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Metabolic Phenotyping of Anks3 
Depletion in mIMCD-3 cells - 
a Putative Nephronophthisis 
Candidate
Manuel Schlimpert1,2,3, Simon Lagies1,2,3, Vadym Budnyk   4, Barbara Müller4, Gerd Walz4 & 
Bernd Kammerer1,5

Nephronophthisis (NPH) is an autosomal recessive form of cystic kidney disease and the leading 
cause of hereditary kidney failure in children and young adults. Like other NPH proteins, the NPHP16/
Anks6-interacting protein Anks3 has been identified to cause laterality defects in humans. However, 
the cellular functions of Anks3 remain enigmatic. We investigated the metabolic impact of Anks3 
depletion in cultured murine inner medullary collecting duct cells via GC-MS profiling and LC-MS/
MS analysis. Combined metabolomics successfully identified 155 metabolites; 48 metabolites were 
identified to be significantly altered by decreasing Anks3 levels. Especially, amino acid and purine/
pyrimidine metabolism were affected by loss of Anks3. Branched-chain amino acids were identified 
to be significantly downregulated suggesting disrupted nutrient signalling. Tryptophan and 1-ribosyl-
imidazolenicotinamide accumulated whereas NAD+ and NADP+ concentrations were diminished 
indicating disturbances within the tryptophan-niacin pathway. Most strikingly, nucleosides were 
reduced upon Anks3 depletion, while 5-methyluridine and 6-methyladenosine accumulated over time. 
Hence, elevated PARP1 and cleaved PARP1 levels could be detected. Furthermore, living cell number 
and viability was significantly declined. In combination, these results suggest that Anks3 may be 
involved in DNA damage responses by balancing the intracellular nucleoside pool.

Nephronophthisis (NPH) is a congenital form of cystic kidney disease that causes kidney failure in childhood 
and adolescence1–3. With an incidence of 1 in 50,000 to 1 in 900,000 births, it is the most common genetic cause 
of end stage renal disease (ESRD) in the first decades of life4. In contrast to classical polycystic kidney diseases, 
NPH is characterised by normal or slightly reduced kidney size and tubulointerstitial fibrosis1. In addition, cysts 
are formed within the corticomedullary junction1. Early symptoms of NPH are usually diagnosed in children of 
six years of age developing polyuria, polydipsia and anaemia, which result from a urinary concentration defect2. 
However, effective treatment preventing progression into cyst formation and ESRD is currently lacking5.

Currently, mutations in more than 20 different genes are known to individually cause NPH and closely related 
diseases. However, these mutations only explain around 40% of clinical manifestations6,7. The corresponding 
proteins are mostly localised to the primary cilium, a crucial sensing and signalling organelle protruding into 
extracellular environment8. How structural or functional defects in cilia cause NPH and related ciliopathies has 
been subject to intense study. Disturbed signalling pathways, in particular mTOR signalling, have been emerged 
as key factors in the progression of polycystic kidney disease9,10. However, the chain of molecular events trigger-
ing NPH development remains unclear11. Interestingly, recent findings indicate that several pathways of central 
cellular metabolism are deregulated in kidneys of animal models of autosomal-dominant polycystic kidney dis-
ease12,13. This raises the intriguing possibility that perturbation of metabolic networks may also be involved in the 
molecular pathogenesis of NPH.
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Recent findings revealed that a defectively mutated Anks3 is causing laterality defects in an autosomal 
recessive manner14. Furthermore, recent studies revealed Anks6 as a strong interaction partner of Anks315. 
Interestingly, Anks6 mutations in humans cause NPH with similar phenotypes in animal models16–18. In addition, 
Anks3 was shown to be phosphorylated dependent on NEK7 hence preventing nuclear localisation of NEK719. It 
has been shown that both Anks3 as well as Anks6 are interacting with Bicaudal-C homologue 1 (Bicc1) which is 
mainly expressed in liver, pancreas and kidney functioning as negative regulator for canonical Wnt signalling20–23. 
Furthermore, interaction of Anks3 and Anks6 with hypoxia-induced factor 1 alpha inhibitor (HIF1AN) was 
previously described16,23. HIF1AN, also called factor inhibiting HIF1α (FIH), serves as oxygen sensor by inhib-
iting signalling of VHL/HIF1α under normoxic conditions24,25. Recent findings suggest that Anks3 is a potential 
substrate for hydroxylation by HIF1AN23. Given that Anks3 is not only required for ciliary motility and polarity23 
but also interacting with important intracellular signalling cascades such as WNT signalling, we hypothesise that 
defects of Anks3 might influence central cellular metabolism dependent on intact mitochondrial function for 
energy and biomass production.

The aim of the present study was to investigate to which extend loss of Anks3 affects central cellular metabo-
lism such as glycolysis, TCA cycle and amino acid metabolism. Therefore usage of gas-chromatography coupled 
to mass spectrometry (GC-MS) provides an excellent opportunity to monitor central metabolism in a global 
untargeted manner. Thus, murine inner medullary collecting duct (mIMCD3) cells were analysed by GC-MS 
after induction of Anks3 depletion to address alterations occurring by direct disturbance of NPH protein can-
didates. Targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses were conducted to 
specifically monitor free amino acids, purine/pyrimidine metabolites as well as nucleosides.

Materials and Methods
Cell Lines.  Murine inner medullary collecting duct (mIMCD3) cells were used to establish a tetracycline-in-
ducible Anks3 knockdown cell line. The cells were lentivirally transduced with shRNA targeting the coding 
sequence for mAnks3. The knockdown was verified by Western blot analysis (Fig. 1B). The corresponding 
mIMCD3 control cell line tTR KRAB Luci-i was obtained by transducing mIMCD3 tTR KRAB cells with shRNA 
specific for luciferase. Sequences were tested for off target effects in silico using SciDirect software and web-based 
nucleotide blast tool.

Cell Culture.  All cell culture experiments were performed in five replicates. Four replicates were used for 
mass spectrometric metabolome analysis and one was used to verify the knockdown efficiency by western blot. 
For each condition 0.5 × 106 cells were seeded onto 100 mm × 20 mm cell culture dishes (Corning, Kaiserslautern, 
Germany), containing 10 mL DMEM/F12 (Lonza, Cologne, Germany) media supplemented with 10% foetal 
bovine serum (Day −1). Cells were allowed to attach overnight before treatment. Media were changed regularly 
starting treatment with 0.125 µg/mL tetracycline (Sigma-Aldrich, Munich, Germany) at day 0, 2, 4 and 6, respec-
tively (Supplementary Table S1).

At day 7, cells were washed twice with 0.9% sodium chloride (Sigma-Aldrich, Munich, Germany). Metabolism 
was quenched by addition of 1.5 mL ice-cold extraction buffer (90% methanol in water) containing 1 µg/mL 
β-phenylglucose, ribitol and 5 µg/mL isoguanosine as internal standards (Sigma-Aldrich, Munich, Germany) 
for 1 min on ice. Cells were lysed by extensive scraping with Corning® cell scrapers (Sigma-Aldrich, Munich, 
Germany). Cell extracts were collected in screw-cap tubes (Sarstedt AG, Nürnbrecht, Germany) containing 
300 mg glass beads (Sigma-Aldrich, Munich, Germany) and stored in liquid nitrogen immediately26.

Seahorse Analysis.  For analysis of oxygen consumption rate (OCR) and extracellular acidification rate 
(ECAR), cells were treated for six days before analysis to establish the Anks3 knockdown as described above. 
3 × 105 cells/well were seeded onto a Seahorse XF miniplate. Basal respiration was measured at the beginning of 

Figure 1.  Western Blot analysis of Anks6 and Anks3 protein levels. Boxed areas indicate individual western 
blot exposures. Protein of interest and loading control are stained on the same blot. (A) Successful knockdown 
induction of Anks6 at tetracycline concentrations below 0.5 µg/mL. Diminished signal after 5 days of tet 
treatment. (B) Validation of Anks3 knockdown, tet was used at a concentration of 0.125 µg/mL, knockdown was 
robustly detected after 5 days of tet treatment.
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the analysis. Subsequent inhibition of ATP synthase by oligomycin (1 µM, Sigma-Aldrich, Munich, Germany) 
enables measurement of non-mitochondrial respiration plus physiological proton leakage. After uncoupling 
of oxygen consumption and ATP production by treatment with 1 µM carbonyl-cyanide-4-(trifluoromethoxy)
phenylhydrazone (FCCP, Sigma-Aldrich, Munich, Germany), maximum respiration capacity was acquired. 
Inhibition of respiratory chain complex I and III with 0.5 µM rotenone (Abcam, Cambridge, United Kingdom) 
and 0.5 µM antimycin A (Sigma-Aldrich, Munich, Germany) enabled the acquisition of non-mitochondrial res-
piration. Measured values were normalised to 1000 cells.

Cell Growth and Viability.  5 × 105 cells were seeded after 7 days of knockdown induction. For determina-
tion of cell number and living cells, adherent cells were detached after 3 and 4 days of further tet treatment by 
addition of 1 mL 0.25% Trypsin/EDTA (Sigma-Aldrich, Munich, Germany) for 5 min at 37 °C. Trypsin reaction 
was stopped by 4 mL cell culture medium. 10 µL cell suspension was mixed with 10 µL trypan blue (Sigma-Aldrich, 
Munich, Germany). For cell counting with an automated cell counter (Biorad, Munich, Germany), ready-to-use 
counting chambers (Biorad, Munich, Germany) were loaded with 10 µL of staining cell suspension. Number of 
total cells was determined. Dead cells were trypan blue positive. Living cells were calculated by subtraction of 
total cell number with trypan blue positive cell number.

Ki-67 staining.  Cells were permeabilised at room temperature for 45 min. Cells were stained with Pe-Cy7 
anti-mouse Ki-67 antibody for 45 min at 4 °C. Living cells were selected by forward and sideward scatter gating. 
A IgG1 κ isotope control was used to discriminate between ki-67 positive and negative cells (Supplementary 
Figure 8).

Western Blot Analysis.  To verify the knockdown, cells were lysed in lysis buffer containing 1% Triton-X100, 
20 mM TRIS pH 7.5, 50 mM NaCl, 50 mM NaF, 15 mM Na4P2O7 and 0.1 mM EDTA, supplemented with Complete 
Protease Inhibitor Cocktail (Roche) and 1 mM sodium orthovanadate.

Lysates were cleared (16000 × g, 30 min, 4 °C), and after protein measurement (DC Protein Assay BIORAD) 
analysed by western blot (45 µg total protein/lane). As antibodies, anti-Anks3 pAb rabbit (Sigma), anti-PARP1 
and monoclonal anti-γ-tubulin clone GTU88 (Sigma) were used.

Metabolite Extraction.  Polar metabolite extracts were obtained by homogenising cell extracts using a 
Precellys tissue homogeniser (Bertin Technologies, Montigny le Bretonneux, France). Cells were disrupted by 
three 15 s operating cycles at 6500 rpm, interrupted by 10 s breaks. Operating temperature was −10 °C. Cell debris 
and protein precipitates were removed by centrifugation (20000 × g, 4 °C and 5 min). The metabolite-containing 
supernatants were dried after transfer to new reaction tubes using a Concentrator plus vacuum rotator (Eppendorf 
AG, Hamburg, Germany) and stored under nitrogen atmosphere at −80 °C.

GC-MS Analysis.  For GC-MS analysis, metabolites were derivatised by reaction with 20 µL methoxyamine in 
pyridine (20 mg/mL) followed by 50 µL MSTFA (Sigma-Aldrich, Munich Germany) as previously described26,27 
and transferred to crimp cap vials (VWR International, Darmstadt, Germany). Chemical blanks were prepared 
by the same procedure, using empty tubes. Previously derivatised samples were splitlessly injected (1 µL) into 
an Agilent 7890 A/5975 C system (Agilent Technologies, Waldbronn, Germany) equipped with an MPS 2 XL 
autosampler (Gerstel, Mülheim an der Ruhr, Germany). Chromatographic separation was carried out on a 
60 m × 0.25 mm × 0.25 µm HP-5MS capillary column (Agilent, Waldbronn, Germany), using helium as carrier 
gas at a flow rate of 1 mL/min and a temperature program as follows: 80 °C for 3 min, 5 °C/min to 325 °C, 325 °C 
held for 14 min. Total runtime was 66 min, during which full-scan mass spectra (m/z 50–800) were acquired 
at a scan rate of 1.99s−1. Equilibration time and post run time were set to 1 min. Inlet temperature and tem-
perature of MS source was set to 230 °C. Temperature of the quadrupole analyser was set to 150 °C at high vac-
uum (6.31 × 10−6 Pa). Septum purge flow was set to 3 mL/min. Perfluorotributylamine was used for previous 
mass calibration. For calculation of Kovat’s retention indices, a C10–C40 n-alkane standard mixture (Neochema, 
Bodenheim, Germany) was used as previously described26.

GC-MS Data Analysis.  For GC-MS analysis, peak identification and deconvolution was performed by appli-
cation of Automated Mass spectral Deconvolution and Identification System (AMDIS, version 2.72) and NIST 
MS SEARCH (Version 2.2)28 with following parameters: component width 12, omit TIC, adjacent peak subtrac-
tion One, resolution medium, sensitivity medium, shape requirements medium. Processed samples were saved as 
ELU files allowing further processing with the online service SpectConnect29. Following SpectConnect settings 
were used for peak alignment: elution threshold 1.0 min, support threshold medium (component found in over 
50% of replicates), similarity threshold of mass spectra over 80%.

Features were compared to following mass spectral databases: FiehnLib30, golmDB31 and NIST Mass Spectral 
Library. Match factor threshold was set to 750 with retention index deviation of <5% for sufficient compound 
annotation. Peak intensity areas of multiple annotated metabolites are summarised to yield the absolute peak 
intensity of each metabolite.

Peak intensity areas were normalised by division to peak intensity areas of β-phenylglucose as internal stand-
ard. Additionally, normalisation was performed by division of total peak areas of the chromatogram as an approx-
imation for total cell number32 and subtraction of blank values26. Finally each variable was mean-centred and 
divided by the range of each variable called range scaling33–38.

LC-MS/MS Analysis.  For LC-MS/MS analysis, metabolite pellets were resuspended in 100 µL water. Samples 
were centrifuged for 5 min at 20000 × g and 4 °C. A pool samples serving as quality control were generated by 
combining 10 µL of each supernatant. 50 µL of each supernatant were transferred to LC-MS glass vials containing 
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inserts for small volume injection (Agilent Technologies, Waldbronn, Germany). Injection volume was set to 10 µL. 
UPLC analysis was performed using an Agilent 1290 UPLC system (Agilent Technologies, Waldbronn, Germany). 
For separation of free amino acids as well as purines and pyrimidines a reverse-phase chromatography was applied 
on an Acquity UPLC HSS-T3 C18 (1.8 µm, 2.1 × 100 mm) column (Waters GmbH, Eschborn, Germany) using a 
solvent gradient of water +0.1% formic acid (Buffer A) and methanol +0.1% formic acid (Buffer B).

For separation of free amino acids, a flow rate of 0.2 mL/min was used and the column temperature was set 
to 50 °C. The following gradient was applied: 0–1.5 min, 0% B; 1.5–4 min, 0% to 5% B; 4–10 min, 5% to 95% B; 
10–18 min, 95% B; 18–18.2 min, 95% to 0% B; 18.2–26 min, 0% B. Separation of purine and pyrimidine metab-
olites was achieved at a flow rate of 0.3 mL/min and a column temperature of 50 °C using following solvent gra-
dient: 0–5 min, 0% B; 5–10 min, 0% to 30% B; 10–12 min, 30% to 98% B; 12–20 min, 98% B; 20–20.1 min, 98% to 
0% B; 20.1–27 min, 0% B.

Mass spectra acquisition was performed on a 6460 triple quadrupole mass spectrometer (Agilent Technologies, 
Waldbronn, Germany) containing an electrospray ionisation source (ESI Jetstream, Agilent Technologies, 
Waldbronn, Germany). For amino acid analysis following MS settings were applied: capillary voltage: 3000 V 
(positive ionisation mode) or 3500 V (negative ionisation mode), nozzle voltage: 500 V (positive ionisation mode) 
or 300 V (negative ionisation mode), gas temperature: 350 °C (flow rate: 8 L/min), sheath gas temperature: 250 °C 
(flow rate: 5 L/min), nebulizer pressure: 30 psi. Purines and pyrimidines were analysed with following MS setting: 
capillary voltage: 4000 V (positive ionisation mode), nozzle voltage: 500 V (positive ionisation mode), gas temper-
ature: 300 °C (flow rate: 7 L/min), sheath gas temperature: 350 °C (flow rate: 7 L/min), nebulizer pressure: 50 psi.

For semi-quantitative analysis dynamic multiple reaction monitoring (DMRM) scans were executed using a 
time filtering peak width of 0.07 min and cell accelerator voltages of 3 V (amino acid analysis) and 7 V (purine 
and pyrimidine analysis). Collision energies of standard substances were optimised using Mass Hunter Optimizer 
Software (Agilent Technologies, Waldbronn, Germany) (Supplementary Table S2).

LC-MS/MS Data Analysis.  Agilent MassHunter Qualitative Analysis B.08.00 and Agilent MassHunter 
Quantitative Analysis B.08.00 were used for processing of obtained raw data. For semi-quantitative analysis a minimal 
signal to noise ratio of 1:5 and a retention time deviation of 0.4 min were set as cut-off for peak integration. Quantifier 
MRM transitions were used for peak integration. Peak areas were divided by the internal standard isoguanosine. 
Blanks were subtracted and peak areas were further normalised by division of total peak areas of the chromatogram. 
Finally each variable was mean-centred and divided by the range of each variable, called range scaling33–38.

Statistics.  MetaboAnalyst was used as browser-based tool to perform statistical analysis based on R pack-
ages33–38. Hierarchical cluster analysis was performed with Pearson’s distance measurement and Ward’s minimum 
variance. One-way analysis of variance (ANOVA) was performed using a p-value cut-off 0.05 including multiple 
testing correction by false discovery rate (FDR) (Tukey test HSD) of 5% (q-value < 0.05). Principal component 

Figure 2.  Principal Component Analysis of mIMCD3 krab shANKS3 and mIMCD3 krab shLuci-i conditions. 
(A) PCA containing all measured sample groups. Quality control samples are coloured in brown and labelled 
as Pool representing technical replicates of a mixture of all samples. Shaded areas highlight the 95% confidence 
interval of each condition. Separation was observed in mIMCD3 krab shANKS3 cells after five days of tet 
treatment. No separation occurred within the Luci-i control cell line. (B) PCA of D0 and D7 conditions. Shaded 
areas highlight the 95% confidence interval of each condition. Clear separation was observed between mIMCD3 
krab shANKS3 cells after 7 days of tet treatment. Overlapping 95% confidence intervals were observed within 
the Luci-i control cell line even after 7 days of tet treatment.
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analysis (PCA) was used as unsupervised multivariate analysis to visualise global alterations between datasets. 
For comparison of D0 to D7 of conditions, student’s t-test was used with a corrected p-value (q-value) cut-off of 
0.05 applying FDR correction.

The pathway figures were drawn in VANTED version 2.6.339.

Data Availability Statement.  The datasets of this study is shown in Supplementary Table S3.

Figure 3.  Heat map analysis of D0 and D7 conditions. Hierarchical clustering against Pearson and Ward 
yielded a separation of mIMCD3 krab shANKS3 conditions (D0 in red, D7 in green). Overlapped clustering 
of Luci-i controls highlights close similarity of both sample conditions and indicate less side effects of tet 
treatment on mIMCD3 cells in general. Higher abundant metabolites are depicted in red colours, lower 
abundant metabolites in blue. For heat map analysis, normalised peak intensities were range scaled to obtain a 
representative z-score suitable for heat map analysis, cluster analysis and PCA.
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Results and Discussion
Optimisation of Anks3 Knockdown by Reduction of Tetracycline Concentrations.  Identifying 
metabolic alterations dependent on disturbed protein expression requires a robust biological and analytical setup. 
It has been shown that tetracycline antibiotics can influence mitochondrial metabolism at higher concentrations 
than 0.5 µg/mL40,41. Therefore, tetracycline was titrated to lower concentrations to avoid side effects. Using the 
current protocol (Supplementary Table S1) tetracycline could be easily used at concentrations below 0.5 µg/mL 
as validated by western blot analysis (Fig. 1A). All following results were obtained by depletion of Anks3 using 
tetracycline at a concentration of 0.125 µg/mL (Fig. 1B).

Statistical Analysis of Untargeted Metabolic Profiling.  Untargeted metabolomics profiling yielded 
approximatly 800 unique mass spectral features. Application of defined filters and thresholds for feature 
annotation as described within the data analysis section provided a successful annotation of 92 metabolites 
(Supplementary Table S3).

Annotated metabolite matrices were used for statistical analysis. One-way ANOVA was used in order to high-
light significant changes within a multiple grouped experiment. Multiple testing correction revealed 58 com-
ponents within the Anks3 experiment, respectively (Supplementary Table S4). However, ANOVA significance 
does not always reflect biological relevance. Therefore unsupervised principal component analysis was used to 
clarify whether there are global alterations leading so separation of different conditions (Fig. 2A). Treatment with 
tetracycline results only in slight alterations within treated and untreated Luci-i control conditions. However, sig-
nificant separation occurred after 5 days of knockdown induction in the Anks3 knockdown conditions (Fig. 2A). 
Over 30% of total variation could be explained by using two principal components (Fig. 2A). As PCA and cluster 
analysis are not suitable to monitor whether certain metabolite classes are up- or downregulated, individual heat 
maps were generated to illustrate alterations of relative metabolite concentrations dependent on Anks3 knock-
down (Fig. 3).

There are also differences occurring between untreated mIMCD3 shANKS3 cells compared to Luci-i control 
conditions which might be caused by viral transfection. However, focusing on alterations occurring exclusively 
upon knockdown induction revealed all biologically relevant metabolite changes caused by protein depletion 
(Figs 2 and 3).

Metabolic Alterations Associated With Anks3 Depletion.  As described in the previous section, focus-
sing on metabolites which correlate with amount of detectable Anks3 protein yielded 27 metabolites to be signif-
icantly regulated comparing D0 to D7 conditions. In total, 14 metabolites were found to be upregulated, whereas 
13 compounds were downregulated (Supplementary Table S5).

Figure 4.  Pathway analysis of glycolysis and TCA cycle. Analysis of energy metabolites revealed no global 
alterations upon Anks3 protein depletion. However, within the energy metabolism fructose as well as pyruvic 
acid levels were found to be reduced. Amino acids were detected to be strikingly upregulated upon protein 
depletion. Especially, phenylalanine and tyrosine, but also cysteine and glycine were detected to be upregulated. 
mIMCD3 krab shANKS3 cells were represented in red. Luci-i controls were depicted in green. Shaded areas 
indicate the standard deviation at each time point.
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As mentioned above, intermediates of energy and amino acid metabolism are robustly detectable by untar-
geted GC-MS profiling to yield an overview whether there are global alterations occurring. However, focussing 
on significantly regulated metabolites revealed reduced levels of pyruvate and fructose whereas all other compo-
nent of glycolysis and TCA cycle were not significantly affected (Fig. 4). Further, analysis of oxygen consumption 
and extracellular acidification revealed no significant differences according to Anks3 depletion (Supplementary 
Figure 5). Hence, diligent pathway mapping revealed amino acid metabolism was identified to be strikingly 
changed (Figs 3 and 4, Supplementary Table S5).

Many amino acids were differentially regulated upon Anks3 depletion. The essential amino acids threonine 
(Thr), tryptophan (Trp), lysine (Lys) and phenylalanine (Phe) were shown to be significantly upregulated (Figs 4 
and 5A, Supplementary Table S5). In addition to Phe, tyrosine (Tyr) is also upregulated highlighting that Tyr 
synthesis is catalysed by phenylalanine hydroxylase despite its recycling by proteolysis (Fig. 4, Supplementary 
Table S5). This might indicate reduced consumption due to diminished protein synthesis. In addition, it has been 
shown that amino acids are important building blocks for cell mass in proliferating cells42. Therefore, accumula-
tion of amino acids can highlight reduced proliferative behaviour of cultured cells.

Notably, the branched chain amino acids (BCAAs) valine (Val), leucine (Leu) and isoleucine (Ile) were signif-
icantly downregulated whereas 2-keto-3-methylvaleric acid, a metabolite of isoleucine, and 3-hydroxyisobutyric 
acid, an intermediate of valine degradation, were significantly upregulated upon Anks3 protein depletion (Fig. 5B). 
First, it has been reported that increased BCAAs, especially leucine, play a crucial role in activation of mTORC1 
signalling in skeletal muscle cells43. Second, it has been reviewed that persistent activation of mTORC1 and S6K 
by BCAAs might promote insulin resistance and increased levels could be a risk factor of diabetes type 244. Recent 
findings pointed out that BCAA mediated mTOR hyperactivity enhances cyst development in autosomal dominant 
polycystic kidney disease resulting in enlarged kidneys45. In contrast to autosomal dominant polycystic kidney dis-
ease, NPH is characterised by medullary cysts with normal or even slightly reduced kidney size1,3. Reduced levels of 
BCAAs might be causative for reduced mTORC1 activity and subsequently supporting that NPH cyst development 
is not dependent on mTORC1 mediated cell proliferation. In addition to reduced levels of BCAAs, we elucidated 
that general proliferation was not affected as shown by approximately 95% ki-67 positive cells (Supplementary 
Figure 8). However, cell number and viability was strongly affected (Fig. 6). In Anks3 knockdown cells we can 
highlight a drastically reduced number of living cells (p-value Day 3: 0.0046; p-value Day 4: 0.0010). Also, viability 
of cells was reduced to 70% after 3 days (p-value 0.06) and 60% after 4 days (p-value 0.001).

Figure 5.  Pathway analysis of selected metabolites. mIMCD3 krab shANKS3 cells were represented in red. 
Luci-i controls were depicted in green. Shaded areas indicate the standard deviation at each time point. (A) 
Tryptophan-Niacin-NAD pathway analysis. Precursors of NAD+ were found to be significantly upregulated 
whereas reduced levels of NAD+ and NADP+ were detected. For Trp both GC-MS and LC-MS/MS data 
was shown. (B) Time series analysis of branched-chain amino acids detected by LC-MS/MS. Upon Anks3 
depletion all three BCAAs were found at diminished concentrations. 2-keto-3-methylvaleric acid, a degradation 
product of isoleucine, was found to be upregulated. (C) All six unmodified nucleosides were found at lower 
concentrations after tet treatment. However corresponding bases were not significantly affected. Interestingly, 
modified nucleosides such as 6-methyladenosine and 5-methyluridine were found to be significantly 
upregulated.
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Further, intermediates of lipid metabolism such as phosphoethanolamine and cholesterol were differentially 
regulated upon Anks3 depletion. After depletion of Anks3, upregulation of cholesterol, 1-hexadecylglycerol and 
1-octadecylglycerol (monostearylglycerol) were observed whereas phosphoethanolamine was significantly down-
regulated (Fig. 3, Supplementary Table S5). However, polar extraction with methanol/water is not best suitable 
for detection of lipids, nonetheless, these alterations might indicate alterations in lipid metabolism. Therefore, 
application of lipid extraction protocols followed by lipidomics experiments are necessary to highlight whether 
there are disruptions in lipid metabolism and subsequently membrane composition.

Interestingly, Trp is described to be degraded by aminocarboxymuconate-semialdehyde decarboxylase 
(ACMSD) via the glutaric acid pathway entering the TCA cycle but also by quinolinate phosphoribosyl-transferase 
(QPRT) via the niacin pathway for biosynthesis of NAD+ and NADP+. Both enzymes seem to be highly active in 
the kidney. However, in rats with adenine-induced renal failure it has been reported, that mainly liver enzymes 
are responsible for Trp to niacin conversion, although in these rats ACMSD activity in kidney is also reduced, 
whereas QPRT activity was not affected46. In this study, upregulation of Trp was found after induction of Anks3 
knockdown, which might point out that Anks3 has an influence on Trp metabolism in mIMCD3 cells (Fig. 5A).

Hence, Anks3 depletion also caused decreased levels of NAD+ as well as NADP+ whereas NADH was not sig-
nificantly altered (Fig. 5A). Surprisingly, 1-ribosyl-imidazolenicotinamide (NA-R) was found to be slightly upreg-
ulated upon Anks3 depletion (p-value: 0.03 and q-value: 0.12) (Fig. 5A). NA-R has been mentioned as precursor of 
NAD+ synthesis by salvage pathway47,48. In addition, recent findings highlighted NAD+ utilisation as key factor for 
ARTD-dependent poly(ADP-ribosylation) involved in DNA repair, chromatin remodelling and cell death47. The fact 
that NA-R as salvage precursor tends to be upregulated might support the idea of increased consumption of NAD+ 
upon Anks3 knockdown. Interestingly, glycolysis is not significantly altered as shown by Seahorse data and GC-MS 
profiling (Fig. 4 and Supplementary Figure 5). Therefore western blot against poly-[ADP-ribose]-polymerase 1 
(PARP1) provided higher amounts of both mature PARP1 as well as cleaved PARP1 (Fig. 7). Higher amounts of 
PARP1 support the idea of increased NAD+ consumption due to increased DNA damage49. However, accumulation 
of cleaved PARP1 at 89 kD highlights activation of apoptotic suicide proteases such as caspases50. This result also 
supports the reduced viability stated above (Fig. 6). In addition, tryptophan described as precursor of NAD+ synthe-
sis via niacin is upregulated which could either indicate an effect of reduced Trp metabolism or an elevated import 
of Trp from cell culture media as response to increased NAD+ consumption.

Figure 6.  Determination of cell growth and viability. (A) Counting assay of living cells. No significant decline 
of living cells in luciferase control cells upon tet treatment (depicted in orange) compared to untreated cells. 
Massive decrease of living cells in Anks3 depleted cells (depicted in yellow) compared to untreated cells and 
treated luciferase control cell line. Error bars indicates standard deviation, n = 3. (B) Bar chart of living vs. dead 
cells stained with trypan blue. A decrease of viability in Anks3 depleted cells (depicted in yellow) was detected 
compared to control cell lines after Day 3 (70% viability) and Day 4 (60% viability).
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It has been reported, that increased DNA damage in eukaryotes subsequently leads to increased production 
of deoxynucleotides to enable sufficient DNA repair51,52. Recently, defective de novo synthesis of nucleosides via 
the non-oxidative pentose phosphate pathway was identified to cause genomic instability and cell death in breast 
tumours. Additionally, it has been shown, that supplementation of nucleosides increased the intracellular dNTP 
pool as well as DNA synthesis53. In line with that, recent studies underline that decreased levels of nucleotides 
promote genomic instability and exogenous application of nucleotides reduces DNA damage54. Surprisingly, loss 
of Anks3 yielded a decline of ribonucleosides as determined by LC-MS/MS (Fig. 5C). Furthermore, deoxyinosine 
(q-value: 0.0007) and deoxyguanosine (p-value: 0.02 and q-value: 0.06) were downregulated (Supplementary 
Table S5). However, also a trend of reduced deoxyinosine was detected within the Luci-i control cell line (q-value: 
0.008). Additionally, increased levels of PARP1 and cleaved PARP1 were detected by western blot indicating 
higher rates of DNA damage in Anks3 depleted cells (Fig. 7). In line with that, viability was declined after 
knockdown induction (Fig. 6). In contrast, increased levels of N6-Methyladenosine were detected (Fig. 5C). 
Upon UV-light induced DNA damage, N6-methylation of adenosine in RNA was also found to be transiently 
upregulated and located close to DNA damage sites, however, this effect was never observed using chemicals or 
y-irradiation55. But still, Anks3 knockdown dependent upregulation of N6-methyladenosine could also indicate 
disruption of RNA and DNA metabolism caused by increased DNA damage.

Conclusions
The present study was aimed to elucidate whether disturbance of NPHP modules by loss of Anks3 protein cause 
alterations in mitochondrial and cellular metabolism. Up to now, it is the first metabolic characterisation of 
nephronophthisis phenotype in a mammalian cell culture system. It has been shown, that Anks3 depletion has 
only mild effects on energy metabolism. However, disruptions of amino acid homeostasis suggests that Anks3 is 
involved in specific pathways of mitochondrial regulation. Especially, alterations of BCAAs are known to have an 
influence on important signalling pathway such as mTOR signalling. Interestingly, this study elucidates decreased 
levels of BCAAs in cells lacking Anks3. Additionally, many other amino acids were significantly upregulated.

Subsequently, it has been observed that Ank3 depletion causes a massive decrease of nucleosides and deoxy-
nucleosides. A decrease of nucleosides can suggest both a higher consumption rate by reason of increased DNA 
damage or reduced synthesis leading to impaired DNA repair therefore causing increased DNA damage and 
reduced proliferation. Thus, Anks3 knockdown leads to decreased levels of NAD+ and NADP+ which may also 
indicate higher consumption possibly via ARTDs such as PARP1 which is known to be involved in DNA repair 
and upregulated in Anks3 depleted cells. Hence, Trp and also NA-R tend to be upregulated upon Anks3 depletion 
supporting the idea of increased NAD+ consumption. In combination with reduced cell number, viability as well 
as elevated PARP1 and cleaved PARP1 levels, the metabolomics data point out increased rates of DNA damage 
repair and cell death.

Therefore, further proteomic and transcriptomic analyses are important to integrate the findings obtained by this 
study. Likewise, it is important to monitor whether knockdown of Anks3 interaction partners, such as INVS, results 
in similar metabolic phenotypes in order to improve the understanding of nephronophthisis on metabolic level.
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