avium subsp. paratuberculosis) and a myriad of opportunistic
infections (atypical mycobacteria). Recently, intrinsically multidrug resistant Mycobacteroides abscessus
(formerly Mycobacterium abscessus) species have drawn great attention for the difficult-to-treat infections
they cause among cystic fibrosis patients who appear particularly vulnerable to them [1,2]. Also, there
are reports of deadly disseminated infections even among non-cystic fibrosis patients [3–6]. Therefore,
innovative therapies are needed to supplement an inadequate supply of antimycobacterial agents in a
context of increasing drug resistance. One such high-potential, yet under-explored therapeutic avenue
may rely on inhibition of mycobacterial adhesion to extracellular matrix proteins like fibronectin (Fn),
which is important for the initial establishment and later dissemination of infection [7–10]. This requires
a better understanding of mycobacterial adhesin interactions and how they respond to physical stress.

In Mycobacterium tuberculosis, the antigen 85 complex (Ag85) consists of three paralogous proteins
(Ag85A-C) that are secreted at high levels and elicit strong humoral as well as cell-mediated immune
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responses [11–13]. Although they are secreted into the extracellular milieu in large amounts, there is
strong evidence that a proportion remains cell surface associated [7,14–19] where they participate via
their mycolyltransferase activity in synthesis of the mycomembrane [20] (Figure 1A). Importantly, all
three members of the complex were found to bind Fn indicating a role for the complex in attachment
to extracellular matrix proteins, a first step in host invasion [7–9]. Binding of purified Ag85B to human
epithelial cells was significantly reduced by siRNA-mediated Fn-depletion [21] and Ag85-Fn complexes
have been identified in patients suffering from tuberculosis, further supporting a role for the Fn-Ag85
interaction during infection [22]. The amino acid residues critical to the Ag85-Fn interaction were
mapped for Ag85B from Mycobacterium kansasii to 98FEWYYQSGLSV108, a sequence that does not show
homology to other prokaryotic or eukaryotic Fn-binding proteins [23]. Conversely, the Ag85-binding
fragment in Fn has the sequence 17SLLVSWQPPR26 that maps to the Fn type III14 module, therefore
offering a unique binding site to Ag85 compared with other canonical and non-canonical microbial
Fn-binding proteins that bind, respectively, to FnI1-5 and FnI6FnII1-2FnI7-9, FnIII12, or FNIII9-10 [21,24].
A robust pathophysiological mechanism involving the Fn-Ag85 interaction to establish infection
remains incomplete, hampered by a lack of double or triple Ag85 knock-out mutants, which are
unattainable due to the essential role of Ag85 in cell envelope synthesis [25,26].

Here we explore the interaction of Ag85 with Fn at the single molecule level. We concentrate
on M. abscessus, an emerging, human-transmissible, multidrug-resistant pathogen causing severe
lung infections in cystic fibrosis patients, often resulting in poor treatment outcomes [27,28]. Like
other nontuberculous mycobacteria, M. abscessus presents as two different morphological forms, i.e.,
a smooth (S) morphotype characterized by smooth, dome-shaped, mucoid colonies and homogenously
dispersed liquid cultures, and a rough (R) morphotype characterized by rough, dry, wrinkled colonies
and highly aggregated liquid cultures [29]. In addition to distinct phenotypic differences in vitro, the S
and R morphological distinction also has clinical relevance as the R morphotype tends to cause much
worse and more persistent infections than the S type [30,31]. The M. abscessus genome encodes four
Ag85 orthologs (MAB_0175, MAB_0176, MAB_0177 and MAB_1579). All four polypeptide sequences
harbor a signal peptide for probable secretion through the Tat system, the conserved catalytic triad of
amino acids required for mycolyltransferase activity as well as a sequence with high homology (>80%)
to the unique-in-nature Ag85B Fn-binding sequence from M. kansasii, FEWYYQSGLSV [21,32,33].
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Figure 1. Mycomembrane-associated Ag85 is used by M. abscessus to bind Fn. (A) Secreted Ag85 is 

associated with the mycomembrane, which it helps produce via its mycolyltransferase activity and, 

where it is exposed on the bacterial surface to participate in adhesin-ligand interactions. (B) M. 

abscessus cells (pointed out by black arrows) attached to Fn-coated substrates (left panel), while 

bacterial attachment was inhibited by the addition of both Fnpep (top right panel) and Ag85pep (bottom 

right panel). At least 10 images for each condition from two independent experiments showed similar 

results. (C) Smooth surface topology observed for whole M. abscessus rough (R) variant cells by contact 

mode imaging (top left, 3D-projection of height data; bottom left, vertical deflection image) and 300 × 

300 nm zoom 3rd degree-polynomial flattened height image (right panel) taken on top of one cell 

(green squares in the left panels indicate where the zoom was performed). Data representative of 29 

images. (D) Cartoons depicting, on the left, the single-cell force spectroscopy and on the right, the 

single-molecule force spectroscopy approaches followed to study molecular force interactions 

between Ag85 and Fn. 

2. Materials and Methods 

2.1. Chemicals and Peptides 

All media and chemicals used were from Sigma-Aldrich (St. Louis, MO, USA), unless specifically 

stated otherwise. The two peptides used in the study were from GenScript (Piscataway, NJ, USA) 

and had the sequences TPNSLLVSWQPPR (Fnpep) and AFEWYYQSGLSVI (Ag85pep). Fnpep was 

dissolved in 1 × phosphate buffered saline (PBS) at 2 mg/mL and Ag85Apep was dissolved in DMSO 

at 20 mg/mL. The final concentrations of the two peptides in blocking experiments were 0.1 mg/mL. 
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Figure 1. Mycomembrane-associated Ag85 is used by M. abscessus to bind Fn. (A) Secreted Ag85 is
associated with the mycomembrane, which it helps produce via its mycolyltransferase activity and,
where it is exposed on the bacterial surface to participate in adhesin-ligand interactions. (B) M. abscessus
cells (pointed out by black arrows) attached to Fn-coated substrates (left panel), while bacterial
attachment was inhibited by the addition of both Fnpep (top right panel) and Ag85pep (bottom right
panel). At least 10 images for each condition from two independent experiments showed similar
results. (C) Smooth surface topology observed for whole M. abscessus rough (R) variant cells by contact
mode imaging (top left, 3D-projection of height data; bottom left, vertical deflection image) and 300
× 300 nm zoom 3rd degree-polynomial flattened height image (right panel) taken on top of one cell
(green squares in the left panels indicate where the zoom was performed). Data representative of 29
images. (D) Cartoons depicting, on the left, the single-cell force spectroscopy and on the right, the
single-molecule force spectroscopy approaches followed to study molecular force interactions between
Ag85 and Fn.

2. Materials and Methods

2.1. Chemicals and Peptides

All media and chemicals used were from Sigma-Aldrich (St. Louis, MO, USA), unless specifically
stated otherwise. The two peptides used in the study were from GenScript (Piscataway, NJ, USA)
and had the sequences TPNSLLVSWQPPR (Fnpep) and AFEWYYQSGLSVI (Ag85pep). Fnpep was
dissolved in 1 × phosphate buffered saline (PBS) at 2 mg/mL and Ag85Apep was dissolved in DMSO at
20 mg/mL. The final concentrations of the two peptides in blocking experiments were 0.1 mg/mL. In
AFM experiments a vehicle treatment control (0.5% v/v DMSO) did not show any differences in the
magnitudes or frequencies of Fn-Ag85 interactions.

2.2. Bacterial Culture Conditions

M. abscessus CIP104536T S and R variants were cultured in Middlebrook 7H9 medium containing
glycerol (0.2% v/v), glucose (0.2% w/v) and the mild nonionic detergent tyloxapol (0.025% v/v) to
minimize aggregation of bacteria, hereafter referred to as 7H9-GGT. In order to obtain bacterial
preparations consisting mainly of single cells (devoid of clumps), bacteria were first disaggregated
by several passages through a fine syringe needle (26 GA), then centrifuged to remove 7H9-GGT,
re-suspended in PBS, and again passed several times through a syringe needle. Finally, this suspension
was filtered through a 5 µm PVDF syringe filter (Merck), allowing mainly single bacilli to pass through.
Aliquots of the single-cell suspensions (OD600-adjusted) were frozen at −80 ◦C.

2.3. Fn-Functionalization of Surfaces and AFM Probes

In this study, we used purified human plasma Fn [34]. Gold-coated microscopy coverslips or
gold-coated OMCL-TR4 AFM probes (Olympus, Tokyo, Japan) with a nominal spring constant of
approximately 0.02 N/m were immersed overnight in an ethanolic solution containing 0.1 mM of
16-mercaptododecahexanoic acid and 0.9 mM of 1-mercapto-1-undecanol. Next, they were rinsed with
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ethanol, dried under nitrogen flow and immersed in an aqueous solution of N-hydroxysuccinimide
(10 mg/mL) and 1-ethyl-3-(3- dimethylaminopropyl)-carbodiimide (25 mg/mL) for 30 min. Afterwards,
they were rinsed with ultrapure water and placed in a 0.1 mg/mL solution of purified human
plasma Fn for 1 h. Finally, they were rinsed gently with PBS and kept in PBS until experimentation.
Fn-functionalized surfaces and probes were used fresh for all experiments.

2.4. Fn-Attachment Assay

Fn-functionalized gold surfaces were incubated, or not, in a PBS-solution of 0.1 mg/mL Fnpep or
Ag85pep for 30 min at room temperature. At the same time an aliquot of a single cell preparation was
thawed at room temperature and treated, or not, with 0.1 mg/mL of Fnpep or Ag85pep for 30 min. The
peptide-treated or untreated Fn-surfaces were then immersed in the corresponding peptide-treated or
untreated cell suspension for 1 h. Finally, they were gently rinsed by immersing them in PBS three
times, before they were inverted on a large microscopy coverslip and observed with a 40× objective.

2.5. Single-Cell Force Spectroscopy (SCFS)

Colloidal polydopamine-wet adhesive NP-O10 probes (Bruker, Billerica, MA, USA) were prepared
as previously described [35,36]. A Fn-surface (covered with a drop of PBS) was stuck to the surface of
a treated polystyrene Petri dish using double-sided sticky tape. A drop of thawed single-cell bacterial
suspension was transferred onto another area of the surface of the same Petri dish and the bacteria was
allowed to adhere moderately for 10 min. The dish was then filled with PBS and a colloidal probe was
functionalized with a single bacterial cell by gently pressing down onto a bacterium before carrying
out force-distance measurements on at least two 10 × 10 µm (16 × 16 pixel) areas on the Fn-surface for
each cell using a maximum exerted force of 250 pN, a contact time of 500 ms, constant approach and
retraction speeds of 1 µm/s and a ramp length of 1 µm.

2.6. Single-Molecule Force Spectroscopy (SMFS)

A single-cell aliquot was thawed and transferred to an untreated (hydrophobic) Petri dish (Corning,
Corning, NY, United States) and allowed to adhere through hydrophobic interactions to its surface for
1 h. The dish was then rinsed twice with PBS before force-distance curves were collected on 300 nm ×
300 nm (32 × 32 pixels) areas on top of single bacteria using the same AFM parameters specified for
SCFS and a Fn-functionalized probe (see above). To investigate the effect of mechanical stress on the
Ag85-Fn interaction, force-distance curves were collected on 300 nm × 300 nm (32 × 32 pixels) areas on
top of single bacteria using standard AFM parameters apart from the retraction speed, for which the
following range was used: 0.5 µm/s, 1 µm/s, 2.5 µm/s, 5 µm/s and 10 µm/s.

2.7. AFM Data Analysis

Adhesion forces and rupture lengths were obtained from the last rupture peak. Data were
analyzed using the JPK Data Processing software and statistical analyses were performed and graphs
drawn with R. For dynamic force spectroscopy (DFS) analyses, pooled breaking force vs loading rate
data from 13 cells were first subset into equal log-sized bins (102–3.16 × 102 pN/s, 3.16 × 102–103 pN/s,
103–3.16 × 103 pN/s, 3.16 × 103–104 pN/s, 104–3.16 × 104 pN/s and 3.16 × 104–105 pN/s). The breaking
force density plot was then obtained for each bin and the Gaussian distributions identified. Then,
all data from the first Gaussian distribution in each bin, representing measurements for single bond
ruptures only, were pooled together and used to draw the DFS plot as well as to fit either the Bell Evans
or the Friddle–Noy–De Yoreo models. Models were fit using nonlinear least squares regression and
the Gauss–Newton algorithm in R. Goodness of fit was verified with the Pearson’s product-moment
correlation test.
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3. Results and Discussion

3.1. Studying Fn-Binding by M. abscessus Ag85 Down to the Single Molecule Level

We first tested the ability of M. abscessus bacteria from the rough (R) morphotype, the more
virulent form, to bind to Fn immobilized on solid substrates. Optical microscopy images confirmed
that the cells adhered to Fn surfaces, while addition of the peptides Fnpep or Ag85pep with sequences
that are critical in the Ag85-Fn interaction [21,23] substantially inhibited cell adhesion (Figure 1B). This
indicates that Fn-binding proteins (FnBPs), and particularly Ag85, are expressed at the cell surface.
Topographic images of the bacteria (Figure 1C) revealed a regular and homogeneous surface, consistent
with earlier studies on mycobacteria [37,38], and showing that live cells can be readily imaged without
apparent alteration of the cell envelope. We used single-cell force spectroscopy (SCFS) to analyze
the Ag85-Fn binding forces at the whole cell level (Figure 1D, left). Single bacteria were attached
onto colloidal cantilevers and the forces between the cell probes and Fn-substrates were measured.
Single-molecule force spectroscopy (SMFS) with Fn-modified tips enabled to quantify the strength of
single bonds (Figure 1D, right).

3.2. Adhesion Forces between Single Bacteria and Fn

We first measured the interaction forces between M. abscessus R bacteria and immobilized Fn by
SCFS. Shown in Figure 2A, are the adhesion forces, rupture lengths and typical force curves obtained
for four representative cells. Force curves (30 ± 11%) showed multiple adhesion peaks of 77 ± 29 pN
magnitude (mean ± s.d.; n = 1051 adhesive curves from a total of 7 cells) and 271 ± 192 nm rupture
lengths (n = 1051). To test whether these forces are associated with specific Ag85-Fn binding, two
blocking experiments were performed using Fnpep and Ag85pep. As can be seen in Figure 2B, these
treatments led to a major reduction of adhesion frequency (from 30 ± 11% to 13 ± 5% and 13 ± 6%,
respectively), demonstrating that Ag85 and Fn are engaged in a specific interaction. On average, the
bonds ruptured at ~250 nm, but rupture distances of up to ~600 nm were also observed. Assuming that
mature Ag85 comprises an average of 288 residues and that each amino acid contributes 0.36 nm to
the contour length of the polypeptide chain, the fully extended protein should be ~104 nm long. This
suggests that both Ag85 and Fn are being stretched upon pulling the cells away from the Fn-surfaces.
Supporting this, some curves (~10% of all adhesive curves) featured sawtooth patterns (Figure 2C)
with successive unbinding events (2 to 13) of 135 ± 56 pN magnitude, and peak-to-peak distances of
28 ± 9 nm, consistent with the unfolding of multiple Fn repeats. Soluble dimeric Fn has more than
50 modules with the structural β-sheet motifs FnI, FnII and FnIII. FnIII domains have been shown to
unfold with forces ranging from 80 to 200 pN, leading to an increase in contour length of 28 nm for
each unfolded domain [39].

The phenotypic differences between R and S M. abscessus variants are due to the absence and
presence of glycopeptidolipids (GPLs) in R and S variants, respectively. Since, GPLs are known to be
surface exposed [40], we asked whether their presence in S variant cells may have an impact on Ag85
interactions with Fn. We found that binding probability of S cells was substantially lower than that of
R ones, while the magnitude of binding forces did not change significantly (Figure S1), suggesting that
(i) GPL either mask surface-associated Ag85 or interfere with their interaction with Fn, and (ii) the
increased Fn-binding of R variant cells plays a role in their virulence via bacterial adhesion.
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Figure 2. Force interactions between single M. abscessus R cells and Fn. (A) Adhesion force (left)
and rupture length (right) histograms obtained for four M. abscessus R cells. An inset in the rupture
length histograms shows three representative force-distance curves originating from the same dataset.
(B) Injection of Fnpep (left) or Ag85pep (right) both resulted in significant decreases in Ag85-Fn binding
frequency. Shown are overlays of three adhesion force histogram plots obtained for three different cells.
(C) Representative force-distance curves showing sawtooth patterns of successive unbinding events,
the peaks being separated by approximately 28 nm (red arrows).

3.3. Strength and Dynamics of Single Ag85-Fn Interactions

We then used SMFS with Fn-tips to probe single Ag85 molecules on living bacteria (Figure 3).
Figure 3A shows the adhesion force and rupture length histograms with representative force curves
recorded on four cells. A substantial fraction of the curves (30 ± 10%) were adhesive, with rupture
peaks of 75 ± 46 pN magnitude (n = 1,808 adhesive force curves from 6 different cells) and rupture
lengths of 137–363 nm (interquartile range, IQR), thus quite similar to the single-cell force signatures
(Figure 2A). We attribute the measured adhesion forces to the detection of Ag85-Fn complexes, again
based on inhibition experiments with free Fnpep (Figure 3B) and Ag85pep (Figure 3C), which led to
major reductions in adhesion frequency (from 30 ± 10% to 19 ± 7% and 8 ± 2%, respectively) and
of rupture length. Adhesion maps and frequencies (Figure 3A) demonstrated that Ag85 randomly
decorates the cell surface, without any evidence of cluster formation. This is consistent with earlier
analyses revealing fairly homogeneous distributions of FnBPs on M. bovis Bacille-Calmette-Guérin BCG
cells [41]. Our ~75 pN binding forces are close to values reported for staphylococcal FnBPs [42–44].
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Figure 3. Single Fn-molecule binding to Ag85 on the surface of M. abscessus R cells. (A) Adhesion force
histograms (left) and maps (inset) as well as rupture length histograms (right) and three representative
force-distance curves originating from the same dataset for four M. abscessus R cells. (B) Injection of the
Fn peptide resulted in significant decreases in Ag85-Fn binding events across the cell surface. Adhesion
force histogram plots from three cells were overlaid. (C) Injection of the Ag85 peptide resulted in even
greater decreases in Ag85-Fn binding events. In the adhesion maps the z-scale, depicting adhesion
force in greyscale, ranges from 0 to 250 pN. Data shown are representative of at least 6 untreated or
peptide-treated cells.

We next studied the Ag85-Fn interaction under increasing mechanical stress. The rupture force
between receptors and ligands increases with the rate at which force is applied (loading rate, LR).
While the Bell–Evans theory [45] considers a log-linear relationship between the LR and rupture force,
the more recent Friddle–Noy–de Yoreo model [46] describes nonlinear trends in rupture forces, due to
the reforming of a single bond at low loading rates, in the close-to-equilibrium regime. To test whether
such a model would also apply to Ag85, binding forces were probed at different LR, estimated from
the slope of the force vs time curves just before rupture [47]. First, we plotted the histograms of the
rupture (adhesion) forces for bins of increasing loading rate, which clearly revealed that the frequency
of higher adhesion forces increased with greater loading rates (Figure 4A). As can be seen in Figure 4B,
the bond strength (F) increased nonlinearly with the LR (data obtained on 3188 adhesive curves from
13 cells). The bonds ruptured at forces ranging from 54 to 142 pN (IQR) at LRs varying from 100 to
100,000 pN/s (Figure 4B). The plot was well-fitted with the Friddle–Noy–de Yoreo equation (Pearson’s
product moment correlation = 0.95, for details, see Alsteens et al. [47]). Application of Friddle–Noy–de
Yoreo theory to an adhesin-ligand bond posits, that when the two molecules are pulled apart at lower
LRs, they pass through an equilibrium phase where after rupture they can rebind, while a kinetic
phase occurs at greater LRs where bond rupture is irreversible [46]. The fit yielded an equilibrium
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force (Feq) of 34 pN, a distance between bound state and transition state, xβ, of 1.3 Å and a kinetic
off-rate constant of dissociation, koff

0 = 33 s−1, typical of single-molecular bonds. Furthermore, Feq and
the effective spring constant of the system under stress can be used to calculate the thermodynamic
parameter, ∆Gbu, the binding free energy value, as well as the dissociation constant, Kd [47]. In order
to get the most conservative estimate of these parameters for our system, we empirically determined
the keff (7 pN/nm), by taking the slope of the raw deflection vs piezo displacement for peaks yielding a
breaking force of approximately 34 pN. This approach yielded a ∆Gbu of −11.9 kcal/mol and a Kd of
95 nM, a value that is in good agreement with previous affinity determinations by surface plasmon
resonance of the Ag85-Fn interaction, which ranged between 30 and 70 nM [21].
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Figure 4. Mechanical stress strengthens the Ag85-Fn interaction. (A) Adhesion force histogram
plots at different loading rates (n = 3,188 curves from 13 cells). The Gaussian distributions represent
rupture events for single bonds. (B) Dynamic force spectroscopy plot showing Ag85-Fn binding
force activation under mechanical stress. Large circles and error bars represent means and standard
deviations calculated for the first Gaussian distributions at each loading rate as shown in panel A.
The dashed red line represents the fit of the Friddle–Noy–de Yoreo model to the pooled data from the
Gaussian bins in panel A (n = 2420 data points).

Our force data are comparable with the behavior of other FnBPs. The ~75 pN binding strength
measured at moderate LR is close to the forces measured for single S. aureus FnBPs bonds [42,43,48].
The binding strength between a synthetic peptide mimicking a single Fn-binding repeat and Fn was
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found to be ~100 pN [44]. Casillas-Ituarte et al. also observed nonlinear trends when plotting the
rupture force vs log (LR), which they attributed to two barriers along the unbinding pathway [48].
Similar bond strengths and non-linear behaviors have been reported for the interaction of Fn with
integrins [49]. However, they did not study LR of 105 pN/s and their largest force measured was
160 pN. The distance from the bound state to the transition state barrier of ~1.3 Å agrees well with
values determined for cell surface receptors, including FnBPs [48,49]. The dissociation rate constant,
koff

0, is comparable to that estimated for some Fn-binding repeats of FnBPA [44]. That the Ag85-Fn
bond is strong at high mechanical stress, compared to other biomolecular bonds, could favor firm
mycobacterial adhesion to Fn-surfaces under high shear stresses during respiratory tract infection
and, importantly, during hematogenic dissemination in the case of tuberculosis [10]. Notably, it was
observed that Fn-binding appeared to play an important role in attachment of Mycobacterium bovis
BCG bacilli to bladder epithelium, where they likely encountered fluid-flow shear forces [15].

The relatively high mechanostability of the Ag85-Fn complex can be compared with that
of cohesin-dockerin (Coh-Doc) complexes from cellulose-degrading enzyme networks called
cellulosomes [50–53]. Single-molecule force spectroscopy and steered molecular dynamics simulations
have shown that The XMod-Doc:Coh complex from Ruminococcus avefaciens, which mediates bacterial
attachment to cellulose in the rumen, resists forces up to 750 pN at loading rates of 105 pN/s [51].
The authors suggested that the high mechanostability involves stabilization of Doc by the adjacent
XMod domain, and a catch bond mechanism where mechanical force increases the contact surface
area of the two interacting proteins. A related complex could withstand even stronger forces, up to 1
nN [54]. Simulations revealed that this mechanical stability is achieved by a protein architecture that
directs molecular deformation along paths that run perpendicular to the pulling axis. Further work
is needed to elucidate the molecular origin of the force-dependent stability of the Ag85-Fn complex.
Together with cellulosome and dock, lock, and latch complexes, the Ag85-Fn pair is mechanically very
stable, emphasizing that mycobacteria have evolved specialized binding mechanisms to fulfil a cellular
function under physical stress.

4. Conclusions

Mycobacterial surface proteins play an important role in guiding bacterial-host interactions (for
an overview please refer to the following reviews on the topic [55–57]). Among these, FnBPs support
mycobacterial adhesion to the respiratory mucosa via the extracellular matrix protein Fn, an interaction
that is highly conserved in mycobacteria [58]. Fn-mediated adhesion has been shown for various
mycobacterial species [59–66], yet the molecular forces involved are poorly understood. Elucidating
the molecular basis of Fn-binding in mycobacteria is key to understanding the initial steps leading to
mycobacterial infections as well as later steps of infection leading to dissemination and offers promising
prospects for innovative antibacterial therapies [10].

Single Ag85 proteins bind Fn with a strength of ~75 pN under moderate mechanical stress, which
agrees reasonably well with the forces reported for other Fn-binding proteins. Use of free Ag85 and Fn
peptides with active binding sequences demonstrates the specificity of the interaction. The rupture
force of the complex increases with tensile loading (LR) following the Friddle–Noy–de Yoreo model,
which provide thermodynamic parameters that are in excellent agreement with previous affinity
determinations by surface plasmon resonance. Strong adhesion (~500 pN) is observed at high tensile
loading which might be of biological relevance as mycobacteria are exposed to shear stress during
various stages of infection. Traditionally, bacterial adhesion is investigated under static conditions.
However, many pathogenic bacteria are exposed to shear forces [67], which can largely influence
binding interactions. Adhesion of Staphylococcus aureus to Fn differed depending on whether bacteria
were incubated under static versus flow conditions [68–70]. Mycobacteria are exposed to a wide range
of shear forces in the lung. Consistent with this, M. tuberculosis strains bound best to immobilized
human Fn and surfactant protein A under fluid shear conditions, simulating physiological conditions
within the lung [71]. It was proposed that shear conditions may reduce nonspecific binding interactions
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that take place under static conditions and thus, select for high-affinity binding interactions. So,
we postulate that shear stress in the alveolar epithelium may favor strong Ag85-Fn binding. In the
context of cystic fibrosis, where M. abscessus infection is of particular concern, alterations in the
periciliary liquid sensitive to airflow shear was implicated in a mechanism that underlies an increased
vulnerability to bacterial infections [72]. As highly homologous Ag85 orthologs are found in all
mycobacteria, our conclusions on the Ag85-Fn interaction can be extended to mycobacteria in general.
Perhaps mycobacteria have evolved such strong force-dependence in Ag85 to help the bacteria resist
physical stress during host colonization. Various small molecules that bind to Ag85 and inhibit their
mycolyltransferase activity have been identified and the Ag85 complex is considered as a potential
drug target [73–80]. Ensuing studies should investigate the potential of Ag85 inhibitors in the Ag85-Fn
interaction. This strategy may lead to antimycobacterial agents acting on the pleiotropic functions
of the Ag85 virulence factors and may open new and more efficient avenues to treat infections with
these pathogens.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/3/716/s1,
Figure S1: Ag85-Fn force interactions in M. abscessus S cells.
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