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Abstract
Touch perception largely depends on the mechanical properties of the soft tissues of the glabrous skin of fingers and hands. 
The correct modelling of the stress–strain state of these tissues during the interaction with external objects can provide 
insights on the exteroceptual mechanisms of human touch, offering design guidelines for artificial haptic systems. However, 
devising correct models of the finger and hand at contact is a challenging task, due to the biomechanical complexity of 
human skin. This work presents an overview of the use of Finite Element analysis for studying the stress–strain state in the 
glabrous skin of the hand, under different loading conditions. We summarize existing approaches for the design and valida-
tion of Finite Element models of the soft tissues of the human finger and hand, evaluating their capability to provide results 
that are valuable in understanding tactile perception. The goal of our work is to serve as a reference and provide guidelines 
for those approaching this modelling method for the study of human haptic perception.
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1 Introduction

The significant capabilities of the human somatosensory 
system are strongly connected to the physical properties 
of the skin, which is the sensory organ of touch. The skin 
covers approximately two square meters of the adult body 
surface and responds to interactions with external objects 
or limb movements with a complex viscoelastic mechani-
cal behaviour (Wiertlewski and Hayward 2012; Biswas and 
Visell 2019). The mechanical properties of its different tis-
sue layers are highly nonlinear and time-dependent, with 
large variations within and between persons, which depend 
on both biological,  e.g., sex and age (Abdouni et al. 2018) 

and environmental factors, e.g., friction or moisture (Serhat 
et al. 2022). The mechanics of the glabrous skin, which cov-
ers the palmar surfaces of our fingers and hands, strongly 
determine the way tactile stimuli are processed and encoded 
into neural signals via mechanoreceptors, ultimately reach-
ing the somatosensory regions of the brain (Johansson and 
Flanagan 2009; Deflorio et al. 2022). Accurate modelling 
of skin mechanics can be used to predict the activation of 
mechanoreceptors and to shed light on the mechanisms 
underpinning touch perception; such knowledge can then 
inform the design of effective haptic displays and sensors 
(Biswas and Visell 2021). However, fully grasping the sev-
eral nuances of skin mechanics represents a challenging task. 
In recent years, a multi-disciplinary effort has been devoted 
to tackling this issue by developing accurate methods to esti-
mate the mechanical properties of the skin and designing 
mathematical and numerical models to study the complex 
stress–strain interplay that occurs in human skin layers dur-
ing the interaction with external objects (Wei et al. 2022a; 
Serhat et al. 2022).

This survey focuses on the methods that have been pro-
posed in the literature to simulate the mechanical behav-
iour of human fingers and hands at contact, focusing on 
the glabrous skin. These methods often take advantage 
of available experimental data to achieve adherence to 
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the mechanics of hands and fingers in vivo (Gerling et al. 
2014; Kumar et al. 2015). Finite Element (FE) analysis 
offers a useful approach for the numerical resolution of 
highly nonlinear problems, usually relying on multivariate 
differential equations whose solution cannot be achieved 
in a closed form. FE analysis exploits a piecewise approxi-
mation, i.e., dividing the region of interest of the domain 
(a 3D spatial region plus time) into smaller elements 
with simple geometry. Within each element, field vari-
ables such as mechanical stress or strain are approximated 
using polynomial shape functions. This allows for the rep-
resentation of complex variable distributions within the 
domain in a piecewise manner, simplifying the solution 
of otherwise complex equations. Although other analyti-
cal (Srinivasan 1989) or numerical (Ho and Hirai 2015) 
solutions exist, they often suffer from heavily restrictive 
assumptions, such as requiring an axis-symmetric geom-
etry (Serina et al. 1998), and are difficult to extend to dif-
ferent situations or loading types (Serina et al. 1998). On 
the other hand, FE analysis is a powerful analytical tool for 
the simulation of different problems in the field of haptic 
contact interactions (Wu et al. 2004; Khojasteh et al. 2018; 
Wei et al. 2022a). In this work, we conducted a survey on 
the FE models that have been proposed for the simulated 
evaluation of the mechanical response of human fingers 
and hands, considering mechanical interactions and focus-
ing on the modelling of the soft tissues of the glabrous 
skin. As detailed in Sect. 2.2, previous reviews delved 
into the biomechanical modelling of the human skin and 
on the role played in the field by FE analysis (Deflorio 
et al. 2022; Biswas and Visell 2021; Mostafavi Yazdi and 
Baqersad 2022). However, to the authors’ best knowledge, 
none of the previous works focused on the design of the 
FE models themselves. For this reason, we directed our 
effort towards a systematic organization and comparison 
between the relevant models existing in the literature. By 
summarizing and discussing the common design choices 
and assumptions, we gained useful insights that can be 
used by others to develop models in line with the state of 
the art. The next section describes the methodology used 
to collect the studies considered in our survey and further 
details its contribution with respect to similar papers in 
the state of the art. The structure of the rest of this paper 
is as follows. Section 3 provides a brief overview of the 
biology of the mechanoreceptors and the skin, as well as 
of the relevant mechanical properties and parameters of 
human skin, fingers, and hands, highlighting those that are 
relevant to haptic interactions. Section 4 then reviews the 
main types of FE models of the human hand and finger at 
contact, based on the type of desired touch-related infor-
mation to be estimated. Finally, in Section 4 we provide a 
critical analysis of the existing methods, highlighting their 
pros and cons for the different targeted research questions, 

and offering possible suggestions on how to proceed along 
this interesting research direction.

2  Scope

When in contact with external objects, the human hand is 
subjected to external stimuli such as vibrations, frictional 
and compressive forces, and the mechanical state of the hand 
soft tissues is translated into neural signals that are inter-
preted as tactile perception. In our survey, we considered 
existing FE models that are endowed with the capability to 
realistically simulate the mechanical response of the fingers 
or the hand during contact with external mechanical stimuli. 
Hereinafter, we refer to these models as haptically focused, 
i.e., they focus on simulating the stress–strain state of skin 
and soft tissues under different loading conditions, target-
ing the linking of this state to tactile perceptual response. 
Of note, the mechanical state that originates from these 
interactions has been proven to propagate via mechani-
cal energy waves also far from the contact zone, eliciting 
mechanoreceptors-mediated responses in other skin areas 
not directly involved in the haptic interaction (Shao et al. 
2016). However, this aspect is not taken into account in FE 
modelling, given that the majority of touch-sensitive neu-
rons are located in the hand (Ryan et al. 2021), and that 
the complexity of an appropriately detailed FE model with 
such a wide scope would be prohibitive. In the next section, 
the criteria for the collection and screening of the studies 
included in this survey are detailed.

2.1  Study selection

Haptically focused FE models can be found in the literature, 
with varying degrees of complexity, ranging from simple 
2D time-invariant models of fingertip sections (Maeno et al. 
1998b), to realistic and multi-layered dynamic simulators 
for the entire hand, such as the example shown in Fig. 1 
(Wei et al. 2020). It is worth mentioning that FE models of 
human fingers and hands have also been proposed for visual 
rendering in Virtual Reality (VR), where FE methods are 
used for simulating soft tissue deformation during contact 
with virtual objects (Tong et al. 2023). The main goal of 
these models is striking a balance between the visual realism 
of the behaviour of the hand, and tight temporal constraints 
for real-time rendering with reduced computational costs. 
To achieve this, the actual biomechanics and the separation 
of tissue layers are often simplified, sacrificing the accuracy 
of the internal mechanical state during the interactions 
(Hirota and Tagawa 2016). Another category of FE models 
of hands available in the literature are the anatomically 
accurate musculoskeletal ones, which are developed for 
realistic simulation of the kinaesthetic behaviour of the 
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hand or the hand-arm complex (Lv et al. 2022). Although 
accurate in representing the mechanical properties of the 
biological components, these models usually focus less on 
the skin, which is sometimes discarded, and more on the 
rigid elements in the hands and arms, such as the bones as 
well as the joints and tendons that interconnect them. The 
studies presenting models of these types cannot be described 
as haptically focused and, because of this, they were not 
included in our survey.

Studies were initially collected using Scopus (Elsevier 
Ltd., Oxford, United Kingdom); the Cadima online ser-
vice (Julius Kühn-Institut, Quedlinburg, Germany) was 
used to track the results of the initial search and to remove 
duplicates. The search strings for the initial collection of 
studies were created by selecting one keyword from each 
of the four lists in Table 1, combined using “AND”. All 
possible keyword combinations were employed, with the 
exception that synonymous terms (e.g., “touch”/“tactile,” 
“model”/“modelling”) were grouped together and linked 
by “OR”. A total of 113 studies were collected, of which 
14 duplicates. Additionally, 16 studies were deemed out 
of scope during initial screening, based on abstract review, 
leaving 83 studies for full-text assessment. The excluded 

works focused on artificial skin or robotic fingertips, or 
employed computational methods other than FE analysis. 
Of the initial batch, only 52 studies were included in the 
final paper, according to the criteria detailed in this sec-
tion. 24 more sources were either identified from citation 
searching or were added to further detail the work of already 
cited authors. Compliance with the PRISMA standard (Pre-
ferred Reporting Items for Systematic Reviews and Meta-
analyses (Page et al. 2021)) was ensured by compiling the 
associated checklist; the standard PRISMA flowchart is used 
in Fig. 2 to summarize the study selection process.

2.2  Contribution

Our survey is not the first effort present in the scientific liter-
ature regarding the analysis and simulation of biomechanical 
properties of human skin and hands. In this section, we refer 
to pre-existing surveys on the same broad topic, highlighting 
their differences with our work to clarify our contribution to 
the state of the art.

An existing review by Deflorio et al. (Deflorio et al. 2022) 
focuses on modelling the touch-induced activation of the 
mechanoreceptors, and how it can be related to the mechani-
cal deformation of the skin. FE analysis is brought up in the 
review as one of the potential methods for simulating the 
mechanical behaviour of the tissues, to the extent that is 
necessary to estimate the quantities (e.g., strain) that trig-
ger and drive responses in the neural afferents. The authors 
compare FE with alternative modelling techniques, citing 
the FE model from Gerling et al. (Gerling et al. 2014) as 
a meaningful example. The specific characteristics of the 
example are not compared with other FE models, which 

Fig. 1  FE model of the whole hand from (Wei et  al. 2020), used to 
simulate grasp and tactile exploration (Wei et  al. 2022a), with the 
directions of ligaments and tendons drawn in red (not included in the 
model). On top, the detail of the finger joint model is shown, evidenc-
ing the local axes defined for each bone which are constrained to only 
rotate relative to one another. evidenced in red. In the image, RP is 
’reference point’, and individual reference points are identified by a 
Latin character (D, M, P)

Table 1  List of keywords used to build search strings for the initial 
collection of studies. The words in “Scope” referred to the anatomy 
targeted by the model; those in “FE method” were used to signify the 
focus of the search, i.e., studies on FE modelling of the mechanics 
of the human hand and its skin; those in “Biomechanics” concerned 
specific mechanical properties of the modelled tissues, and of their 
response to external loads; those in “Interaction” included possible 
types of contact loads that exist in the context of active or passive 
touch

Scope “skin”, “hand”, “finger”, “fingertip”

FE method “FEM”, “finite element”, “model”, “modelling”
“response”, “simulation”, “numeric”

Biomechanics “biomechanics”, “mechanics”, “hyperelastic”
“viscoelastic”, “elasticity”, “viscosity”
“stiffness”, “friction”, “dynamics”
“frequency”, “vibration”, “quasi-static”

Interaction “haptic”, “touch”, “tactile”, “contact”
“compression”, “pressing”, “tapping”, “sliding”
“grip”, “grasp”, “exploration”, “texture”
“surface”, “compliance”, “softness”, “rough”
“edge”, “curvature”, “shape”
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is what our manuscript focuses on instead, discussing the 
design choices made in the creation of each cited FE model 
with respect to related ones. We intend to provide guidelines 
that, once FE is selected as the appropriate solution for a 
given application, can be used to inform the construction 
of a new FE model, tailored to a specific research question. 
Tong et al. (Tong et al. 2023) carried out a survey on the 
haptic simulation of deformable human hands in VR envi-
ronments, in the context of rendering a virtual hand avatar. 
FE analysis is mentioned as one of the tools used in this 
type of model, but the implementation of hand FE models is 
not discussed in detail. As discussed in section 2.1, in these 
applications, the main goal is not biomechanical accuracy, 
and as such they cannot be considered haptically focused. 
Another review by Biswas and Visell (Biswas and Visell 
2021) refers to the biomechanics of active tactile explora-
tion, and how the properties of the hand allow for the varied 
capabilities of human touch perception. The paper details the 
interplay between the various mechanical and kinaesthetic 
stimuli during tactile interactions, and how these stimuli 

could be replicated in haptically-endowed Extended Reality 
(XR) systems. Simulation models for these relationships are 
only briefly mentioned, and the FE method is not taken into 
consideration. Lastly, the survey by Mostafavi Yazdi and 
Baqersad (Mostafavi Yazdi and Baqersad 2022), while not 
specifically concerned with FE analysis, provides a detailed 
summary of commonly used constitutive laws for modelling 
the biomechanics of the human skin, and of the experimental 
tests that are typically carried out to experimentally derive 
the model parameters. It is worth mentioning that the design 
of haptically focused FE models requires the inclusion of 
accurate constitutive models of the skin, as well as the usage 
of experimental data, usually acquired in vivo. The men-
tioned survey discusses constitutive models which are apt 
for this purpose, and also collects publicly available sets of 
parameters for each type of model. However, very few of the 
given parameter sets are devised specifically for the skin of 
the human hand.

In light of these comparisons, and to the best of our 
knowledge, our review appears to be the only one focused 

Fig. 2  PRISMA flow chart summarizing the study selection process (Page et al. 2021)
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on FE models of the human finger and hand and their soft 
tissues that are specifically created to study and model 
human haptic interaction. Our contribution concerns the 
comparison between the variety of published models, based 
on their adherence to real human biomechanics and on their 
capability to estimate a variety of mechanical behaviours. 
From this comparison, we try to design and provide 
guidelines for researchers who need to develop FE models 
of this type.

3  Biomechanics of touch

Tactile perception is produced in human skin by the activa-
tion of mechanoreceptors, specific cells that are scattered 
throughout the skin and are sensitive to mechanical stimuli 
such as strain and vibration (Biswas and Visell 2019). In 
humans, the glabrous skin of the hands has an especially 
high density of mechanoreceptors, which increases from the 
palm to the distal phalanges (Ryan et al. 2021). Mechan-
oreceptive afferent neurons are classically categorized into 
two main classes: slowly activating (SA), which are mainly 
activated in response to low-frequency stimuli, and rapidly 
activating (RA), prominently sensitive to transient and oscil-
lating stimuli up to a wide high-frequency range. The two 
relevant types of SA afferents are those that end respectively 
in Merkel cells, which are sensitive to static skin deforma-
tion, but also respond to transient deformations; and those 
with Ruffini endings, which are mainly located around the 
nail and are sensitive to skin stretch. RA afferents also com-
prise two main categories, consisting of those ending in 
Meissner corpuscles, responsive to oscillating frequencies 
up to 100 Hz, and those ending in Pacini corpuscles, sensi-
tive to stimuli ranging from 10 up to 1000 Hz, located in 
deeper skin tissues and endowed with very large receptive 
fields. In hairy skin, C tactile (CT) afferents are also worth 
mentioning, which are fundamental in encoding touch-ena-
bled stimuli with an affective or social valence (Ryan et al. 
2021).

The glabrous human skin, which is the focus of our work, 
is composed of two main layers, called epidermis and der-
mis. The epidermis is the most external layer, which is the 
stiffer part of the skin and includes structures such as the 
fingerprint ridges. The dermis is the deeper, softer layer, 
which houses most of the mechanoreceptors (Deflorio et al. 
2022). The interface between epidermis and dermis is not 
smooth but instead composed of undulations called papil-
lae, which are believed to help in the transmission of tac-
tile signals to the mechanoreceptors. Indeed, the stiffness 
gradient in going from epidermis to dermis and the related 
restriction of the capability for deformation of the skin are 
thought to provoke an amplification of mechanical stimuli 
(Gerling and Thomas 2005). The lower part of the dermis 

is called reticular region because of the dense structure of 
elastomeric and collagen fibres, which act as a support struc-
ture for the skin and limit its capability for deformation, 
allowing it to return to its original shape after being loaded 
(Daly 1982). The mechanical behaviour of these fibres is 
highly dependent on the direction of loading, showing a 
stiffer response along the so-called Langer’s lines (Langer 
1861; Ní Annaidh et al. 2012). The mass of tissue below 
the dermis is usually denoted as subcutaneous; it has a high 
content of liquids (e.g., water, blood, or globules of fat) and 
greater compliance than the skin, demonstrating relevant 
properties of viscosity. In Fig. 4, the separation between the 
tissue layers of a human fingertip is shown represented in 
an FE model (Serhat et al. 2022). For an extensive review of 
the properties of mechanoreceptive afferent neurons, mecha-
noreceptors, and the layers of the skin, the interested reader 
is invited to refer to, e.g., Johnson (Johnson 2001), Biswas 
and Visell (Biswas and Visell 2021), Ryan et al. (Ryan et al. 
2021) and Deflorio et al. (Deflorio et al. 2022).

The constitutive law of a material can be defined as the 
relationship between stresses and strains during loaded 
deformation. FE models require the introduction of consti-
tutive laws which describe the mechanical response of the 
associated solid material to imposed loads. In the major-
ity of cases, and especially, where nonlinear constitutive 
laws are required, the parameters that characterize them are 
determined by fitting the constitutive equations to experi-
mental data (Fung 1993), such as the force-displacement 
curves obtained by compressing a fingertip pulp (Maeno 
et al. 1998b). The rest of this section details the most rel-
evant mechanical properties of the soft tissues of the hand 
and fingers that can be replicated in FE models, and the 
constitutive laws that have been used in examples taken from 
the literature. Figure 3 provides a synthesis of the content 
of the following sections. In the majority of FE models, tis-
sues are assumed to be homogeneous, i.e., the materials have 
identical properties at all internal points, and isotropic, i.e., 
the properties are the same in all directions within the mate-
rial. Neither of these assumptions is conservative; indeed, 
many biological tissues including the skin are well known 
to be neither homogeneous nor isotropic due to the complex 
nature of their composition (Fung 1993; Ní Annaidh et al. 
2012).

3.1  Tissue elasticity

As is well known, the elasticity of a material is its capability 
to deform under an external load, and completely recover its 
original shape and size once the load has been removed. It 
is the first and most significant property that must be taken 
into account when modelling the biomechanical behaviour 
of a material. Linear elasticity (LE) is the simplest con-
stitutive model and follows directly from a generalization 
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of Hooke’s law, that is, the strains are proportional to the 
stresses that cause them. The fixed ratio of stress to strain 
is called the material’s Young’s modulus E. For multiaxial 
loading, all stress–strain relationships remain linear and the 
entirety of a homogeneous LE material can be characterized 
just by two parameters: Young’s modulus E and Poisson’s 
ratio � , i.e. the ratio of lateral strain to axial strain. Experi-
mental observations from multiple sources have shown that 
the human skin only behaves like a linearly elastic body 
when undergoing limited deformations (Mostafavi Yazdi 
and Baqersad 2022). Indeed, it exhibits mostly nonlin-
ear behaviour in touch-related contact interactions, which 
generally involve forces up to 10 N and/or indentations up 
to 5 mm. The stiffer elements present in the human hand, 
namely bones and nails, are generally considered linearly 
elastic in the range of deformations associated with these 
interactions. The nonlinear elastic behaviour of the glabrous 
skin is instead mainly caused by the soft tissues. It is often 
described in terms of strain hardening, i.e., the stiffness 
increases with increasing deformation (Wang and Hayward 
2007). In practice, this results in force-deformation relation-
ships, where great strains are induced from the undeformed 

state with small loads, up to approximately 1 N, but the force 
required to increase the strains grows sharply with the defor-
mation itself (Pawluk and Howe 1999; Serina et al. 1998). 
The commonly adopted solution to describe a material that 
has fully elastic behaviour, but does not follow a linear 
law, is hyperelasticity (Lapeer et al. 2010). Hyperelastic 
materials are usually described using a function of strain 
energy (SE), a form of potential energy associated with elas-
tic deformation of solids (Ali et al. 2010). In bodies that 
undergo large deformations, SE can be related to the local 
deformation gradient by means of an SE density function. 
The main assumption of the theory of hyperelasticity is that 
the behaviour of the solid is time-invariant; this assumption 
is usually not verified with the human skin. Commonplace 
hyperelastic constitutive laws are usually written under the 
additional hypothesis of incompressibility of the material 
(Rivlin 1992). In FE simulations of hand soft tissues under 
quasi-static conditions, the hypothesis of incompressibility 
holds since the degree of freedom of volume change tends 
to be negligible with respect to the shear deformation (Wu 
et al. 2004). Most formulations of the SE density function 
were originally developed to describe the elastic behaviour 

Fig. 3  Synthesis of the most relevant biomechanical properties of the soft tissues of the human hands, and the typical constitutive models used to 
describe them

Fig. 4  Geometry of the FE fingertip model from (Serhat et al. 2022), 
used to investigate the effect of moisture on the contact areas gen-
erated when compressing the finger.a Detail of the tissue layers 

included in the model. b Size of the fingertip and of the individual 
layers, with detail of the dermal papillae and epidermal ridges
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of artificial rubbers (Ali et al. 2010), but have then been 
applied to other compliant materials, and are apt for the 
characterization of highly deformable biological tissues like 
skin (Lapeer et al. 2010). Among these models, the most 
commonly used are the Ogden-Storakers (Ogden 2003), 
the Mooney-Rivlin (Rivlin 1992), the Neo-Hookean (Kossa 
et al. 2023) and the Yeoh (Yeoh 1993) formulations. The 
first two are the most commonly used for finger and hand 
models, with the widest availability of published parameter 
sets (Harih and Tada 2019; Wei et al. 2020; Wu et al. 2010; 
Khojasteh et al. 2018). Although significantly less common, 
parameter sets for Yeoh and Neo-Hookean models can be 
found in the literature (Vodlak et al. 2015; Almagirby et al. 
2018). Yeoh and Neo-Hookean SE density functions have 
a smaller number of coefficients, and are therefore suitable 
when there is scarce availability of experimental data (Vod-
lak et al. 2015), or the available data is not specific for the 
type of loading studied (Almagirby et al. 2018).

3.2  Tissue viscosity

It is well-documented that, depending on the distribution 
in time of the application of the external loads, the soft tis-
sues of the hand exhibit time-dependent behaviour that can-
not always be fully captured even by a nonlinear elastic law 
(Serina et al. 1998). This behaviour is usually called viscos-
ity, and the tissues that demonstrate it are commonly referred 
to as viscoelastic. The viscous behaviour of soft tissues is 
usually described through three phenomena: relaxation, 
creep, and hysteresis, of which an exhaustive experimen-
tal characterization was carried out by Wang and Hayward 
(Wang and Hayward 2007). In detail, relaxation refers to 
the progressive stabilization of the mechanical state of the 
fingertip after a transient in the mechanical loading (Jin-
drich et al. 2003). The imposed load, usually contact force, 
required to maintain a certain configuration or deformation, 
rapidly decreases after the transient phase and then reaches a 
lower, stable value in the span of a few seconds (Pataky et al. 
2005). Additional relaxation also happens slowly over time 
after the finger is unloaded: noticeable amounts of defor-
mation persist in the fingertip after the unloading transient 
and its original shape is only recovered after some seconds 
(Pataky et al. 2005). In opposition, creep consists in the slow 
increase of deformation in the soft tissue when the exter-
nal load is kept constant over time. Agache and Humbert 
(Agache and Humbert 1995) observed three phases of skin 
creep (an initial purely elastic deformation, a viscoelastic 
phase, and a constant creep phase) and pointed to the rea-
lignment of the dermal collagen fibres as the origin of this 
behaviour. Wang and Hayward observed creep to happen 
twice as slowly as relaxation, and suggested instead that both 
could be caused by motion of fluids in and out of the body 
part (Wang and Hayward 2007). Lastly, hysteresis refers to 

the loss in strain energy that occurs in the fingertip in the 
span of a full loading-unloading cycle, thought to be caused 
by internal friction (Capace et al. 2021). As an observable 
effect of hysteresis, deformation decreases during unload-
ing more slowly than it increases during loading. Wang and 
Hayward observed that this dissipation is highly repeatable 
and independent of the period of the cycle as long as it is 
greater than 10 s, but cycles faster than that tend to express 
minor losses (Wang and Hayward 2007). For the purpose 
of joint modelling of the viscous and elastic response of 
soft tissues, Fung proposed a quasi-linear viscoelasticity 
(QLV), which treats the elastic and the viscous behaviours 
as two separate, additive stress components (Fung 1993). In 
the case of finger glabrous skin models, Wu et al. (Wu et al. 
2003) support the idea that the constitutive stress–strain rela-
tionship can be written as a linear superposition of an elastic 
and a viscous term, even where one or both components are 
internally nonlinear. For these applications, the viscous term 
is often formulated via a Prony series (Soussou et al. 1970; 
Tschoegl 2012), while the elastic law can be chosen indepen-
dently as linear or hyperelastic to fit the specific application. 
Multiple parameter sets for QLV constitutive laws used in 
FE modelling of the soft tissues of the hand are available. 
These models integrate with viscosity various formulations 
of elasticity: linear (Tang et al. 2016), or nonlinear, such as 
Ogden (Wu et al. 2003), Mooney-Rivlin (Wu et al. 2010), 
Neo-Hookean (Almagirby et al. 2018) and Yeoh (Vodlak 
et al. 2016) strain energy potentials.

3.3  Material anisotropy

As noted previously, neglecting mechanical anisotropy 
is known to be too restrictive when dealing with many 
biomechanical properties of tissues (Langer 1861; 
Ní Annaidh et al. 2012). The human fingertip, in particular, 
has been shown to possess anisotropic elasticity and 
stiffness, associated among other factors with the superficial 
ridges of the epidermis (Wang and Hayward 2007) or with 
dermal structures such as the collagen fibres (Daly 1982). 
This element is often neglected when dealing with the 
FE modelling of fingers and hands; however, it would be 
beneficial to take it into account if striving for adherence of 
the behaviour of a model to the real anatomy (Dallard et al. 
2014). As a starting point for studies going in this direction, 
linear anisotropic models are easy to implement and could 
provide a valuable approximation of directional properties 
of the glabrous skin: orthotropic or transversally isotropic 
models can be used to reduce the number of parameters 
required for the constitutive law, under the assumption of 
existence of symmetry planes for the mechanical behaviour 
(Ogden 2003). On the other hand, using linearly anisotropic 
models for biomechanical modelling retains most issues 
presented by all linear elastic constitutive laws, and 
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requires the additional hypothesis of knowing the local 
principal directions of the material, so mindful use is 
required (Serina et al. 1998). Although usually applied to 
different anatomy with respect to the tissues of the human 
hand, elastic constitutive laws exist that are based on 
anisotropic hyperelastic SE density functions, most notably 
the Holzapfel-Gasser-Ogden (HGO) (Holzapfel et al. 2000; 
Gasser et al. 2005). Duprez et al. used an HGO potential 
to investigate the inclusion of the directional properties of 
collagen fibres in an FE model of a human fingertip (Duprez 
et al. 2024). Chamoret et al. (Chamoret et al. 2013) also 
developed an FE simulation of contact between a human 
hand and a soft material, both treated as nonlinear and 
anisotropic, using a version of the HGO constitutive law. 
To the best of our knowledge, these are the only FE models 
of the human hand that take nonlinear anisotropic elasticity 
into account.

3.4  Skin friction

While not strictly a constitutive property, but rather an emer-
gent behaviour of the interaction between different materials, 
friction, i.e., the relationship between the component of the 
contact force normal to the contact surface and the tangential 
force component, is another relevant factor in modelling the 
biomechanics of tactile interactions. Finger pad friction is 
a highly complex phenomenon whose characteristics vary 
with physiological factors, e.g., age or skin elasticity and 
properties of the interface, such as roughness and moisture 
(André et al. 2010; Amaied et al. 2015; Pasumarty et al. 
2011). In FE models, the coefficient of friction at the inter-
face with the skin is usually taken as a constant value cho-
sen based on the touched object material and its superficial 
properties (e.g., roughness) (Battaglia et al. 2015; Khojasteh 
et al. 2018; Wei et al. 2020). An example of more complex 
model of dynamic finger pad friction is that used by André 
et al. (André et al. 2009), in which the coefficient of friction 
is determined as a negative exponential of the normal com-
ponent of the contact force (Barrea et al. 2016; Delhaye et al. 
2024). Previous experimental observations also supported 
the idea of modelling the coefficient of friction of the fin-
gertip skin as an exponential function of the normal contact 
force (Han and Kawamura 1996; Sivamani et al. 2003), and 
the validation of a similar friction law using FE is proposed 
in a study by Yoshida et al. (Yoshida et al. 2011). Other stud-
ies investigated the relationship between superficial textures, 
such as ridges, gratings or reliefs, and frictional forces in the 
context of relative sliding motion (Janko et al. 2018b; Peng 
et al. 2021). Another factor which has an impact on friction 
in tactile contact is interface moisture, whether caused by the 
skin or present on the touched surface (Adams et al. 2013; 
Peng et al. 2021). These studies intended, through exten-
sive experimental campaigns, to characterize the nonlinear, 

dynamic variations of the frictional forces according to the 
properties of the contact interface. However, the implemen-
tation of any complex frictional law in an FE model of the 
human hand is still an under-explored topic. 

4  Finite Element models of human hands 
and fingers

Haptically focused FE models must achieve realistic simula-
tion of mechanical behaviour to accurately estimate defor-
mations, pressures, vibration responses, and contact areas, 
because these quantities directly inform the output of the 
receptors in the skin (Gerling et al. 2014). Contact problems 
are among the most complex to represent in FE analysis, 
and they add other nonlinearities on top of those intrinsic to 
the biomechanical system (Robert et al. 2012). As a conse-
quence of such complexity, any FE analysis conducted on 
this topic must select a subset of questions to be answered 
by the model, making assumptions about the issues that are 
not focal to the problem at hand or justifying their removal 
using experimental observations. To achieve accurate results 
through FE simulation, it is therefore desirable to develop 
models that are specifically geared towards the intended 
goal. In this section, we review some of the most relevant 
results that can be achieved via FE analysis of haptic interac-
tions, comparing existing models built for this purpose and 
providing guidelines on how to create new ones for simi-
lar cases. Design choices pertaining to each model will be 
described according to the three following criteria:

• Geometric complexity: the degree of accuracy of the 
shape of the FE model with respect to a real human fin-
ger or hand. This includes the dimensionality (2D or 3D), 
the number and shape of the skin layers, the inclusion 
of structures such as fingerprints or dermal ridges, or 
the adherence of the geometry to medical images of real 
patients.

• Biomechanical complexity: the implementation of nonlin-
earities, time-dependencies, and anisotropies in the con-
stitutive models chosen for each type of material. This 
also includes the presence of functional structures such 
as bone joints, tendons, or ligaments.

• Interaction complexity: the amount of detail and real-
istic properties considered when modelling contact. It 
includes elements such as boundary conditions, vibra-
tions, whether the simulation is static or dynamic, what 
types of loads are imposed, etc.

Whenever applicable, in the next paragraphs, models will 
be presented and compared with respect to the three given 
criteria. The majority of the FE models discussed in this 
section are limited in scope to a single fingertip, e.g., the 
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distal phalanx of an index finger. Haptically focused models 
of a whole finger or the entire hand are on the other hand 
few in the literature (Wu et al. 2017; Harih and Tada 2019), 
due to the complexity added by the presence of joints and 
tendons between finger bones, whose kinaesthetic properties 
are interwoven with the mechanical behaviour of the soft 
tissues. The content of this section with the suggested design 
practices is shown in Table 2.

4.1  Static contact modelling

A first use-case for FE models of human hands is simulating 
the mechanical behaviour of a finger pad pressed against a 
surface, estimating its mechanical stress–strain state. Fre-
quently, the application of such loads can be assumed to 
happen slowly over time, i.e., in a timespan of the order of 
a few seconds; under this assumption, the interaction can 
be simulated in quasi-static conditions (Harih and Dolšak 
2014; Hokari and Pramudita 2023). In practice, this sim-
plifies the model, allowing to neglect the transmission of 
mechanical vibrations through the materials and the time-
dependent, viscous properties of the soft tissues, the effect 
of which is negligible when loads are applied slowly, as 
mentioned in Sect. 4.2. Experimental data from different 
sources can be more easily compared with a quasi-static 
simulation, because the actual time-dependency of the 
application of the load can also be abstracted away in the 
simulation. Care should always be taken in verifying that 
the neglected aspects of the interactions do not significantly 
affect the simulation results, by validating the simplified 
model against experimental data. Especially at higher load-
ing speeds, a comparison in accuracy between a quasi-static 
and a dynamic simulation can also be carried out to verify 
the model’s adherence to the real biomechanics. Data from 
simulated quasi-static loading of a human finger pad can be 
used to carry out ergonomic analysis (Chamoret et al. 2010; 
Harih and Tada 2015), to be compared with data acquired 
via novel experimental methods as a ground truth (D’Angelo 
et al. 2019; Logozzo et al. 2022b), or to investigate the 
potential relationship between mechanical quantities and 
perceived tactile properties, such as softness (Battaglia et al. 
2015; Hokari and Pramudita 2023). This type of FE analysis 
is often focused on the relationship between contact forces 
and resulting contact areas (Logozzo et al. 2022b; Xu et al. 
2018), distributions of contact pressures (Harih and Tada 
2015; D’Angelo et al. 2017) or of elastic strains (Hokari 
and Pramudita 2023) in the finger volume. Under the quasi-
static assumption, elasticity is the main factor in selecting 
the constitutive laws for the soft tissues. Many such analyses 
choose to implement the soft tissues as linear materials (Shi-
mawaki and Sakai 2007; Logozzo et al. 2022b) but in the 
majority of the recent studies hyperelasticity was introduced 
(with the exception of bones and nails) to achieve higher 

adherence to real behaviour (Battaglia et al. 2015; D’Angelo 
et al. 2019). Structures such as epidermal ridges and der-
mal papillae are most frequently neglected instead, opting 
for smooth separation surfaces between tissues (Battaglia 
et al. 2015; Logozzo et al. 2022b); indeed, the effect of these 
microstructures on the stress–strain states is highly localized 
(Shao et al. 2010). On the other hand, the different mechani-
cal properties of the relevant soft tissues affect the overall 
behaviour of the finger or hand (Shimawaki and Sakai 2007), 
therefore models in this category should include multiple tis-
sue layers differing in constitutive model. The touched sur-
faces are usually assumed flat, unless the effect of texture or 
curvature is the specific focus of the study (Xu et al. 2018). 
They can be either rigid (D’Angelo et al. 2019) or compliant 
(Battaglia et al. 2015; Hokari and Pramudita 2023), friction-
less (D’Angelo et al. 2017) or rough (Vodlak et al. 2015), 
again depending on which parameters are being investigated 
through the simulation. When present, frictional properties 
are usually expressed via a constant coefficient of friction 
(Vodlak et al. 2015; Battaglia et al. 2015). In the majority of 
cases, problems of this category can be addressed by consid-
ering only a single fingertip (D’Angelo et al. 2019; Hokari 
and Pramudita 2023), although limiting the model to a 2D 
section of the fingertip is not recommended, as it reduces 
accuracy in the computation of the pressure distributions 
(Harih et al. 2016). An example of such a 3D fingertip model 
is shown in Fig. 5 (D’Angelo et al. 2017). Models in this 
category are simple to create, when compared with analyses 
that take into account dynamics or multi-finger interactions. 
However, the user should be wary of the relevant number of 
assumptions that are usually made in modelling, compar-
ing simulation results to experimental data to evaluate their 
accuracy, and keeping in mind that the results are often not 
conservative. Examples of published experimental data that 
can be used to validate these simulations include contact 

Fig. 5  Geometry and mesh of the FE fingertip model from (D’Angelo 
et  al. 2017), developed as a comparison with a novel experimental 
method for measuring contact areas and pressures. Dimensions are 
expressed in mm
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force-indentation (Maeno et al. 1998b; Serina et al. 1997), 
contact force-areas (Li and Gerling 2023; Logozzo et al. 
2022a), contact pressure distributions (D’Angelo et al. 2019; 
Hokari et al. 2019) and more; for a meaningful comparison 
with quasi-static simulation, the loads should be applied at 
low speeds, e.g., less than 1 mm/s.

4.2  Dynamic contact modelling

Following what was said in Sect. 4.1 concerning static con-
tact loading, it may be useful to build FE models capable of 
estimating the stress–strain states of finger pads also under 
dynamic conditions, taking into account their time-variant 
response (Wu et al. 2003). Most observations made in the 
previous case can be translated to the dynamic one, for 
example concerning friction and compliance of the touched 
objects or the inclusion of mechanically separate tissue 
layers. The most relevant increase in complexity is associ-
ated with the inclusion of time-variant material properties, 
requiring the use of a viscoelastic constitutive law to accu-
rately predict, e.g., relaxation behaviour (Wu et al. 2003) 
(Kumar et al. 2015). In the majority of examples, the chosen 
constitutive law is a QLV model (see Sect. 3.2), composed of 
a Prony series to model viscosity and a hyperelastic potential 
as the elastic law (Wu et al. 2004) (Giavazzi et al. 2010). 
Due to the interplay between viscous and elastic behaviour 
in such cases, the use of hyperelastic constitutive laws is rec-
ommended (Wu et al. 2004). Indeed, simulations relying on 
linear elasticity have been shown to fail to capture relaxation 
or other viscous effects (Wang et al. 2012). The importance 
of viscous behaviour of the soft tissue is especially evident 
when considering different loading types which are not lim-
ited to normal compression, such as indentation (Wu et al. 
2006b) (Kumar et al. 2015) or suction (Hendriks et al. 2003) 
(Giavazzi et al. 2010). Due to the large number of parame-
ters in nonlinear, viscoelastic material laws, a comparison of 
the simulations with experimental data should be carried out 
(Wang et al. 2012). A wide variety of experimental test types 
return data that is apt for the purpose of validating these 
simulations, including dynamic compression (Pawluk and 
Howe 1999) (Nam and Kuchenbecker 2021) or indentation 
(Srinivasan 1989) (Iravanimanesh et al. 2021), suction (Hen-
driks et al. 2004) (Giavazzi et al. 2010), lateral displacement 
(Pataky et al. 2005) (Wang and Hayward 2007) and more. 
The greatest accuracy in stress–strain distributions with 
respect to a real finger is obtained only via 3D simulations 
(Wu et al. 2006b) (Kumar et al. 2015), although 2D analyses 
limited to a fingertip section can still offer valuable insights 
(Wu et al. 2004). Of note, Chamoret et al. developed an FE 
model of the entire hand to characterize its biomechanical 
behaviour during dynamic impact with a material sample 
having hyperelastic, anisotropic properties (Chamoret et al. 

2013). Although the complexity of the modelled interac-
tion is certainly remarkable, viscous properties are missing 
in the material models, and there is no attempt to model 
the behaviour of the finger joints. The simulated contact 
pressure results are not compared to any experimental data, 
therefore lacking validation (Harih and Tada 2019).

4.3  Vibration absorption and transmission

An inherently dynamic property of mechanical systems, 
which is relevant for the human hand in the context of tactile 
interactions, is the transmission of externally induced vibra-
tions through the system. When interacting with a vibrating 
object or surface, or during sliding against rough or textured 
surfaces, the soft tissues of the human hand are subjected 
to vibrations which propagate through the hand and up the 
arm (Shao et al. 2016; Tummala et al. 2024). Modelling 
the transmission of such vibrations via FE (within compu-
tational limits, and therefore usually restricted to the hand 
and neglecting the effects on the rest of the arm) is useful 
in understanding these tactile interactions and how they are 
physiologically perceived and interpreted (Wu et al. 2006a), 
but also to derive considerations on the topic of ergonomics 
and safety of the interaction of human hands with vibrat-
ing objects (Robert et al. 2012). Often, such analyses are 
conducted assuming an external vibrating object or surface 
(Wu et al. 2017), or an otherwise oscillating exciting load 
(Serhat and Kuchenbecker 2024), although examples exist 
of simulation of transmission of friction-induced vibrations 
(Amaied et al. 2015). Although most studies tackle this issue 
using 2D (Wu et al. 2010; Almagirby et al. 2018) or 3D (Wu 
et al. 2008; Serhat and Kuchenbecker 2024) models of a 
single fingertip, including the rest of the finger or the hand 
is suggested when transmission of the vibration to the hand 
is relevant to the analysis (two such examples are shown in 
Fig. 6 and Fig. 7 (Wu et al. 2010; Noël 2018)). Fingertip 
models usually include 5 mechanically separate tissue lay-
ers (epidermis, dermis, subcutaneous, nail and bone) (Wu 
et al. 2008; Amaied et al. 2015), or even more in the case of 
Serhat and Kuchenbecker (Serhat and Kuchenbecker 2021). 
Tissue interfaces are usually modelled as smooth, although 
Amaied et al. take into account epidermal ridges (Amaied 
et al. 2015) for a more realistic representation of friction-
induced vibrations. Skin elasticity can influence vibration 
transmission greatly, therefore care must be taken in its mod-
elling (Almagirby et al. 2018; Amaied et al. 2015). Over-
all, when tackling this issue, complex constitutive models 
that fully capture the spectrum of mechanical behaviours of 
the skin should be used, concerning both elasticity (Serhat 
and Kuchenbecker 2021), viscosity (Wu et al. 2010; Alma-
girby et al. 2018) and mechanical properties of finger joints 
when included (Wu et al. 2017). Another relevant aspect 
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when modelling the transmission of vibrations induced 
by an external object is the pre-compression of the object 
against the finger, whose configuration (Wu et al. 2009) and 
intensity (Wu et al. 2007) greatly impact the response. This 
pre-compression can usually be assumed to happen follow-
ing quasi-static behaviour (Noël 2018). Friction is usually 
represented via a constant coefficient (Wu et al. 2017) or 
even neglected when vibrations are transmitted normally to 
the contact interface by an oscillating object (Noël 2018), 
as it was shown to have negligible effects (Wu et al. 2007).

4.4  Tribologic properties

Another specific subset of haptic interactions that have been 
analysed through FE modelling is that of static or sliding 
contacts involving complex textures, friction and moisture 
at the interface (Khojasteh et al. 2018; Serhat et al. 2022). 
Here, the potential purposes of this modelling effort may 
include the identification of a nonlinear friction coefficient 
law that resembles the real behaviour of the fingertip inter-
face (Yoshida et al. 2011); the estimation of friction force 
oscillations at the skin-texture interface (Shao et al. 2010; 
Khojasteh et al. 2018); or the modelling of moisture and its 
effect on interface friction (Nam and Kuchenbecker 2021; 
Serhat et al. 2022). Most of the examples cited in this section 
consist of 2D sections of fingertips, longitudinal (Tang et al. 
2016) or transverse, such as the example shown in Fig. 8 
(Khojasteh et al. 2018). These models have a large number 
of similarities, like including a large number of mechani-
cally separate tissue layers (Amaied et al. 2015; Khojasteh 
et al. 2018; Serhat et al. 2022), with micro-scale geomet-
ric features such as epidermal ridges (Amaied et al. 2015; 

Khojasteh et al. 2018) and dermal papillae (Serhat et al. 
2022). Indeed, the effect of such microstructures is relevant 
when investigating the highly local friction effects happen-
ing at the interface (Shao et al. 2010; Khojasteh et al. 2018; 
Serhat et al. 2022). Material models used for the fingertip 
soft tissues are sometimes linear elastic (Amaied et al. 2015; 
Nam and Kuchenbecker 2021) but more often hyperelas-
tic (Yoshida et al. 2011; Tang et al. 2016; Khojasteh et al. 
2018), and can include viscosity (Amaied et al. 2015; Tang 
et al. 2016), where dynamic effects are believed to signifi-
cantly affect the results. In the 2D models, the friction coef-
ficient is treated as a constant (Tang et al. 2016; Khojasteh 
et al. 2018), and the complexity of the contact behaviour 
emerges from the simulated interaction. As an exception, 
Serhat et al. implement a spring-like friction model, where 
the friction coefficient is the product of a constant and the 
relative sliding between the fingertip and the surface; dif-
ferent values of the constant are used to represent different 
moisture conditions (Serhat et al. 2022). Touched surfaces 

Fig. 6  Finger model from (Noël 2018), in contact with a cylindrical 
object. a Geometry of the finger, bones and connective tissues of the 
joints, with dimensions in mm. b Mesh of the model. c Example of 
propagation of vibrations through the finger, induced by oscillations 
of the cylindrical object, pressed against the fingertip

Fig. 7  Finger model from (Wu et  al. 2017), designed to simu-
late the effect of grasp force on the transmission of vibrations pro-
voked by a grasped oscillating object. a Mesh of the model, show-
ing the mechanical representation of the finger joints as torsional 
spring-damper systems. b Schematic representation of the spring and 
damper connections between the finger model, the grasped object and 
the ground, used as an abstract representation of the rest of the hand, 
not included in the model
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are often treated as rigid (Khojasteh et al. 2018; Serhat et al. 
2022) and flat (Nam and Kuchenbecker 2021; Serhat et al. 
2022), unless the texture is the focus of the study (Tang et al. 
2016; Shao et al. 2010; Khojasteh et al. 2018). A notable 
exception to the observations made above is the study by 
Yoshida et al. (Yoshida et al. 2011), which presents a 3D 
model including the two phalanges, sliding above a rigid flat 
surface, for the purpose of identifying a nonlinear friction 
coefficient law. Following models used for rubber-like mate-
rials, the study proposed describing the tangential friction 
force as an exponential function of normal force, to replicate 
experimental data acquired by sliding a plate against a fin-
gertip. Lastly, because the properties investigated by these 
studies are highly dependent on the specific finger-surface 
pair, their results are frequently compared with ad-hoc 

acquired data, whose experimental conditions the simula-
tion tries to replicate (Yoshida et al. 2011; Khojasteh et al. 
2018; Nam and Kuchenbecker 2021).

4.5  Grasp analysis

As an extension of the static contact case, a study on the 
tactile interactions involved in the context of grasp can be 
carried out using an FE model. A simpler example involves 
the analysis of a finger wrapped around an object, like a 
tool handle (Tony and Alphin 2019; Wu et al. 2017), but 
the majority of grasp types involve multi-finger interactions 
around the object, and therefore their simulation requires 
a model of the entire hand (Hokari et al. 2019; Harih et al. 
2021; Wei et al. 2020). An element which is fundamental in 
the context of grasp analysis is the modelling of finger joints, 
specifically the characterization of kinematic constraints and 
forces exerted via the tendons (Harih and Tada 2019; Wei 
et al. 2020). Typically, models take into account a revolute 
degree of freedom for the flexion-extension rotation of 
each joint, and an additional rotational degree of freedom 
at the knuckles which allows for relative separation of the 
fingers; this simplified model can be represented via simple 
kinematic constraints as two revolute joints (for the finger 
joints) and a universal joint (for the knuckle) on each finger 
(Wu et  al. 2017; Harih and Tada 2019). Some models 
take into account a mechanically separate material for the 
connective tissue at each joint (Tony and Alphin 2019; Wu 
et al. 2017), or include the synovial membrane around it 
(Chamoret et al. 2016), while others abstract these structures 
away as part of a general ’soft tissue’ model (Hokari et al. 
2023; Harih and Tada 2019). Stiffness and damping can be 
assigned to each joint to attune its behaviour to that of the 
real joint, to account for the physiological elements that 
are neglected (Wu et al. 2017). Recent hand models (Harih 
et  al. 2021; Wei et  al. 2020) implement a ’tendon-like’ 
connection between adjacent bones, as shown in Figs. 1a 
and Fig. 9c, where force loads can be applied in a direction 
which mimics the physiological function of the tendons, to 
improve the accuracy of the load model with respect to the 
real human hand. Of interest, Wei et al. utilized their FE 
model of the human hand (Wei et al. 2020) to investigate 
how the inclusion in the modelling procedure of different 
anatomical parts of the finger extensor mechanism (lateral 
band, extensor hood) increases the realism in the simulated 
transmission of grasp force throughout the finger (Wei et al. 
2022b). They implemented on the same model two different 
finger joint models (a rigid one based on hinge joints, and 
an anatomically accurate flexible model), demonstrating 
an increase in quality of the simulated grasp with the 
anatomically accurate configuration (Wei et al. 2023). To 
the best of our knowledge, existing studies concerning hand 

Fig. 8  FE model from (Khojasteh et  al. 2018), designed to estimate 
friction force oscillations during sliding of the fingertip over textured 
surfaces. a Geometry of the model and the textured sample, showing 
in detail the epidermal ridges (dimensions in mm). Force F and veloc-
ity v imposed on the fingertip are shown. b Mechanical stress induced 
in the fingertip when pressed against the textured sample
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models for grasp analysis choose to implement inviscous, 
hyperelastic constitutive laws for the soft tissues, assuming 
quasi-static conditions (Harih and Tada 2019; Wei et al. 
2020). With the exception of Wei et al. (Wei et al. 2020), 
the majority also opts to lump all soft tissues in a single solid 
part with uniform properties (Hokari et al. 2019; Harih and 
Tada 2019). The only grasp model which takes viscosity 
into account is the one limited to a single finger (Tony and 
Alphin 2019; Wu et al. 2017), as this study is also concerned 
with the transmission of vibrations from the grasped object 
to the finger itself, under dynamic conditions (Wu et al. 
2017). Lastly, the outer surfaces of the touched objects are 
usually assumed smooth (i.e., no gratings or coarse texture), 
with constant friction or frictionless.

4.6  Mechanoreceptor response to strain

As discussed in Sect. 3, it is a well-documented fact that 
mechanoreceptive afferents produce neural signals in 
response to certain characteristics within the stress–strain 
state of the skin, for example, shear strain and vibrations. 
In the literature, a long list of studies exist which investi-
gated the opportunity of linking an FE mechanical model 
of the human finger to analytical models of neuron acti-
vation, in such a way that the model would be capable of 
predicting the response of the mechanoreceptors to loads 
applied on the virtual fingertip. Hereinafter, we refer to such 
models as micro-focused. Ground truths exist in the form of 

experimental data on neuron activation, such as that carried 
out by Srinivasan (Srinivasan and Neuroscience 1987) for 
indentation loading. Such micro-focused finger models can 
be 2D (i.e., representing a longitudinal (Wang et al. 2015) or 
transverse (Vodlak et al. 2016; Chen et al. 2016) section of 
the fingertip), or 3D (Wu et al. 2006a; Gerling et al. 2014). 
Most, if not all, the significant examples of such models 
include multiple, individual skin layers (Wu et al. 2004; 
Lesniak and Gerling 2009) and also take microstructures 
into account, such as epidermal ridges and dermal papil-
lae, such as shown in the example in Fig. 10 (Ishizuka et al. 
2022). Indeed, as it was shown for example by Gerling et al. 
(Gerling et al. 2005), interfaces between tissues and micro-
geometries cause a localized amplification of the mechanical 
signals in the vicinity of the mechanoreceptors, an effect 
which should be taken into account in the model. Material 
models should take into account hyperelasticity (Tang et al. 
2016; Gerling et al. 2014) and, when dynamic load compo-
nents are relevant, viscosity (Kumar et al. 2015; Chen et al. 
2016). Distributions of strain energy density (Chami et al. 
2010; Gerling et al. 2014; Wei et al. 2022a) or other func-
tions of elastic strain (Wu et al. 2006a; Vodlak et al. 2016) 
are the most frequently used descriptors to predict activation 
of the mechanoreceptors. The cited studies investigated neu-
ral response under a large variety of loading types, including 
static compression (Maeno et al. 1998a), static and dynamic 
indentation (Lesniak and Gerling 2009) (Kumar et al. 2015; 
Ishizuka et al. 2022), sliding against frictional (Wang et al. 

Fig. 9  FE model of the human hand for grasp simulation (Harih et al. 
2021). a Geometry of the model, showing the distinction between 
bones and soft tissue. b Example of grasping simulation, performed 
using motion-captured trajectories measured on a human subject. c 
Model of the finger joint, composed of a passive constraint, which 

restricts relative movement between bones to a single revolute degree 
of freedom, and a ’tendon-like’ actuation represented by a force 
applied on the distal bone. In the image, RP is ’reference point’, DIP 
and PIP are respectively ’distal’ and ’proximal inter-phalangeal’
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2015) or textured (Tang et al. 2016) surfaces, and vibra-
tions (Wu et al. 2006a). It is worth mentioning that very few 
examples take into account ’active’ behaviour on the part 
of the human (Wang et al. 2015; Tang et al. 2016), while 
in all other cases the load is passively applied on the finger. 
Among these, Wei et al. took advantage of their FE hand 
model, already mentioned in Sect. 4.5, to estimate afferent 
signals during an active curvature discrimination task. A 
human participant performed the task, and the model rep-
licated the participant’s motion-captured movements, and 
estimated the strain energy density at the location of the 
mechanoreceptors (Wei et al. 2022a). The study focused on 
validating the afferent activation model by demonstrating 
that the simulated accuracy in the discrimination task (based 
on the afferent signal) was comparable with that experimen-
tally observed. In a recent development, this FE-driven affer-
ent activation model was used to transform pressure sig-
nals coming from a sensorized robotic hand into equivalent 
human afferent activations, to endow the robotic hand with 
human-like sensorimotor mechanisms (Wei et al. 2024).

5  Discussion and conclusions

In the last section, we have listed and described some com-
monplace categories of Finite Element models of the human 
hand that can be used to simulate tactile interactions. The 
significant effort required to accurately model this complex 
system is certainly of value, as it returns valuable knowledge 
on what mechanical states are induced in the hand tissues 
during the interactions, and how they are distributed within 
the hand itself. In Sect. 4, studies on FE simulation of human 
hands and fingers have been described, grouped according to 
their intended goal, providing insight into important aspects 
of the modelling process. The proposed classification is not 
as clear-cut, and some models can serve multiple purposes, 

e.g., a simulation of dynamic frictional forces generated in 
a fingertip sliding on a textured surface can also be used to 
estimate the transmission of said vibrations throughout the 
finger. Although it is always possible, within computational 
limits, to increase complexity, we set out to provide sugges-
tions on how to build a simple yet effective FE model based 
on its main intended purpose. The insights gained from 
our systematic review are shown in Table 3. As a general 
guideline, the use of one of the available hyperelastic mate-
rial laws for the soft tissues is recommended, as is viscous 
modelling with a Prony series in cases of dynamic loading. 
The target anatomy should be replicated in the model with 
the maximum accuracy, including elements such as finger 
joints, epidermal ridges and dermal papillae whenever possi-
ble. Models should include 4-5 individual tissue layers, i.e., 
bone, nail, subcutaneous mass, and skin, potentially divided 
into dermis and epidermis. Touched objects can usually be 
treated as flat, smooth and rigid unless a different feature 
(e.g., softness, texture or curvature) is the focus of the spe-
cific study. Friction can be modelled with a combination of 
a constant coefficient and, where texture is relevant, surface 
geometry.

Aspects of human biomechanics emerged from our effort, 
which have not yet been fully explored via FE and may be 
worth investigating further. For example, the presence of 
the finger joints affects not just the kinematics of the hand, 
but also the distribution of contact forces and the transmis-
sion of vibrations throughout the finger itself, impacting the 
mechanical response to contact loads. As previously men-
tioned, this phenomenon has been investigated via FE in the 
context of propagation of external vibrations (Noël 2018; 
Wu et al. 2017) and grasp analysis (Wei et al. 2023, 2022b). 
On the other hand, it could be worth modelling its effects in 
the context of, e.g., sliding interactions with textured sur-
faces and their friction-induced vibrations. Similarly, fric-
tion has often been neglected in FE models, or modelled as 

Fig. 10  2D FE model of a human fingertip, used to simulate its 
mechanical response to indentation as the base for an activation 
model of skin mechanoreceptors (Ishizuka et  al. 2022). a Model 

mesh, showing the different tissue layers and locations for three types 
of mechanoreceptors. b Detail of the indenter of diameter d, the epi-
dermal ridges and the dermal papillae
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a constant coefficient, but it has been shown that the real 
behaviour of the skin is more complex (André et al. 2009; 
Peng et al. 2021). More complex kinematic models for the 
human hand are available (Gabiccini et al. 2013), which 
could potentially be integrated within an FE simulation to 
achieve greater realism. It is worth investigating the integra-
tion of nonlinear friction laws, which may focus on model-
ling, e.g., surface roughness, fingertip moisture or adhesion 
effects, in simulations of static and dynamic tactile interac-
tions, which may lead to insights into how these laws apply 
to the behaviour of the real anatomy. Lastly, anisotropy of 
the viscoelastic properties of the skin and the fingertip pulp 
is well-documented (Langer 1861; Ní Annaidh et al. 2012), 
but it has largely been neglected in FE applications. Some 
sources of anisotropy, such as the collagen fibres in the sub-
cutaneous mass, could be included in the elastic constitu-
tive laws, to investigate whether this significantly changes 
the resulting behaviour, as has been previously suggested 
(Duprez et al. 2024).

A topic which has been tangentially mentioned in this 
review is that of the experimental acquisition of biomechani-
cal data, required to select parameters for the constitutive 
laws used in an FE model. Examples of apt experimen-
tal procedures can be found in many of the cited studies 
(D’Angelo et al. 2019; Kumar et al. 2015; Logozzo et al. 
2022a), and in the other reviews cited in Sect. 2.2. It is pos-
sible to use published sets of constitutive parameters (Wu 
et al. 2004; Gerling et al. 2014; Almagirby et al. 2018) or 
published biomechanical datasets (Serina et al. 1997; Janko 
et al. 2018a; Tummala et al. 2024), provided that the type 
of loading or contact interaction resembles the one that is 
simulated in the FE model. In particular, higher ( ≥ 1 mm/s) 
loading speed and noticeable relaxation effects should be 
present in the data used to fit parameters of viscoelastic laws; 
indentation (Kumar et al. 2015) or suction (Giavazzi et al. 
2010) tests have been shown to provide apt results.

There is a distinctive absence of openly accessible FE 
models, possibly due to how each is specifically tailored to 
its application. To compensate for this, we believe it would 
be beneficial to identify design guidelines and performance 
standards for benchmarking and assessing newly developed 
models, also with respect to real human biomechanics. As 
discussed in Sect. 3, the biomechanics of touch involves dif-
ferent aspects (e.g., finger joint kinematics, tendon-driven 
force transmission, exchange of contact and frictional forces, 
strain- and time-dependency of soft tissue stiffnesses), each 
of them coming with its own modelling challenges. To lay 
down the foundations of a benchmark for FE hand models, 
we could take inspiration from what has been done in the 
field of neuromusculoskeletal models, which encompass 
a comparable amount of independent, but equally impor-
tant, constitutive elements. Hicks et al. introduced a general 

process of model validation, and a set of practical guidelines 
concerning each aspect of the modelling effort (Hicks et al. 
2015). New models that follow these instructions can then 
be considered well-validated, and their simulated results can 
be used to draw conclusions about real human anatomy and 
biomechanics (Ravera et al. 2019). Furthermore, we believe 
that a series of benchmark tests could be designed to fur-
ther empower researchers with reliable quantitative valida-
tion methods for their FE finger or hand models. Currently, 
for each new model, the designer is tasked with selecting 
appropriate, publicly available experimental data against 
which comparing the model’s outcomes (Gerling et al. 2014; 
Duprez et al. 2024), or with autonomously collecting new 
data for this specific purpose (Kumar et al. 2015; Wei et al. 
2020). The latter point comes with the arbitrary selection of 
the simulation boundary conditions to fit the experiments. 
A standardized benchmark test would solve the issue by pre-
selecting the setup for the simulations, and providing the 
desired simulation results in the form of either experimen-
tal data sets collected following well-defined guidelines, or 
collections of simulated results from already well-validated 
models. Precedents for this exist, such as the benchmark 
designed by Land et al. for the numeric simulation of cardiac 
mechanics (Land et al. 2015). The benchmark is composed 
of three standardized tests (i.e., simulations) to be carried 
out, and of simulated results from 11 different FE implemen-
tations. To validate a new model, its performance in all three 
tests is compared with the aforementioned simulated results 
(Lluch et al. 2019). Benchmark tests (i.e. simulations) for a 
finger or hand FE model could be designed to include, for 
example, quasi-static passive compression of the finger pad, 
dynamic sliding of the fingertip against a textured surface, 
active tendon-driven tapping of the fingertip on a flat surface 
and cylindrical grasping, each supplemented with reference 
contact force, pressure, area or deformation data, obtained 
from already validated models or experimentally gathered. 
For the latter point, defining repeatable and clearly speci-
fied experimental conditions is of pivotal importance. At 
the same time, it would be fundamental to promote an open 
access approach to the experimental datasets, as done e.g. 
in (Averta et al. 2021), where a multi-modal, multi-centre 
database on arm motion control in healthy and post-stroke 
conditions is made publicly available. Summarizing, we do 
believe that the introduction of uniform validation meth-
ods or benchmarking tests, together with an open access 
approach, could enrich and enhance research on FE model-
ling of touch biomechanics, by easing the design of new 
models, guaranteeing accuracy with respect to real anatomy, 
and allowing for direct quantitative comparison between 
existing models.

The majority of the FE models mentioned in this sur-
vey have their implementation in one specific FE software 
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described in the related paper, as writing custom FE code 
from scratch is rarely feasible. Models and simulations are 
hardly ever cross-compatible or portable to different soft-
ware, worsening the overall lack of publicly accessible 
examples. Different FE software possess different features, 
and some desirable for the application may be missing; 
care should be taken in selecting the optimal software for 
the task, due to lack of portability. The availability of in-
software scripting, as present, e.g., in Ansys (Ansys Inc., 
Canonsburg, Pennsylvania, United States), can be useful in 
integrating missing features, such as constitutive models or 
complex nonlinearities.

We have reviewed and summarized the available litera-
ture on FE modelling of human hands and fingers and their 
biomechanical response to tactile interactions. By collecting 
and comparing the relevant studies, we have identified shared 
traits which have allowed us to provide suggestions on how 
to design new FE models for research on the biomechanics 
of touch. We have identified gaps and neglected topics that, if 
delved into, may reward with novel and otherwise unnoticed 
insights. We hope that our effort will help researchers who 
intend to contribute and help challenge common assumptions 
to discover new paths in research on this topic.
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