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Abstract
Macrophages are known to be pivotal for ensuring the establishment of the immune tolerance microenvironment at the 
maternal–fetal interface. In particular, trophoblasts stay in close contact with decidual macrophages (DMs), which have been 
reported to play an active role in the modulation of the polarization of DMs. Thus, any dysfunction of trophoblasts might be 
associated with certain pregnancy‐related complications, such as recurrent spontaneous abortion (RSA). Enhancer of zeste 
homolog 2 (EZH2) is an important epigenetic regulatory gene that has been previously shown to be related to immune regu-
lation. The present study assessed the expression of EZH2 in villi tissue obtained from healthy controls and RSA patients. 
Trophoblasts conditioned medium was collected to incubate macrophages differentiated from the THP‐1 cell line. The 
expression and function of EZH2 in trophoblasts were knocked down either by the use of siRNA or GSK126 as an inhibitor. 
Our results show a significant decrease in the expression of EZH2 in villi tissue from RSA patients as compared to healthy 
controls. Further, the inhibition of expression or function of EZH2 in trophoblasts promoted M1 macrophage polarization, 
which might be involved in the pathogenesis of RSA. Moreover, the suppression of EZH2 was found to affect the secretion 
of immune and inflammatory cytokines in trophoblasts. Altogether, these results indicated the importance of EZH2 in the 
regulation of immune functions of trophoblasts and thus highlighted its potential to be explored as a therapeutic target to 
prevent and treat pregnancy loss.
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Introduction

The success of a pregnancy requires the establishment of tol-
erance towards the semi‐allogeneic fetus and maintenance of 
host defense against pathogens, which are tightly associated 
with the coordinated balance between immune rejection and 
immune tolerance present at the maternal–fetal interface. In 
particular, the invading trophoblasts, decidual cells, endothe-
lial cells, infiltrating immune cells, and cytokines secreted by 
the cells constitute an immune tolerance microenvironment 

that protects the fetus against rejection and attack [22]. Any 
disturbance in this immune balance has been shown to be 
associated with pregnancy‐related complications, such as 
pre‐eclampsia, premature delivery, and recurrent spontane-
ous abortion (RSA)[2].

During the first trimester of pregnancy, decidual mac-
rophages (DMs) represent the second most abundant leu-
kocytes at the maternal–fetal interface, accounting for 
20–30% of decidual leukocytes [3, 6]. Importantly, DMs 
play important roles in immune modulation, immune‐sup-
pressive activity, clearance of apoptotic cells, and spiral 
artery remodeling, which are essential for the establish-
ment and maintenance of normal pregnancy [17]. Generally, 
macrophages are divided into two broad categories, classi-
cally activated (M1) and alternatively activated (M2) phe-
notypes. M1 are known to be proinflammatory and micro-
bicidal in function and exhibit a high expression of CD80, 
CD86, INOS, IL‐23, and IL‐12. In comparison to this, M2 is 
immunomodulatory in function and is involved in ensuring 
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tolerance and resolution of inflammation. M2 is character-
ized by the presence of CD163, CD206, CD209, and IL‐10 
[7, 12, 14]. Macrophages exhibit a high degree of plasticity, 
and tissue macrophages can change their functional phe-
notype based on the surrounding microenvironment [19]. 
Interestingly, the polarization of DMs between M1 and 
M2 phenotypes has been observed throughout pregnancy. 
In particular, the M1 phenotype predominates during the 
preimplantation period and changes to the M2 phenotype 
following trophoblast attachment and invasion. Following 
this, it reverts to the M1 phenotype at the time of delivery. 
Thus, any aberration in the phenotype of DMs can have a 
detrimental effect on pregnancy outcomes. It might result in 
complications like pre‐eclampsia, preterm labor, intrauterine 
growth restriction, and RSA [13, 28]. Therefore, exploration 
of factors involved in the regulation of polarization of DMs 
at the maternal–fetal interface holds great significance.

In particular, trophoblasts represent the first point of 
contact between the blastocyst and maternal decidua. These 
trophoblasts play an active role in shaping the immuno-
logical milieu at the implantation site [22]. Besides this, 
DMs are found close to the trophoblast at the placenta [23]. 
Several studies have shown that certain factors secreted by 
trophoblasts regulate the polarization of DMs [1, 37]. Thus, 
any dysfunction of the trophoblast might lead to inappro-
priate polarization of DMs and might be involved in the 
pathogenesis of pregnancy complications.

Enhancer of zeste homolog 2 (EZH2) is the core catalytic 
subunit of polycomb repressive complexes 2 (PRC2), which 
mediates the transcriptional silencing of target genes via 
H3K27me3 [4, 30]. Aberrant expression of EZH2 has been 
reported in multiple tumors. Several pieces of evidences sug-
gested its role in the regulation of immune cell function [36]. 
Additionally, EZH2 plays an important role in reproduction. 
A significantly decreased expression of EZH2 was reported 
in the villi of RSA women [18]. Moreover, it was previ-
ously shown that EZH2 suppression in glioblastoma shifts 
microglia towards the M1 phenotype, and the knockdown of 
EZH2 inhibited the expression of anti‐inflammatory factors 
while promoting the expression of pro‐inflammatory factors 
in glioblastoma cells [34]. Thus, it was hypothesized that the 
expression of EZH2 in trophoblast might affect the polari-
zation of DMs and participate in the pathogenesis of RSA.

The present study reported a decreased expression of 
EZH2 in villi tissue obtained from RSA patients. Downregu-
lation of EZH2 in trophoblasts affected the polarization of 
macrophages, inducing an elevation in M1‐associated mark-
ers and reduction in M2‐associated markers. Furthermore, 
EZH2 suppression in trophoblasts affected the secretion of 
immune and inflammatory cytokines. Thus, the results of 
this study indicated a regulatory effect of trophoblasts on the 
polarization of macrophages, and the suppression of EZH2 
in trophoblasts disturbed the immune regulatory function. 

These findings highlighted the potential of EZH2 to be 
explored as an immunotherapeutic target to prevent RSA.

Materials and Methods

Patient and Samples

We enrolled 6 healthy women (who underwent elective ter-
mination for unwanted pregnancy at 6–12 weeks of gesta-
tion) and 5 patients with RSA (gestation ages were between 
6 and 10 weeks) at the Renmin Hospital of Wuhan Uni-
versity (Wuhan, China) between September 2020 and June 
2021. The exclusion criteria for the subjects were as follows: 
(a) endocrine or metabolic disease, (b) karyotype abnormali-
ties, and (c) uterine abnormality. RSA was defined as the 
sequential loss of two or more pregnancies before 20 weeks 
of pregnancy. The gestation ages for healthy controls and 
RSA patients were 8.67 ± 1.63 and 9.40 ± 1.14  weeks, 
respectively. The samples were collected following the 
informed consent from all patients. The human placental 
villous tissues were fixed in 4% paraformaldehyde for paraf-
fin embedding in blocks, and the remaining were frozen in 
liquid nitrogen and stored at − 80℃. All performances were 
approved by the Review and Ethics Boards of Renmin Hos-
pital of the Wuhan University.

Cell Culture and Treatments

The trophoblast cell line HTR-8/SVneo (HTR-8) was 
obtained from the China Center for Type Culture Collection 
(Wuhan, China) and grown in DMEM/F-12 medium (Gibco) 
supplemented with 10% fetal bovine serum (FBS; Gibco), 
100 U/mL penicillin, and 100 mg/mL streptomycin (Sigma-
Aldrich). In addition, human monocyte cell line THP-1 was 
obtained from the Institute of Biochemistry and Cell Biol-
ogy, Chinese Academy of Sciences (Shanghai, China) and 
cultured in RPMI-1640 medium supplemented with 10% 
FBS, 100 U/mL of penicillin, and 100 mg/mL of strepto-
mycin. The cells were cultured at 37℃ under a humidified 
atmosphere with 5%  CO2.

EZH2 siRNA (si-EZH2, sense: GGA UGG UAC UUU CAU 
UGA ATT and antisense: UUC AAU GAA AGU ACC AUC 
CAG) and negative control (si-NC) were purchased from 
WZ Biosciences. HTR-8 cells were seeded in 6-well plates 
(4 ×  105 cells/well) 24 h before the transfection, and siRNA 
(80 nM) was transfected with Lipofectamine 3000 (Invit-
rogen) according to the manufacturer’s instructions. After 
24 h of the transfection, the cells were cultured in DMEM/
F12 media with 1% FBS for 48 h. The conditioned medium 
(CM) was collected and stored at − 80℃ until further use. 
HTR-8 cells were treated with EZH2 functional inhibitor 
GSK126 (Sigma-Aldrich) or dimethyl sulfoxide (DMSO, 
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Sigma-Aldrich) at a concentration of 10 μM for 48 h, after 
which the CM was collected and stored as mentioned earlier.

For macrophage polarization, THP-1 cells were differen-
tiated into M0 macrophages by treating with 50 ng/mL of 
phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich) for 
24 h. M0 macrophages were then incubated in CM (at 33% 
concentration) for 48 h.

Flow Cytometry

The cells were collected to prepare a cell suspension and 
washed twice with phosphate-buffered saline (PBS). The 
cells were then incubated with PerCP/Cyanine5.5 anti-
human CD86 (Biolegend), and PE anti-human CD163 
(Biolegend) for 30 min at 4℃. After the washing step, the 
cells were analyzed by the Beckman Coulter Cytoflex Flow 
cytometer, and the data obtained were analyzed with the 
FlowJo software (Version 10.6.2). The mean fluorescence 
intensity (MFI) was used to represent the expression level 
of each antigen in the macrophages.

Quantitative Reverse Transcription‑Polymerase 
Chain Reaction (qRT‑PCR)

Total RNA was extracted using the RNAex Pro Reagent 
(Accurate Biotechnology) according to the manufacturer’s 
instructions. In addition, RNA was reverse-transcribed 
according to the mRNA Reverse Transcription Kit (Accu-
rate Biotechnology); qPCR was performed using the SYBR 
Green Premix Pro Taq HS qPCR Kit (Accurate Biotechnol-
ogy) on a 7500 RT PCR System (Applied Biosystems, Foster 
City, CA, USA). GAPDH was selected as an internal control, 
and all qPCR reactions were performed in triplicate. The 
relative mRNA expression level was calculated using the 
 2−ΔΔCt method. The specific primers were listed in Table 1.

Western Blotting

Total protein was extracted from cells or tissues by using 
the ice-cold radioimmunoprecipitation assay (RIPA, Ser-
vicebio) containing phosphatase repressor (Servicebio), 
cocktail (Servicebio), and phenylmethanesulfonyl fluoride 
(PMSF, Servicebio) and centrifuged at 12,000 × g for 20 min 
at 4℃. The protein concentration was measured with BCA 
solution (Beyotime). About 30 μg of the protein was electro-
phoresed in SDS–polyacrylamide gels and transferred onto a 
PVDF membrane. This membrane was then incubated with 
5% non-fat milk for 1 h at room temperature and subse-
quently incubated with a primary antibody against EZH2 
(1:1000; Cell Signaling Technology) and GAPDH (1:5000; 
Proteintech) overnight at 4℃. The blots were washed thrice 
with Tris-buffered saline and 0.1% Tween20 (TBST) and 
then incubated with HRP-conjugated secondary antibody 

(Proteintech) for 1 h at room temperature. After the final 
washing step, the blots were analyzed by using the Chemilu-
minescence Western Detection System (Bio-Rad, Hercules, 
CA, USA).

Immunohistochemistry (IHC)

The paraffin-embedded villi tissues were cut into sections 
then deparaffinized, rehydrated in water, and washed in PBS 
three times. Next, we used 3% hydrogen peroxide to block 
the endogenous peroxidase activity. Non-specific binding 
was blocked with bovine serum albumin for 20 min. The sec-
tions were then incubated with a primary antibody against 
EZH2 (1:50) at 37 ℃ overnight and then incubated with a 
secondary antibody for 30 min. Antibodies binding were 
detected with a brown precipitate, followed by staining with 
3,3-diaminobenzidine (DAB) (Dako Cytomation, Glostrup, 
Denmark). Finally, the sections were counterstained with 
hematoxylin and dehydrated with 95% alcohol.

Statistical Analysis

Statistical analyses were performed using SPSS 25.0. Stu-
dent’s t-tests were used to analyze the statistical significance 
of the differences. The difference was considered to be statis-
tically significant at p < 0.05, and all the data were expressed 
as mean ± standard deviation (SD).

Table 1  Specific primers

Gene Primer sequence (5′ to 3′) Size (bp)

EZH2 F:GGA CGA AGA ATA ATC ATG GGCC 116
R:CGT CTG AAC CTC TTG AGC TGTCT 

GAPDH F:AGA AGG CTG GGG CTC ATT TG 258
R:AGG GGC CAT CCA CAG TCT TC

IL-10 F:TCA AGG CGC ATG TGA ACT CC 176
R:GAT GTC AAA CTC ACT CAT GGCT 

TGF-β F:GAC TCG CCA GAG TGG TTA TCT 154
R:CGG TAG TGA ACC CGT TGA T

IL-1β F:AGC TAC GAA TCT CCG ACC AC 186
R:CGT TAT CCC ATG TGT CGA AGAA 

TNF-α F: TCT CGA ACC CCG AGT GAC AA 181
R: TGA AGA GGA CCT GGG AGT AG

IL-6 F:AAT AAC CAC CCC TGA CCC AAC 149
R:ACA TTT GCC GAA GAG CCC T

IL-4 F:CGG CAA CTT TGT CCA CGG A 111
R:TCT GTT ACG GTC AAC TCG GTG 

CXCL-16 F:GAC ATG CTT ACT CGG GGA TTG 170
R:GGA CAG TGA TCC TAC TGG GAG 

PD-L1 F:GGA CAA GCA GTG ACC ATC AAG 235
R:CCC AGA ATT ACC AAG TGA GTCCT 
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Results

Decreased Expression of EZH2 in Villi Tissue in RSA 
Patients

To assess the expression of EZH2 in clinical samples, 
RT‐PCR and western blot analyses were conducted to 
evaluate mRNA expression and protein levels of EZH2, 
respectively, in villous tissues obtained from RSA patients 

and healthy controls. The results showed that both mRNA 
expression and protein levels of EZH2 were significantly 
lower in villi tissue obtained from RSA patients as com-
pared to healthy controls (Fig. 1A and B). Besides this, 
IHC staining of serial sections showed that EZH2 was 
mainly located in cytotrophoblast, and a decreased expres-
sion of EZH2 was observed in villi tissue obtained from 
RSA patients (Fig. 1C). These results were consistent with 
the findings of a previous study [18].

Fig. 1  The expression of EZH2 
was decreased in the villi tis-
sues from RSA patients. A The 
EZH2 protein levels in the villi 
tissues from healthy controls 
(n = 6) and RSA patients (n = 5) 
were determined by Western 
blotting. B The relative expres-
sion of EZH2 mRNA in villi 
tissues from healthy controls 
(n = 5) and RSA patients (n = 5). 
C Immunohistochemical stain-
ing of EZH2 in the villi tissues 
from healthy controls and RSA 
patients. Data represented 
mean ± SD, **p < 0.01; scale 
bar = 10 μm
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EZH2 Suppression in Trophoblasts Promoted M1 
Polarization of Macrophages

The results for the previous study conducted in our labora-
tory and several other studies have confirmed that tropho-
blasts exhibit the ability to induce M2 phenotype polari-
zation without any physical contact [1, 5, 37]. In order to 
explore the influence of EZH2 on macrophage polariza-
tion, the expression of EZH2 in human trophoblast cell line 
HTR‐8 was first knocked down via transfection with EZH2 
specific siRNA. As shown in Fig. 2A and B, both mRNA 
expression and protein levels of EZH2 were significantly 
reduced in HTR‐8 cells. Following this, macrophages differ-
entiated from the THP‐1 cell line were incubated with CM 
of HTR‐8 cells. The results showed that macrophages treated 
with CM, collected from si‐EZH2-transfected HTR‐8 cells 
(si‐EZH2 group), exhibited a significantly increased MFI of 
CD86 (Fig. 2C), but a lower MFI of CD163 was observed 
(Fig. 2D). Moreover, macrophages in the si‐EZH2 group 
displayed a higher expression of M1 markers (IL‐1β and 

TNF‐α) and lower levels of M2 markers (IL‐10 and TGF‐β) 
(Fig. 2E–H).

Next, the effect of inhibition of EZH2 function in troph-
oblasts on macrophage polarization was assessed. In par-
ticular, EZH2 inhibitor GSK126 was selected to inhibit the 
function of EZH2. GSK126 treatment did not affect the 
expression of EZH2 in HTR‐8 cells (Fig. 2A and B). In 
the GSK126 group (macrophages treated with CM collected 
from HTR‐8 cells pre‐treated with GSK126), the MFI of 
CD86 was found to be increased (Fig. 3C), whereas the MFI 
of CD163 was significantly reduced (Fig. 3D). Meanwhile, 
mRNA expression levels of IL‐1β and TNF‐α were found 
to be increased (Fig. 3E and F), while mRNA expression 
of IL‐10 and TGF‐β was decreased (Fig. 3G and H). These 
results were in concordance with the results obtained for the 
si‐EZH2 group.

These results further suggested that inhibition of EZH2 
expression and function in trophoblasts could affect its 
immune regulatory function, promoting M1 macrophage 
polarization.

Fig. 2  EZH2 knocked down 
in trophoblasts promoted M1 
macrophage polarization. A 
The EZH2 protein levels in 
HTR-8 cells transfected with 
si-EZH2 (80 nM) or si-NC after 
48 h. B The relative expres-
sion of EZH2 mRNA in the 
HTR-8 cells transfected with 
si-EZH2 (80 nM) or si-NC after 
48 h. C and D Macrophages 
differentiated from THP-1 cells 
treated with different CM were 
analyzed by flow cytometry 
to measure the MFI of CD86 
and CD163. E–H Relative 
expression of IL-1β, TNF-α, 
IL-10, and TGF-β mRNA in 
macrophages differentiated 
from THP-1 cells. Data repre-
sented mean ± SD, *p < 0.05, 
**p < 0.01
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EZH2 Modulates the Expression of Immune 
and Inflammatory Factors in Trophoblasts

In order to investigate the potential mechanism involved 
in EZH2-mediated modulation of immune regulation in 
trophoblasts, correlational researches were considered, 
and it was found that EZH2 might be associated with 
the expression of genes related to immune function and 
inflammation [29, 34, 36]. Thus, the expression of immune 
and inflammatory cytokines related to DMs polarization 
was assessed in trophoblasts. The results indicated that 
silencing of EZH2 in HTR‐8 cells decreased the expres-
sion of TGF‐β, IL‐10, IL‐6, IL‐4, CXCL‐16, and PD‐L1 
(Fig. 4A). Additionally, inhibition of EZH2 function via 
GSK126 showed similar changes in terms of cytokine 
levels. In particular, mRNA expression levels of TGF‐β, 
IL‐10, IL‐6, IL‐4, CXCL‐16, and PD‐L1 were reduced, 
whereas IL‐1β levels were found to be elevated (Fig. 4B). 
These results suggested that EZH2 might be involved in 
the regulation of DMs polarization via regulation of the 

expression of immune and inflammatory cytokines in 
trophoblasts.

Discussion

Pregnancy is a complicated physiological process that 
involves the formation of a fetus and associated append-
ages and systematic adaptation of the maternal organs. 
During pregnancy, the maternal immune system under-
goes dramatic changes as gestation processes [27]. Mac-
rophages are one of the main leukocyte populations found 
at the maternal–fetal interface, and unique macrophage 
phenotypes and heterogeneity play an important role in 
the establishment and maintenance of a successful preg-
nancy [38]. DMs exhibit varied phenotypes during differ-
ent stages of pregnancy [27]. During the preimplantation 
period, M1 activation is induced in DMs [11]. As tropho-
blasts attach to the endometrium, macrophages switch to a 
mixed M1/M2 profile, and this mixed polarization pattern 

Fig. 3  The inhibition of 
EZH2 function in trophoblast-
promoted M1 macrophage 
polarization. A The EZH2 
protein levels in HTR-8 cells 
treated with GSK126 (10 nM) 
or DMSO after 48 h. B The 
relative expression of EZH2 
mRNA in HTR-8 cells treated 
with GSK126 (10 nM) or 
DMSO after 48 h. C and D 
Macrophages differentiated 
from THP-1 cells treated with 
different CM were analyzed 
by flow cytometry to measure 
the MFI of CD86 and CD163. 
E–H The relative expression 
of IL-1β, TNF-α, IL-10, and 
TGF-β mRNA in macrophages 
differentiated from THP-1 cells. 
Data represented mean ± SD, 
*p < 0.05, **p < 0.01
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exists throughout the first trimester. When the placentation 
and remodeling of spiral arteries get completed, DMs pre-
dominantly shift towards M2 phenotype to prevent rejec-
tion of fetus and allow fetal growth until parturition [31]. 
Although it has been a topic of argument that DMs belong 
neither to M1 nor M2 subsets [10], some studies have sug-
gested that M2 macrophages or M2 subgroup constitute 
the predominant phenotype at decidua [9, 27]. However, 
a decline in the percentage of M2 and an increase in the 
proportion of M1 might lead to adverse pregnancy out-
comes, such as preterm birth, pre‐eclampsia, fetal growth 
restriction, and RSA[38].

The environment in which macrophages mature and dif-
ferentiate is important for the polarization of macrophages. 
And the polarization of DMs during pregnancy was regu-
lated and influenced by the cells at the maternal–fetal inter-
face involving trophoblasts, decidual stromal cells, and other 
immune cells through various cytokines and immune check-
points [27]. In particular, DMs are found in close proximity 
to trophoblasts at the maternal–fetal interface. It has been 
previously reported that trophoblasts play an active role in 
shaping the immunological milieu during pregnancy [17]. 
Thus, it is expected that surrounding trophoblasts might play 
an important role in the regulation of polarization of DMs. 
It has been previously shown that conditioned media from 
first trimester trophoblasts could induce differentiation of 
monocytes into a unique macrophage phenotype and express 
immunoregulatory genes that are representative of M2‐like 
macrophage [1]. In particular, trophoblast-secreted factors, 
including M‐CSF, IL‐10 [26], IL‐34 [16], IL‐6 [5], IL‐8, 
TGF‐β [1], CXCL‐16 [33], PD‐L1 [37], galectin‐9 [15], 
hyaluronan [32], receptor activator for nuclear factor‐κB 
ligand (RANKL) [21], and vasoactive intestinal peptide 
[25], have been reported to be involved in the induction of 
M2‐like polarization of macrophages at decidua. Thus, any 

dysfunction of trophoblasts might alter cytokine secretion 
profile, resulting in inappropriate polarization of DMs.

Epigenetic regulation has emerged as one of the key 
mechanisms involved in controlling proper gene expression 
[20]. EZH2, the catalytic subunit of PRC2, mediates the 
methylation of H3K27 and is linked to the silencing of gene 
expression [34, 36]. The role of EZH2 has been extensively 
studied in oncology, and its importance in reproduction has 
also been verified [24]. It has been previously reported that 
EZH2 played an essential role in the development of early 
mouse preimplantation embryos, mediated via regulation 
of epigenetic modification and apoptosis [8]. Additionally, 
EZH2 was identified as a novel driver of EMT in endome-
triosis [35]. Besides this, Lv et al. reported that EZH2 might 
regulate trophoblast invasion as an epigenetic factor, and 
downregulation of EZH2 attenuated trophoblast invasion 
that was involved in the pathogenesis of RSA [18]. In the 
present study, a decreased expression of EZH2 was observed 
in villi tissue obtained from RSA patients, which was con-
sistent with the findings of a previous study [18]. In recent 
years, several studies demonstrated the importance of EZH2 
in the regulation of immune cell functions and inflammation. 
The suppression of EZH2 in glioblastoma was shown to be 
associated with immune response, which induced changes 
in the secretion of immune cytokines [34]. Thus, it was con-
jectured that decreased expression of EZH2 in trophoblasts 
might be involved in the abnormal polarization of DMs. In 
the present study, both the inhibition of expression and func-
tion of EZH2 in trophoblasts resulted in a decreased expres-
sion of M2‐associated markers and increased the expression 
of M1‐associated markers. The expression of CD86 was 
found to be significantly increased, while the expression of 
CD163 declined. The expression of EZH2 in trophoblasts 
disturbed the phenotypic differentiation of macrophages. 
In addition to this, the results of the present study also 

Fig. 4  EZH2 suppression affected the expression of immune and 
inflammatory cytokines in trophoblasts. A HTR-8 cells were trans-
fected with si-EZH2 (80  nM) or si-NC for 48  h, and the relative 
mRNA levels of TGF-β, IL-10, IL-6, IL-4, IL-1β, CXCL-16, and 

PD-L1 were determined by qPCR. B HTR-8 cells were treated with 
GSK126 (10  nM) or DMSO for 48  h, and the relative mRNA lev-
els of TGF-β, IL-10, IL-6, IL-4, IL-1β, CXCL-16, and PD-L1 were 
determined by qPCR. Data represented mean ± SD, *p < 0.05
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suggested that suppression of EZH2 altered the secretion 
of immune and inflammatory cytokines in trophoblasts. In 
particular, the levels of TGF‐β, IL‐10, IL‐6, IL‐4, CXCL‐16, 
and PD‐L1 declined, which have been previously reported 
to be associated with the polarization of M2 macrophages at 
decidua. Comparatively, the expression of IL‐1β was found 
to be increased. However, the mechanism involved in EZH2-
mediated regulation of secretion of immune and inflamma-
tory cytokines in trophoblasts needs to be clarified in future 
studies. Additionally, trophoblast‐secreted cytokines related 
to the polarization of DMs need to be further studied.

Altogether, the present study demonstrated that down-
regulation of EZH2 in trophoblasts induced polarization of 
M1 macrophages, which might be mediated via modulation 
of secretion of immune and inflammatory cytokines in troph-
oblast. The decreased expression of EZH2 in trophoblast 
could possibly influence the microenvironment present at the 
maternal–fetal interface, leading to inappropriate polariza-
tion of DMs. Therefore, the study highlighted the potential 
of EZH2 to be explored as a therapeutic target to prevent and 
treat pregnancy loss.
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