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Abstract
Breast cancer (BC) is the most common cancer among women worldwide and is the 
second leading cause of cancer-related deaths in women. Increasing evidence has 
validated the vital role of the immune system in BC development and recurrence. In 
this study, we identified an immune-related prognostic signature of BRCA that could 
help delineate risk scores of poor outcome for each patient. This prognostic signa-
ture comprised information on five danger genes—TSLP, BIRC5, S100B, MDK, and 
S100P—and three protect genes RARRES3, BLNK, and ACO1. Kaplan-Meier sur-
vival curve showed that patients classified as low-risk according to optimum cut-off 
risk score had better prognosis than those identified within the high-risk group. ROC 
analysis indicated that the identified prognostic signature had excellent diagnostic 
efficiency for predicting 3- and 5-years relapse-free survival (RFS). Multivariate 
Cox regression analysis proved that the prognostic signature is independent of other 
clinical parameters. Stratification analysis demonstrated that the prognostic signature 
can be used to predict the RFS of BC patients within the same clinical subgroup. 
We also developed a nomogram to predict the RFS of patients. The calibration plots 
exhibited outstanding performance. The validation sets (GSE21653, GSE20711, and 
GSE88770) were used to external validation. More convincingly, the real time RT-
PCR results of clinical samples demonstrated that danger genes were significantly 
upregulated in BC samples, whereas protect genes were downregulated. In conclu-
sion, we developed and validated an immune-related prognostic signature, which 
exhibited excellent diagnostic efficiency in predicting the recurrence of BC, and will 
help to make personalized treatment decisions for patients at different risk score.
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1 |  INTRODUCTION

BRCA is the most commonly diagnosed cancer in women. 
The 2018 GLOBOCAN report revealed that approximately 
2.1 million women worldwide were diagnosed with BC in 
2018, accounting for one-fourth of all cancer cases among 
women.1 In recent decades, advances in medical tech-
nology have contribute for the gradual reduction of BC-
associated mortality; however, the prognosis of relapsed 
patients remains poor.2,3 BC is a heterogeneous malig-
nancy that affects a diverse population,4 for which treat-
ment strategies often include systemic and personalized 
therapies.4,5 Due to different clinic-pathological features, 
BC patients manifest broad range of treatment-related 
side-effects and clinical outcomes.6 Therefore, new alter-
native diagnostic methods are urgently needed to identify 
high-risk BC patients and provide guidance for the opti-
mization of personalized treatments.

Increasing evidence has shown that the immune sys-
tem plays a critical role in BC recurrence.7-9 Recent dis-
coveries on tumoral immune evasion have paved the way 
for increasing interest in cancer immunology.10,11 Cancer 
immunoediting is a dynamic process consisting of three 
main stages— elimination, equilibrium, and evasion—ul-
timately aiming to destroy cancer cells.12,13 During the im-
mune evasion stage, cancer cells use various mechanisms 
to evade attack and resist the immune response of the 
host, while activating pro-survival and pro-proliferation 
processes.14 Common tumor-associated immune evasion 
mechanisms include abnormal expression of tumor-as-
sociated antigens (TAAs), loss or modification of major 
histocompatibility complex class I (MHC-1), and activa-
tion of anti-apoptotic mechanisms.11 Immunosuppressant 
drugs targeting PD-L1/PD-1 and CTLA-4 were designed 
to prevent some of these evasion mechanisms, effec-
tively promoting cancer regression and improving patient 
prognosis.15-18

In recent years, "omics" technology has developed rap-
idly. Microarray analysis and whole-genome sequencing 
have granted the possibility to explore the genomic char-
acteristics of high-risk cancers.19,20 In particular, genomics 
and molecular characterization studies have revealed driv-
ing mechanisms of BC.20,21 Several studies have shown 
that multi-gene signature models based on the analysis 
of tumor arrays can help predict cancer prognosis and re-
currence more accurately than conventional methods.22-24 
However, the immune-related genes (IRGs) prognosis sig-
nature is rarely described. In this study, we analyzed IRGs 
from Gene Expression Omnibus (GEO) dataset and devel-
oped an immune-related prognostic signature, providing 
novel insights for identifying high-risk BC and assessing 
the potential of personalized immunotherapy for treating 
BC patients.

2 |  MATERIALS AND METHODS

2.1 | Training and validation datasets

IRGs expression data and clinical information were obtained 
from the GEO database. GSE42568 dataset was used as the 
training set, while GSE21653, GSE20711, and GSE88770 
were used for validation. GPL570 [HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array was used 
for gene annotation. We downloaded the original expression 
profile, and used the robust multi-array average (RMA) al-
gorithm to perform background correction and quantile nor-
malization. Briefly, for multiple probes corresponding to one 
gene symbol an average value was considered; single probes 
corresponding to multiple gene symbols were deleted. After 
removing incomplete prognostic cases, a total of 121 cases 
were included in the training set (normal = 17; cancer = 104) 
and 435 cases were included in the validation set (237 in 
GSE21653; 85 in GSE20711, and 113 in GSE88770). Clinical 
information, such as T-stage, ER status, lymph nodes, grade, 
and recurrence-free survival were extracted from the dataset 
for further analysis.

2.2 | Identification of differentially 
expressed genes

We used the t test method to evaluate the P-value of each 
gene to determine whether the gene is differentially expressed 
in tumor and adjacent samples. The Benjamini-Hochberg 
method was used to calculate the False Discovery Rate 
(FDR) to prevent false positive probability in multiple com-
parisons. Fold change (FC) was used to represent the ratio of 
gene expression levels between tumor and adjacent samples. 
Considering FDR <0.05 and | logFC |> 1 as inclusion crite-
ria, the “limma” R package was used to screen differentially 
expressed genes (DEGs) in the training set. Download all im-
mune genes through the ImmPort website online, and select 
the immune genes from DEGs(https://www.immpo rt.org/
share d/genel ists). Then download tumor-related transcrip-
tion factors from the Cistrome Cancer website and screen out 
differentially expressed transcription factors (http://cistr ome.
org/Cistrome Cancer/).

2.3 | Immune-related prognostic signature 
construction and validation

Univariate Cox proportional hazard regression model was 
used to screen IRGs associated with RFS in the training set. 
P-value < .05 was used as the inclusion criteria to identify 
candidate IRGs. Hazard ratio (HR) was used to identify 
IRGs into protect or danger, with HR <1 being considered 
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as protect genes and HR >1 as danger genes. Lasso penal-
ized COX analysis and stepwise multivariate Cox analysis 
were used to further narrow down the list of significant IRGs. 
Finally, we developed an immune-related prognostic signa-
tures (8 genes) based on the following risk score formula:

where n represents the number of prognostic genes, expi is 
the expression value of gene i, and βi is the univariate Cox re-
gression coefficient of gene i. The patients were classified as 
high- or low-risk according to the optimum cut-off risk score. 
We used GSE21653, GSE20711, and GSE88770 to validate the 
accuracy of the identified immune-related prognostic signature.

2.4 | Construction of the nomogram

In this study, we used "rms" R package to construct a nomo-
gram including clinical information (T_stage, nodes, ER sta-
tus, and grade) and immune-related signature in GSE42568, 
GSE21653, and GSE20711 datasets. GSE88770 was not in-
cluded in further analysis due to lack of clinical information 
(T_stage). Calibration plots were used to evaluate the diag-
nostic efficiency of nomogram.

2.5 | Acquisition of human BRCA samples

BRCA and paired adjacent tissue samples were taken from 
patients undergoing breast surgery at Zhongnan Hospital of 

Wuhan University. All specimens were collected after obtain-
ing informed consent by the patients. The samples were im-
mediately stored in liquid nitrogen for further experiments. 
The Ethics Committee of Zhongnan Hospital (Wuhan, Hubei) 
approved the use of these samples for total RNA isolation and 
quantitative reverse transcription-polymerase chain reaction 
(qRT-PCR) analysis. This study included 40 pairs of samples.

2.6 | Total RNA extraction and 
qPCR analysis

RNeasy plus mini kits (74134, Qiagen) and 2 × SYBR Master 
Mix (TOYOBO, Japan) were used to extract total RNA ac-
cording to the protocol provided by the manufacturer. qRT-
PCR was conducted in triplicate. GAPDH was used as 
internal control, and the 2−ΔΔCt values were normalized to its 
levels. The primer sequences for qPCR used in this study are 
shown in Supplementary Table 1.

2.7 | Gene set enrichment analysis

The GSEA software (GSEA version 4.0.3) was used to devel-
poed a gene set enrichment analysis (GSEA) in training and 
validation sets. The samples were divided into high-risk and 
low-risk groups based on the cut-off risk score. The c2.cp.kegg.
v6.2.symbols.gmt gene set was chosen as the reference gene 
set. FDR is the adjusted P-value after multiple hypothesis test-
ing, FDR <25% (Benjamini-Hochberg) was used as cutoff for 
significant gene sets. The most significant Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways were screened.

Risk score=

n∑

i= 1

exp∗
i
�

i

T A B L E  1  Univariate and multivariate Cox regression analyses were performed on the gene signatures and RFS of BC patients

Variables Patients(N)

Univariate analysis Multivariate analysis

HR(95% CI) P HR(95% CI) P

GSE42568

T_stage I/II&III 18/83 1.29(0.57-2.89) 0.538 0.94(0.37-1.96) 0.69

ER ∓ 34/67 0.44(0.24-0.79) 6.35e-03 0.38(0.20-0.74) 4.19e-03

Nodes ∓ 44/57 4.55(2.19-9.48) 5.20e-05 4.82(2.23-10.39) 6.11e-05

Grade I&II/III 50/51 2.82(1.51-5.29) 1.18e-03 1.05(0.50-2.18) 0.90

Risk score Low/High 50/51 4.02(2.07-7.83) 4.14e-05 3.60(1.72-7.52) 6.54e-04

Total（GSE42568&GSE20711&GSE21653）
T_stage I/II 119/239 1.18(0.82-1.71) 0.38 1.08(0.74-1.59) 0.68

T_stage I/III 119/65 2.29(1.39-3.76) 1.06e-03 1.86(1.12-3.11) 1.58e-03

ER ∓ 179/244 0.61(0.45-0.84) 2.41e-03 0.67(0.47-0.94) 2.14e-03

Nodes ∓ 186/237 2.14(1.51-3.02) 1.68e-05 1.84(1.29-2.64) 8.22e-04

Grade I/II 66/126 1.86(1.00-3.47) 4.99e-03 1.73(0.91-3.26) 0.09

Grade I/III 66/231 2.59(1.45-4.62) 1.27e-03 1.73(0.94-3.20) 0.08

Risk score Low/High 210/213 2.53(1.80-3.56) 8.49e-08 2.32(1.64-3.29) 1.87e-06
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2.8 | Statistical analysis

In this study, we used Kaplan-Meier plots to evaluate the dif-
ferences in patients with low-risk and high-risk group, and 
used log-rank tests to assess the statistical significance. P-
value < .05 (log-rank tests) was considered statistically signif-
icant. Multivariate Cox regression analysis and stratification 

analysis were used to determine whether the immune-related 
signature was an independent prognostic factor. The "sur-
vivalROC" R package was used for time-dependent receiver 
operating characteristic (ROC) analysis, and the prognostic 
performance was verified by comparing the area under the 
ROC curve (AUC). All statistical tests were performed using 
R software (version 3.6.1).

F I G U R E  1  Flow diagram of data preparation, processing, analysis, and validation
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3 |  RESULT

3.1 | Identification of differentially 
expressed genes

We used GEO BC dataset GSE42568 as training set, which 
included 17 normal samples and 104 tumor samples. Using 

FDR <0.05 (Benjamini-Hochberg) and |logFC|>1 inclusion 
criteria, we identified 1561 DEGs, among which 134 were 
immune-related genes and 33 were genes coding for TFs. 
Volcano plot and heatmap of the training set were shown in 
Supplementary Figure  1. Based on univariate Cox regres-
sion analysis, lasso regression analysis, and stepwise multi-
variate analyses, we developed an immune-related prognosis 

F I G U R E  2  Immune-related prognostic signature in training set. A, Expression levels of IRGs of the prognostic signature between low- and 
high-group in training set. P-value < .05 (t test) was considered statistically significant. *P < .05; **P < .01; ***P < .001. B, Univariate Cox 
regression analysis on the RFS of prognostic signature. C, Interaction network of IRGs and TFs. Red circles represent danger IRGs, green circles 
represent protective IRGs, and triangles represent TFs. The red line represents a positive correlation, and the green line represents a negative 
correlation.

http://GSE42568
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signature (eight genes). The interaction network between the 
immune-related signature and TFs was shown in Figure 2C.

3.2 | Immune-related prognostic 
signature generation

We first performed a univariate Cox regression analysis to iden-
tify RFS-related prognostic genes in training set. According to 
the optimal cut-off risk score, patients were divided into two 
groups: high-risk and low-risk. We identified 19 immune-re-
lated prognostic genes, which were further evaluated by lasso-
penalized Cox regression and stepwise multivariate analysis 
(Supplementary Figure  2A-B). This approach allowed us to 
identify five danger genes—TSLP, BIRC5, S100B, MDK, and 
S100P—and three protective genes—RARRES3, BLNK, and 
ACO1. This short list of eight genes was used to develop an 

immune-related gene prognostic signature. Figure 2A indicated 
the expression of the immune-related signature in training set. 
The results revealed that high-risk group patients had higher 
expression levels of danger genes while low-risk group pa-
tients had higher expression levels of protect genes. Figure 2B 
described hazard ratio of the immune-related signature. In 
Figure  3, the ranking was based on the risk score values of 
the immune-related signatures from low to high, the risk score 
distribution, risk gene expression and patient survival status in 
training set are shown, respectively.

3.3 | Analysis of the immune-related 
signature in the training set

Analysis of Kaplan-Meier survival curve showed that low-
risk group had better RFS prognosis than patients included 

F I G U R E  3  Analysis of risk score for BC patients in training set, with gene expression profile (top), risk score distribution (middle), and 
patient survival status (bottom). The black dashed line represents the cut-off of the risk score, which divides patients into high-risk and low-risk 
groups
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in the high-risk group. Further analysis of the training set by 
time-dependent ROC plots revealed that the immune-related 
signature had outstanding diagnostic efficiency, with AUC 

values of 0.781, 0.792, 0.773, 0.777, and 0.760 for 1-, 2-, 3-, 
4-, and 5-year RFS (Figure 4A). In order to further confirm 
whether the immune-related signature could be used as an 

F I G U R E  4  Kaplan-Meier survival curve and ROC curves for prognostic signature in training set (A) and validation sets (B-D). For ROC 
curves, we set the sensitivity to the ordinate and 1-specificity to the abscissa. An AUC value close to 1.0 indicates a good diagnosis probability. The 
RFS of patients in high-risk group was lower than that in low-risk group. The ROC curves revealed a fair diagnostic property. P-value < .05 (log-
rank tests) was considered statistically significant
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independent prognostic factor, we performed a multivariate 
Cox proportional hazards regression analysis with clinical in-
formation of the patients, including T-stage, lymph nodes, ER 

status, and grade. The results showed that, in addition to the 
immune-related signature, ER status and lymph nodes could 
also be used as independent prognostic factors (Table 1).

F I G U R E  5  Kaplan-Meier survival curve was drawn to predict the RFS of patients by stratification analysis of lymph nodes, ER status, 
T-stage, and grade. The RFS of patients in high-risk group was lower than that in low-risk group. P-value < .05 (log-rank tests) was considered 
statistically significant
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3.4 | Immune-related prognostic 
signature validation

To evaluate the accuracy of the immune-related signa-
ture, we analyzed three additional datasets (GSE21653, 
GSE20711, and GSE88770). Kaplan-Meier curves con-
firmed that low-risk group had better RFS than high-risk 
group. Moreover the AUC values were 0.536, 0.606, 0.596, 
0.633, and 0.633 in GSE21653 dataset; 0.585, 0.593, 0.639, 

0.676, and 0.690 in GSE20711 dataset; 0.728, 0.758, 0.791, 
0.798, and 0.700 in GSE88770 dataset, for 1-, 2-, 3-, 4-, 
and 5-year RFS, respectively (Figure 4B-D). Next, we per-
formed multivariate Cox proportional hazards regression 
analysis on all datasets excluding GSE88770, which was 
not included in the analysis due to lack of T-stage clinical 
information. The result further confirmed that the immune-
related signature is independent of other clinical parameters 
(Table 1).

F I G U R E  6  Nomogram constructed to predict the RFS of BC patients. A, BC RFS nomogram. To use the nomogram, each variable axis 
contains a value that should be matched to the each individual patient with a line upward to determine the number of points received for each 
variable value. The sum of these numbers is located on the total points axis, and a line should be drawn downward to the survival axis to determine 
the probability of a release event with three or five years. B-C, Calibration curve for predicting RFS at 3-year (B) and 5-year (C) in all datasets. 
The nomogram-predicted probability of RFS is plotted on the x-axis; actual RFS is plotted on the y-axis. The calibration curve showed that the 
nomogram had good prediction accuracy.

http://GSE21653
http://GSE20711
http://GSE88770
http://GSE21653
http://GSE20711
http://GSE88770
http://GSE88770
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3.5 | Stratification analysis

In the above-mentioned multivariate Cox proportional haz-
ards regression analysis, some clinical parameters were iden-
tified as independent prognostic factors. To confirm whether 
the immune-related prognostic signature can be used to predict 
RFS of patients within the same clinical information subgroup, 
we performed a stratification analysis in training and validation 
sets. We divided the patients into different subgroup according 
to their clinical information. The results of the Kaplan-Meier 
survival curve revealed that the low-risk group had better RFS 
than high-risk group in the same clinical subgroup (Figure 5).

3.6 | Nomogram construction

Next, we developed a nomogram including the immune-
related prognostic signature, as well as all the important 
independent clinical factors identified in the previous mul-
tivariate Cox regression analysis, to better quantitatively 
predict the 3-year and 5-year RFS events (Figure  6A). 
The cohort was composed of GSE42568, GSE21653, and 
GSE20711. (GSE88770 was not included in the analysis 
due to lack of T-stage clinical information.) The calibration 
curves indicated that the nomogram had excellent perfor-
mance (Figure 6B-C).

3.7 | Gene set enrichment analysis

We also performed a gene set enrichment analysis to bet-
ter determine the expression differences between high- and 
low-risk groups. FDR <25% was used as cut-off criteria. 
The top five KEGG pathways enriched in high-risk and low-
risk sample groups were fructose and mannose metabolism, 

galactose metabolism, glycosphingolipid biosynthesis lacto 
and neolacto-series, nitrogen metabolism, and PPAR signal-
ing pathway (Figure 7).

3.8 | Experimental verification of the 
prognostic signature

To further verify the accuracy of the immune-related prog-
nostic signature, we evaluated the expression levels of TSLP, 
BIRC5, S100B, MDK, S100P, RARRES3, BLNK, and ACO1 
in 40 pairs of BC and adjacent tissues samples by qRT-PCR. 
The experimental results showed that the mRNA expression 
levels of protect genes were significantly higher in adjacent 
samples compared to BC samples, while expression of dan-
ger genes presented the opposite trend (Figure 8).

4 |  DISCUSSION

The workflow of immune-related gene expression and clin-
ical information preprocessing, gene signature generation, 
and verification are displayed in Figure  1. In this study, 
we identified an immune-related prognostic gene signature 
to predict the recurrence of BC. GSE42568 was used as 
the training set, GSE21653, GSE20711, and GSE88770 as 
the validation sets. FDR <0.05 (Benjamini-Hochberg) and 
|logFC|>1 were used as the inclusion criteria to screen for 
differentially expressed genes, a total of 134 IRGs and 33 
TFs were identified. Univariate Cox regression analysis 
was used to determine the association between differen-
tially expressed IRG levels and RFS in training set. Lasso-
penalized Cox regression and stepwise multivariate Cox 
analysis were performed next to narrow the list of IRGs. 
Finally, an immune-related gene prognostic signature was 

F I G U R E  7  Gene set enrichment 
analysis between high- and low-risk groups. 
The c2.cp.kegg.v6.2.symbols.gmt gene 
set was used as reference. The number of 
permutations was 1000. The maximum and 
minimum sizes for gene sets were set at 500 
and 15, respectively. FDR is the adjusted 
P-value after multiple hypothesis testing, 
FDR <25% (Benjamini-Hochberg) was used 
as a cutoff to identify significant gene sets

http://GSE42568
http://GSE21653
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http://GSE42568
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developed (8 genes). We also constructed an interaction 
network of IRGs and TFs. The Kaplan-Meier survival 
curve revealed that low-risk patients had better prognosis 
than those identified within the high-risk group. Moreover 
ROC and multiple Cox regression analysis indicated that 
the immune-related prognosis signature has good diagnos-
tic efficiency to identify relapse-free events, representing 
an independent risk factor for BC. Stratification analysis 
further demonstrated that the prognostic signature can be 

used to predict the RFS of BC patients within the same 
clinical subgroup. We also developed a nomogram that 
integrates clinical features and the IRGs signature, which 
calibration plots indicated that had excellent performance, 
to support the clinical assessment of BC patients. To fur-
ther validate the prognostic signature, we conducted ad-
ditional qRT-PCR analysis, which showed that the protect 
genes were upregulated in adjacent tissues, while the risk 
genes were up-regulated in the BC samples. In summary, 

F I G U R E  8  Experimental validation of the immune-related prognostic signature in BC and adjacent tissues by qRT-PCR. The expression of 
danger genes were upregulated in BC tissues, while the expression of protect genes were upregulated in adjacent tissues. P-value < .05 (t test) was 
considered statistically significant. *P < .05; **P < .01; ***P < .001；****P < .0001. A. TSLP. B. BIRC5. C. S100B. D. MDK. E. S100P. F. 
RARRES3. G. BLNK. H. ACO1
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this study developed and validated an immune-related 
prognostic signature that may provide guidance for the fu-
ture diagnosis of BC recurrence.

The biological functions of the identified immune-related 
prognostic genes have been previously reported. Thymic 
stromal lymphopoietin (TSLP) is a cytokine associated with 
type 2 immunity and is also associated with the progression 
of various cancers, including BC, pancreatic cancer, gastric 
cancer, cervical cancer, and myeloma.25-29 TSLP is upregu-
lated in BC and promotes proliferation and lung metastasis by 
inducing Bcl-2 expression.30 Baculoviral IAP repeat contain-
ing 5 (BIRC5) is at the crossroads of diverse cancer signaling 
networks and is a well-known cancer treatment target.31 In the 
past 20 years, BIRC5-related treatment approaches include 
inhibitors for BIRC5-partner proteins, homodimerization 
inhibitors, gene transcription inhibitors, mRNA inhibitors, 
and immunotherapy.32 In particular, BIRC5 immunotherapy 
used in combination with standard therapies or with targeted 
precision drugs have shown great anti-cancer potential.33-35 
Recent studies have also shown that S100 Calcium Binding 
Protein B (S100B) is upregulated in BC, melanoma, ovarian 
cancer, and colon adenocarcinoma.36-39 Moreover S100B has 
shown potential as monitoring indicator for ER-positive BC, 
helping on the assessment of patients regarding to response 
to endocrine therapy.36 Midkine (MDK) is an heparin-bind-
ing growth factor that is upregulated in various human ma-
lignancies and plays an important role in promoting growth, 
survival, and migration of cancer cells, as well as cancer an-
giogenesis and metastasis.40,41 S100 Calcium Binding Protein 
P (S100P) is involved in the transendothelial migration of 
triple negative BC cells and is significantly associated with 
disease-free survival.42 Use of anti-S100P antibody com-
bined with chemotherapy showed to effectively improve the 
survival of BC patients.43,44 Retinoic acid receptor responder 
3 (RARRES3) is a new tumor metastasis suppressor gene 
that is downregulated in BC and inhibits lung metastasis of 
BC.45,46 B-cell linker protein (BLNK) is a tumor suppressor 
involved in pre-B-cell leukemogenesis, which inhibits JAK3/
STAT5 signaling by binding to JAK3.47 Cytoplasmic aconi-
tate hydratase (ACO1) is a protein involved in cytoplasmic 
and mitochondrial metabolism that when downregulated 
leads to cell death, potentially representing a new therapeutic 
strategy for cancer treatment.48

Several previous studies have reported prognostic signa-
tures for BC.49-54 Compared with the models, our prognos-
tic model in this article has following advantages. Firstly, 
our prognostic model was build using several statistical 
analysis tools to ensure its rigor and accuracy. We started 
by selecting differentially expressed genes, and then fur-
ther screened out differentially expressed IRGs. Instead 
of using just univariate Cox and lasso regressions, we 
also used stepwise multivariate analysis to further narrow 
down the IRGs. Furthermore, we not only constructed a 

prognostic signature, but also constructed an interaction 
network between IRGs and TFs (Figure  2C), which may 
provide guidance for further analysis. We also evaluated 
the expression levels of eight IRGs in the prognostic sig-
nature through qRT-PCR experiments, which further val-
idates our bioinformatic results. Nevertheless, this study 
also has some limitations. Since only datasets from the 
GEO database were used in our analysis, it future studies 
should also cover cross-platform databases such as TCGA, 
SEER, and GTEx. Additionally, as BRCA can have differ-
ent pathogenesis processes and prognosis that are associ-
ated with diverse subtypes, it could be more accurate and 
meaningful to recognize an immune-related prognosis for 
distinct BRCA subtypes.
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