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Abstract: The TeII/TeIII-catalyzed dehydrogenative C�H phe-
nothiazination of challenging phenols featuring electron-with-
drawing substituents under mild aerobic conditions and with
high yields is described. These unexpected TeII/TeIII radical
catalytic properties were characterized by cyclic voltammetry,
EPR spectroscopy, kinetic experiments, and DFT calculations.

Intermolecular cross-dehydrogenative[1] C�N bond forma-
tion still represents a relatively recent and underappreciated
development in the field of amination coupling reactions,[2] in
spite of pronounced step, atom, and redox economical
advantages.[3] These are moreover of particular sustainable
character if air, or O2, can be successfully activated and
utilized as the terminal oxidant of the reaction.[4] Early
examples are often metal catalyzed, copper being one of the
most often utilized metal catalysts.[5] Metal-free halide
catalysis has also been successfully applied.[6] Yet, the scope
of such methods remains generally limited. In this context of
narrow applicability, the development of new catalytic
methods constitutes a strategic priority, especially through
the exploration of unusual catalytic elements and their yet
untapped properties. In view of our recent works focused on
the cross-dehydrogenative phenothiazination of electron-rich
phenols, affording access to valuable triarylamine materials
(Scheme 1),[7] we envisioned the idea of chalcogen catalysis,
and in particular tellurium catalysis,[8] in order to broaden the
so far limited substrate scope.[7] As a metalloid, tellurium
combines properties of both metal and non-metal elements.

Therefore, it possesses a low oxidation potential and various
stable oxidation states, while forming relatively stable C�Te
bonds.[9]

In this context, recent developments in metal catalysis
highlight the use of ligands which actively take part in the
reaction via electron transfer events. These ligands are so-
called “redox non-innocent” ligands.[10] Non-innocent ligands
act in several ways. For example, they can act as electron
reservoir. This allows strategic metals to bypass unfavorable
oxidation states while maintaining catalytic activity. They can
also actively take part in bond breaking/forming events via
hydrogen abstraction.[11, 12] Thus, we propose herein an
unprecedented TeII/TeIII catalysis approach containing
a bidentate, nitrogen-bridged redox non-innocent ligand
(Scheme 1), in the aim of unlocking new catalytic properties.

In order to proceed with this objective, selenium and
tellurium azine derivatives were targeted as prospective
catalysts. PSeZH (phenoselenazine, X = Se) was easily
accessed with a simple two-step procedure from the literature
(Scheme 2a).[13] PTeZH (phenotellurazine, X = Te), however,
proved slightly more challenging. After testing and optimiz-
ing various retrosynthetic approaches, we eventually estab-

Scheme 1. Te(II/III)-catalyzed intermolecular cross-dehydrogenative
C�N bond formation.
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lished a route through 2,2’-diiododiphenylamine (Sche-
me 2b). Indeed, the latter substance could smoothly react
with elemental tellurium under simple basic conditions to
afford PTeZH in 67 % yield of isolated product (Scheme 2b).

This new method was found reliable and scalable, affording
an easy and serviceable route to the target tellurium metal-
loid-based heterocyclic catalyst. Once with the PSeZH and
PTeZH catalyst candidates in hand, we set out to optimize the
tellurium-catalyzed cross-dehydrogenative phenothiazination
of unprecedented and typically challenging phenols featuring
electron-withdrawing substituents (7< pKa< 10). We finally
selected and optimized a mild O2-mediated basic oxidation
method, for a limited reaction time of 3 hours.[14] K2HPO4 was
found to be an optimal base in comparison to K3PO4,
NaHCO3, or AcOK, although good results were also obtained
with K2CO3.

[14] Importantly, the Te catalyst (PTeZH) was
found significantly superior to the Se catalyst candidate
(PSeZH). Moreover, while 5 mol% of PTeZH catalyst
loading provided encouraging results, 10 mol% was found
optimal. The optimized tellurium-catalyzed conditions are
shown in Scheme 3 (product 3aa, 97% isolated).

This Te-catalyzed reaction was found to tolerate a number
of unprecedentedly acidic phenols (pKa down to 7.5, 3ea,
73%), with high yields. Challenging functional groups such as

Scheme 2. Synthesis of PSeZH and PTeZH.

Scheme 3. TeII/TeIII-catalyzed cross-dehydrogenative C�N bond formation with challenging electron-neutral and electron-poor phenols, yields of
isolated product, predicted pKa values according to Scifinder � accessed in November 2020.
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ketones, a pyridine, and an aldehyde were moreover well
tolerated (3ha, 3hb, 3he, 3pa, 3oa, 3 qa). Importantly, control
experiments omitting the Te catalyst systematically led to
very poor conversions, thus highlighting by contrast the strong

catalytic role of the TeII organometalloid PTeZH complex
(Scheme 3).

Moreover, the non-catalyzed reaction (absence of PTeZH
catalyst) does not perform much better at longer reaction
times.

For example, the uncatalyzed method afforded 3aa in
only 66% yield after 24 h reaction time, versus 97% in 3 h for
the optimized Te-catalyzed conditions. In some cases, the
uncatalyzed reaction yielded only traces of the expected
coupling product (3ab, 3bb, 3bf, 3hb < 5%). Thus, the use of
these highly sustainable O2-based reaction conditions
requires the presence of the PTeZH catalyst. Finally, this
TeII-catalyzed method allowed the straightforward scale-up of
the reaction without any loss of yield (3 ia, pKa = 7.8, 86 %),
therefore demonstrating its robustness.

In order to understand this remarkable catalytic effect,
the cyclic voltammetry (CV) plots of all four chalcogen
congeners are presented in Figure 1. The first three congeners
(X = O, S, Se) were found to have a similar oxidation
potential (E8(1/2ox) =+ 0.24, + 0.22, + 0.24 V, respectively). In
contrast, the oxidation potential of the largest congener
(PTeZH, X = Te) deviates significantly from the other three
chalcogens, at only + 0.08 V.

Figure 1. CV plots (r.t.) in CH2Cl2, E81/2ox values are reported versus
Fc0/Fc+, utilizing Fc* as an internal standard. E81/2ox = +0.24, + 0.22,
+0.24, + 0.08 V for POZH (red), PSZH (green), PSeZH (blue), and
PTeZH (pink), respectively.

Figure 2. Experimental and simulated EPR spectrum of N-centered neutral radical POZC (top left), PSZC (top right), PSeZC (bottom left), and the
radical cation of PTeZHC+ (bottom right), obtained by exposing the corresponding PXZH azine to air in [D6]benzene. Experimental parameters: see
SI. The simulated spectra were obtained with EasySpin,[15] via the cwEPR GUI plugin, using the simulation parameters listed in Table S3 (see
SI).[16]
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This oxidation potential difference for tellurium has
important consequences for its reactivity, as will be discussed
below. Next, the radical character of each oxidized chalcoge-
nazine congener was investigated by electron paramagnetic
resonance (EPR) spectroscopy. The radical species were
generated by bubbling air through a solution of POZH,
PSZH, PSeZH, and PTeZH in [D6]benzene at room temper-
ature. The corresponding EPR profiles are shown in Figure 2.
Interestingly, while we had expected similar N-centered
neutral radicals[17] for all four investigated chalcogens, only
the first three (X = O, S, Se) showed an EPR signal that is
compatible with an N-centered neutral radical species PXZC

(Figure 2). In contrast, phenotellurazine (PTeZH) delivered
a very different EPR signal, which, according to simulations
and supporting DFT property calculations, corresponds to
a (protonated) radical cation species: PTeZHC+. This differ-
ence between tellurium and the other chalcogens presumably
arises from a lower oxidation potential (+ 0.08 V) and
subsequent weaker acidity of PTeZHC+ compared to the
other three chalcomers (X = O, S, Se, E8(1/2ox) =+ 0.22–
0.24 V). Indeed, one-electron oxidation of POZH, PSZH,
and PSeZH apparently leads to strongly acidified PXZHC+

radical cations, which spontaneously deprotonate at nitrogen
to the corresponding persistent neutral radicals. In contrast,
the (NPA) charge and spin density of PTeZHC+ are signifi-
cantly shifted from N to Te (see SI, Table S4).

Next, we measured the relative initial rates of conversion
(5 min reaction time) of the various chalcogenazines as N-
substrates, with common phenothiazine PSZH (X = S) as the
reference (krel = 1). In those four parallel experiments, POZH
was found to be the fastest azine (krel = kX/kS = 4.4), and
PTeZH the slowest (krel = 0.7, Scheme 4a). In a competition
set-up however (Scheme 2b), POZH becomes 20 times
faster, while PTeZH becomes circa 100 times—two orders
of magnitude—slower than competing PSZH (krel = 0.01).
Moreover, in the latter case, the PSZH initial conversion rate
has been multiplied by 4 in comparison to the non-catalyzed
reaction (absence of PTeZH).

PTeZH is a good catalyst in this reaction because it
combines a significantly lower oxidation potential compared
to PSZH (+ 0.08 V versus + 0.22 V, respectively), such that it
must oxidize first, with a very reactive neutral N-centered
radical (PTeZC). Indeed, the H-atom transfer (HAT) process
was calculated to be very favorable from PSZH to PTeZC. The
latter species therefore serves as radical catalyst[18] which is
generated from the in situ deprotonation of PTeZHC+,
facilitated by the basic reaction conditions and/or peroxide
anions resulting from O2 reduction (Scheme 5, see also SI).
This process would thus increase the rate of formation as well
as the concentration of the key persistent PSZC neutral radical
species, which is a known intermediate in the dehydrogen-
ative phenothiazination reaction.[17] This favorable HAT
process would therefore lead to a reaction acceleration. Re-
oxidation of the PTeZH TeII catalyst would then occur again
towards the TeIII PTeZHC+ intermediate, thus closing the
catalytic cycle.

In conclusion, we have demonstrated that a TeII organo-
metallic complex could catalyze the dehydrogenative C�H
phenothiazination of challenging phenols bearing electron-

withdrawing substituents, with acidities as low as pKa = 7.5
(3ea, 73%). In all cases, the absence of TeII catalyst leads to
dramatically lower conversions. This unexpected catalytic
effect essentially arises from a combination of two important

Scheme 4. Kinetic experiments, yields of isolated product, 5 min
reaction time.

Scheme 5. The catalytic effect of PTeZH (X = Te) on the conversion of
PSZH (X = S), proposed mechanism.
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properties: a lower oxidation potential of the PTeZH catalyst
towards the PTeZHC+ radical cation and a significantly higher
spin density at the tellurium center compared to the sulfur-
based substrates. It is thus probable that PTeZH will find
further applications as radical catalyst[18, 19] for the develop-
ment of innovative (radical-catalyzed) cross-dehydrogenative
couplings.
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