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Abstract: Radical hysterectomy is a recommended treatment for early-stage cervical cancer. How-
ever, the procedure is associated with significant morbidities resulting from the removal of the
parametrium. Parametrial cancer invasion (PMI) is found in a minority of patients but the efficient
system used to predict it is lacking. In this study, we develop a novel machine learning (ML)-based
predictive model based on a random forest model (called iPMI) for the practical identification of PMI
in women. Data of 1112 stage IA-IIA cervical cancer patients who underwent primary surgery were
collected and considered as the training dataset, while data from an independent cohort of 116 consec-
utive patients were used as the independent test dataset. Based on these datasets, iPMI-Econ was then
developed by using basic clinicopathological data available prior to surgery, while iPMI-Power was
also introduced by adding pelvic node metastasis and uterine corpus invasion to the iPMI-Econ. Both
10-fold cross-validations and independent test results showed that iPMI-Power outperformed other
well-known ML classifiers (e.g., logistic regression, decision tree, k-nearest neighbor, multi-layer
perceptron, naive Bayes, support vector machine, and extreme gradient boosting). Upon comparison,
it was found that iPMI-Power was effective and had a superior performance to other well-known ML
classifiers in predicting PMI. It is anticipated that the proposed iPMI may serve as a cost-effective
and rapid approach to guide important clinical decision-making.

Keywords: cervical cancer; parametrial invasion; health informatics; machine learning; random forest

1. Introduction

Cervical cancer is the fourth most common cancer in women following breast, colorec-
tal, and lung cancers. It is also the fourth leading cause of death from cancer [1]. Cancer
cells’ ability to invade surrounding tissues as well as metastasize to regional lymph nodes
and distant organs is responsible for more than 90% of cancer-associated deaths [2]. Cervi-
cal cancer usually spreads in a stepwise fashion from primary cervical tumor to adjacent
structures including the parametrium, vagina, urinary bladder, and rectum. The cancer
cells can also metastasize to regional lymph nodes and distant sites [3].

For early-stage (FIGO stage IA2-IIA) cervical cancer, parametrial invasion (PMI) and
pelvic node metastasis are associated with a higher risk of recurrence and poorer chances
of survival [4–6]. Therefore, the primary surgical treatment for these patients usually
includes a radical hysterectomy with the removal of the adjacent parametrium and a
pelvic lymphadenectomy [7]. The treatment is generally effective with satisfactory survival
outcome [8]. However, significant intraoperative complications such as excessive blood
loss and injury to adjacent organs, as well as long-term morbidities including voiding
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dysfunction, lower gastrointestinal dysfunction, and sexual dysfunction, are frequently
encountered [9–14]. These conditions mainly result from trauma to the pelvic blood vessels
and autonomic nerves during parametrial resection [9,15]. In an attempt to minimize these
long-term nerve-related morbidities, the nerve-sparing technique for radical hysterectomy
has been adopted. However, significant postoperative morbidities are still observed [16].
In addition to radical surgery, if cancer metastasis in the parametrium/pelvic nodes, or
involved surgical margins, are identified, adjuvant postoperative pelvic radiation with
concurrent chemotherapy is indicated [17,18]. This would further increase the incidence of
posttreatment morbidities in the patients who receive combined therapeutic modalities.

For these early-stage patients however, the reported incidence of PMI ranges from
5–25% [19,20]. Thus, the majority of patients undergo aggressive “radical” surgery un-
necessarily. Therefore, the accurate prediction of PMI among patients with early-stage
cervical cancer due to have surgery can facilitate the rapid identification of patients with
a low risk of metastasis, for whom removal of parametria is not necessary. In this case, a
radical hysterectomy could be replaced by the less aggressive simple hysterectomy. As a
result, treatment-related complications could be significantly diminished. On the other
hand, for those preoperatively classified as having a high risk of PMI, primary concurrent
chemoradiation (CCRT) can be seriously considered with primary radical hysterectomy
remaining as an alternative option. This particular approach provides good oncological
outcomes with a substantial reduction in morbidity. However, the efficient system to
predict PMI is currently insufficient.

In this study, we propose a novel machine learning (ML)-based predictive model
called iPMI for the practical identification of PMI in women with early-stage cervical cancer
who are candidates for primary radical surgery. This category of modeling technique
is increasingly employed in cancer prognostic model development studies with highly
reliable predictive performance [21–23]. To validate the effectiveness and robustness
of the iPMI model developed by using the random forest (RF) method, we compared its
predictive performance with those of conventional logistic regression (LR) and other widely
used ML classifiers including decision tree (DT), k-nearest neighbor (kNN), multi-layer
perceptron (MLP), naive Bayes (NB), support vector machine (SVM), and extreme gradient
boosting (XGB).

2. Materials and Methods
2.1. Data Source and Study Population

Clinical and pathological data of 1112 patients with clinical FIGO stage IA-IIA cervical
cancer who underwent primary radical hysterectomies and pelvic lymphadenectomies
at our department from January 2003 to December 2016, were used as a training dataset.
Specifically, patients with a tumor size >4 as well as those who received preoperative
chemotherapy were excluded. To validate the effectiveness of the model, an independent
test dataset of 116 consecutive women with FIGO stage IA-IIA cervical cancer treated at
our hospital from January 2017 to July 2018, was established. The training and independent
test datasets were obtained from the Division of Gynecologic Oncology database. Please
note that this study was conducted under the approval of the Faculty of Medicine Research
Ethics Committee (approval number OBG-2560-04901).

2.2. Outcome

The primary outcome was PMI, which was defined as microscopic pathological evi-
dence of metastatic cancer to either unilateral or bilateral parametrial tissue or parametrial
lymph nodes in the standard pathological assessment of radical hysterectomy specimens.
At our institution, this information is usually available within one week following the
primary surgery. We aimed to evaluate the association between PMI and its potential
clinicopathological predicting factors. These factors included age, parity, human immun-
odeficiency virus (HIV) infection status, menopausal status, underlying diseases, previous
abdominal surgery, prior conization, tumor size, tumor appearance (no gross lesions,
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exophytic, infiltrative, ulcerative, or mixed), stage (IA, IB1, IB2, IIA), histological type, his-
tological grade, depth of cervical stromal invasion (inner third, middle third, outer third),
lymph-vascular space invasion (LVSI), uterine metastasis, vaginal metastasis, vaginal
margin status, adnexal metastasis, and pelvic lymph node metastasis.

2.3. Conventional Statistical Analysis

Association between individual clinicopathological factors and PMI was initially
assessed by employing conventional statistical analysis. Herein, Fisher’s exact test was used
to compare clinicopathological factors between PMI and non-PMI groups. The univariable
analysis selected clinicopathological factors with p-value ≤0.10 for entering a multivariable
LR model. The backward selection was applied in multivariable analysis to identify
independent predicting factors for PMI. A p-value of ≤0.05 denoted a statistical significance.

2.4. Predictive Models
2.4.1. Synthetic Minority Oversampling Technique

The number of patients in PMI group was relatively small compared to that of patients
in non-PMI group, with a PMI to non-PMI ratio of 1:4.64. This may have affected the
predictive ability of the model for accurately identifying the minority class (PMI group).
Class imbalance was a problem arising in many practical applications and caused issues of
bias during the learning and prediction process [24–28]. This problem may have decreased
the prediction performance of computational predictors. Therefore, the sample rescaling-
based method containing oversampling and undersampling approaches was proposed to
alleviate the class imbalance problem and remove the biasness [25,26,29]. In general, the
undersampling approach was used for eliminating some of the samples from the majority
class (no PMI) while the oversampling approach was used for creating new samples
from the minority class (PMI). In the present study, we employed the synthetic minority
oversampling technique (SMOTE) for performing oversampling of PMI group to introduce
its synthetic samples [29].

2.4.2. Development of Preoperative Computational Models

With the aim of developing the model that was useful in real practice, the clinical and
pathological factors that could be determined preoperatively were used as input variables
for the RF model. The combination of age, parity, HIV infection status, menopausal
status, underlying diseases, prior conization, tumor size, stage, and histological type
was considered as baseline factors in the model. In addition, the impacts of pelvic node
metastasis (pelvicme), uterine corpus invasion (utmet), and vaginal metastasis (vgmet)
were examined for their potential in improving the model’s predictive performance. The RF
model was an ensemble-based ML algorithm used to perform classification and regression
tasks which was introduced by Breiman [30,31]. Until now, the RF model was widely used
in various applications [26,32–38]. Like many other ensemble ML methods, this method
was developed by growing a number of weak classification and regression tree (CART)
classifiers for improving the predictive performances of the CART classifiers [31,39]. The
RF model employed the concepts of bagging and random feature selection. We obtained
the prediction result of the classification task by using a voting method from a number
of CART classifiers. In regression, a final prediction was the average of many prediction
results of many CART classifiers. To improve the prediction performance of the RF model,
two parameters, ntree (the number of tree used for constructing the RF classifier) and
mtry (the number of random candidate features), were considered with a cross-validation
technique. The search space of ntree were in (20, 50, 100, 200, 500).

2.4.3. SHAP Analysis

Recently, SHAP (SHapley Additive exPlanations) was developed for explaining the
prediction results of any ML model [40]. This approach was based on game theory and em-
ployed an additive feature attribution method allowing users to establish an interpretable
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model. In SHAP approach, the importance for each predicting factor was ranked by the
SHAP value. This value indicated the importance for the ith feature by comparing the
different output among the model with and without the ith feature. The feature with the
largest absolute SHAP value was of the most importance. Meanwhile, the feature with a
high positive SHAP value had a positive impact on the output of ML model and vice versa.
In the present study, we used the SHAP approach to determine the clinicopathological
factors that are beneficial for PMI identification.

2.4.4. Models’ Performance Evaluation

For the evaluation of the predictive model performance in the training dataset (cross-
validation) and the independent testing dataset (independent test), the following four
standard metrics in binary classification (PMIs and non-PMIs) were employed to assess
discriminative ability of the proposed model:

Ac =
TP + TN

(TP + TN + FP + FN)
(1)

Sn =
TP

(TP + FN)
(2)

Sp =
TN

(TN + FP)
(3)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where Ac, Sn, Sp and MCC are accuracy, sensitivity, specificity, and Matthews correlation
coefficient, respectively. More details of these four standard metrics can be found in
our previous studies [25,26,41–45]. Furthermore, the area under the receiver operating
characteristic (ROC) curve was used to assess the predictive performance, where AUC
values of 0.5 and 1 were indicative of random and perfect models, respectively.

3. Results
3.1. Patients’ Characteristics

Of 1112 patients, 171 patients (15.4%) had PMI. In conventional multivariable analysis
using the LR method, only pelvic node metastasis, uterine corpus metastasis, tumor size
≥2 cm, vaginal metastasis, and menopause were significantly associated with PMI. Of note,
adenocarcinoma histology was independently associated with a lower risk of PMI with the
adjusted odds ratio of 0.49 (95% confidence interval 0.31–0.78) compared to squamous cell
carcinoma histology.

Table 1 compares the clinicopathological factors between the training and the indepen-
dent testing dataset. The prevalence of PMI was significantly higher in the testing dataset
(p < 0.01). Additionally, the prevalence of vaginal metastasis was significantly higher in
the testing dataset (p = 0.03). In addition, the prevalence of HIV positivity and previous
abdominal surgery in the testing set was higher. All other factors appeared comparable
between the two groups.



Diagnostics 2021, 11, 1454 5 of 13

Table 1. Comparison of clinicopathological factors between the training and the independent testing dataset.

Characteristics Training Set
(n = 1112)

Testing Set
(n = 116) p-Value

Age (year) 47.33 ± 8.98 48.44 ± 9.85 0.21
Parity 2.00 (1.00–2.00) 2.00 (1.00–2.00) 0.12

HIV positivity 7 (0.6) 3 (2.6) 0.03 *
Menopause 378 (34.0) 47 (40.5) 0.16

Underlying medical disease 379 (34.1) 47 (40.5) 0.17
Previous abdominal surgery 382 (34.4) 51 (44.0) 0.04 *

Prior conization 487 (43.8) 44 (37.9) 0.23
Tumor appearance 0.28

No gross lesion 489 (46.3) 46 (41.5)
Exophytic 224 (21.2) 26 (23.4)
Infiltrative 298 (28.2) 32 (28.8)
Ulcerative 13 (1.2) 0 (0.0)

Mixed 33 (3.1) 7 (6.3)
Tumor size (cm) 1.50 (0.00–3.00) 2.00 (0.00–3.00) 0.10

Stage 0.21
IA 204 (18.3) 14 (12.0)
IB1 779 (70.1) 88 (75.9)
IB2 27 (2.4) 5 (4.3)
IIA 102 (9.2) 9 (7.8)

Final histology 0.27
Squamous 742 (66.7) 71 (61.2)

Adenocarcinoma 256 (23.0) 36 (31.1)
Adenosquamous 72 (6.5) 4 (3.4)
Neuroendocrine 30 (2.7) 4 (3.4)

Others 12 (1.1) 1 (0.9)
Depth of invasion 0.07

Inner1/3 122 (15.5) 14 (15.1)
Middle1/3 180 (22.9) 12 (12.9)
Outer1/3 485 (61.6) 67 (72.0)

Uterine metastasis 0.19
No 992 (89.2) 100 (86.2)
Yes 95 (8.5) 15 (12.9)

HSIL 25 (2.3) 1 (0.9)
Vaginal metastasis 0.03 *

No 896 (80.9) 91 (78.5)
Yes 125 (11.3) 21 (18.1)

HSIL 87 (7.8) 4 (3.4)
Pelvic LN metastasis 189 (17.0) 24 (20.7) 0.20

LVSI number in surgical specimen 2.00 (0.00–14.00) 3.00 (0.00–15.00) 0.23
Parametrial metastasis 171 (15.4) 30 (25.9) <0.01 *

Data expressed as median (interquartile range) or number (%). LN; Lymph node, LVSI; Lymphovascular space invasion, HSIL; High grade
squamous intraepithelial lesion * statistically significant.

3.2. Effect of Balanced and Imbalanced Datasets

To cope with class imbalance, we employed the SMOTE for performing the oversam-
pling of the PMI group [29]. Herein, we conducted the performance comparison of RF
models in conjunction with the preoperative clinicopathological or the baseline factor on
balanced and imbalanced datasets. Figure 1A,B summarizes the 10-fold cross-validation
in the training dataset and the independent test results in the testing cohort of RF models
on imbalanced and balanced datasets. The RF model performing on the balanced dataset
achieved a higher cross-validation AUC than the RF model performing on the imbalanced
dataset. These results indicated that the performance of the RF model improved when the
SMOTE oversampling technique was applied for adding samples to the PMI group. There-
fore, we utilized the balanced dataset for further development of computational predictive
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models. It should be noted however, that the difference in the model performance between
the balanced and the imbalanced datasets was less clear in the independent testing dataset.
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Figure 1. ROC curves of RF models trained using different feature sets based on the 10-fold cross-validation test (A,C,E) and
independent test dataset (B,D,F): (A,B) illustrate comparison of RF models with and without the oversampling technique
SMOTE; (C,D) illustrate comparison of iPMI-Power and iPMI-Econ, where iPMI-Power and iPMI-Econ are constructed by
RF models trained using the combination of baseline+pelvicme+utmet and baseline factor, respectively; and (E,F) illustrate
a comparison of the proposed models (i.e., iPMI-Power and iPMI-Econ) with kNN, SVM-RBF and XGB. The AUC values
are expressed with 95% confidence interval.

3.3. Performance of Preoperative and Postoperative Clinicopathological Factors

In order to understand the contribution of each factor in PMI identification, a series of
comparative experiments was carried out among various feature sets derived from combi-
nations of clinicopathological factors (baseline, baseline+pelvicme, baseline+utmet, base-
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line+vgmet, baseline+pelvicme+utmet, baseline+pelvicme+vgmet, baseline+utmet+vgmet
and baseline+pelvicme+utmet+vgmet). The prediction results of RF models trained using
various combinations of clinicopathological factors based on the 10-fold cross-validation
and independent tests are illustrated in Supplementary Table S1 and Table 2, respectively.
We noticed that the best cross-validation Ac was achieved by using the combination of
baseline+pelvicme+utmet+vgmet (0.918), the combination of baseline+pelvicme+vgmet
(0.918), and the combination of baseline+pelvicme+utmet (0.915). For the independent test
results, the combination of baseline+pelvicme+utmet provided the best Ac value of 0.862
with the clearly superior MCC of 0.618 and AUC of 0.905, compared to other feature sets.
Moreover, as seen in Figure 1C,D, the combination of baseline+pelvicme+utmet had a supe-
rior performance compared to the baseline feature set, when considering cross-validation
and independent test results. Altogether, the combination of baseline+pelvicme+utmet
was the most beneficial combination for PMI identification. For the convenience of illus-
tration, we refer to this method as the iPMI-Power. Meanwhile, the RF model trained
with only the baseline factor provides the satisfactory Ac of 0.756. Therefore, this model
was introduced as a simple approach (called the iPMI-Econ). Finally, in order to maxi-
mize the utility of the proposed model, we set up a publicly accessible web server at:
http://camt.pythonanywhere.com/PMIPred.

Table 2. Independent dataset testing results of RF models with various combinations of clinicopathological factors.

Factor a Ac Sn Sp MCC AUC

baseline
0.756 0.267 0.914 0.231 0.758

(0.678–0.834) (0.186–0.348) (0.863–0.965) (0.154–0.308) (0.680–0.836)

baseline+pelvicme 0.846 0.567 0.935 0.553 0.85
(0.780–0.912) (0.477–0.657) (0.890–0.980) (0.463–0.643) (0.785–0.915)

baseline+utmet
0.793 0.367 0.942 0.392 0.768

(0.719–0.867) (0.279–0.455) (0.899–0.985) (0.303–0.481) (0.691–0.845)

baseline+vgmet 0.732 0.3 0.871 0.195 0.644
(0.651–0.813) (0.217–0.450) (0.810–0.932) (0.123–0.267) (0.557–0.731)

baseline+pelvicme+utmet 0.862 0.6 0.953 0.618 0.905
(0.799–0.925) (0.511–0.689) (0.914–0.987) (0.530–0.706) (0.852–0.958)

baseline+pelvicme+vgmet 0.821 0.433 0.946 0.461 0.841
(0.751–0.891) (0.343–0.523) (0.905–0.987) (0.370–0.552) (0.774–0.908)

baseline+utmet+vgmet 0.793 0.367 0.942 0.392 0.768
(0.719–0.867) (0.279–0.455) (0.899–0.985) (0.303–0.481) (0.691–0.845)

baseline+pelvicme+utmet+vgmet 0.836 0.533 0.942 0.54 0.879
(0.769–0.903) (0.442–0.624) (0.899–0.985) (0.449–0.631) (0.820–0.938)

a baseline: preoperative clinicopathological factors, utmet: uterine metastasis, vgmet: vaginal metastasis, pelvicme: pelvic lymph node
metastasis. The values are expressed with a 95% confidence interval.

3.4. Comparison of iPMI with Other ML Classifiers

To validate the effectiveness of the proposed models, we compared their predictive
performances against well-known ML classifiers. Herein, we selected DT, LR, MLP, NB,
XGB, and SVM models. In order to make a fair comparison, the DT, LR, MLP, NB, XGB,
and SVM models were constructed based on the same feature set (the combination of
baseline+pelvicme+utmet) using Scikit-Learn package [46]. This package has been suc-
cessfully applied to various domains [25,41–45]. To demonstrate the comparative results
clearly, we summarized the Ac, Sn, Sp, MCC and AUC values for iPMI-Power, iPMI-Econ
and other ML classifiers assessed via 10-fold cross-validation (Table S2 and Figure 1E)
and independent tests (Table 3 and Figure 1F). The iPMI-Power exhibited the best Ac,
MCC, and AUC compared to other classifiers in both the 10-fold cross-validation and the
independent tests.

http://camt.pythonanywhere.com/PMIPred
http://camt.pythonanywhere.com/PMIPred
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Table 3. Independent dataset testing results of the proposed iPMI and other well-known ML-based classifiers.

Classifier a Ac Sn Sp MCC AUC

iPMI-Power
0.862 0.6 0.953 0.618 0.905

(0.799–0.925) (0.511–0.689) (0.914–0.992) (0.530–0.706) (0.852–0.958)

SVM
0.802 0.6 0.872 0.477 0.761

(0.729–0.875) (0.511–0.689) (0.811–0.933) (0.386–0.568) (0.683–0.839)

DT
0.819 0.6 0.895 0.513 0.751

(0.749–0.889) (0.511–0.689) (0.839–0.951) (0.422–0.604) (0.672–0.830)

XGB
0.862 0.567 0.965 0.616 0.873

(0.799–0.925) (0.477–0.657) (0.932–0.998) (0.527–0.705) (0.812–0.934)

kNN
0.802 0.567 0.884 0.467 0.725

(0.729–0.875) (0.477–0.657) (0.826–0.942) (0.376–0.558) (0.644–0.806)

iPMI-Econ
0.756 0.267 0.914 0.231 0.758

(0.678–0.834) (0.186–0.348) (0.863–0.965) (0.154–0.308) (0.680–0.836)

MLP
0.836 0.667 0.895 0.568 0.843

(0.769–0.903) (0.581–0.753) (0.839–0.951) (0.478–0.658) (0.777–0.909)

LR
0.784 0.833 0.767 0.54 0.869

(0.729–0.859) (0.765–0.901) (0.690–0.844) (0.449–0.631) (0.808–0.930)

NB
0.664 0.867 0.593 0.403 0.844

(0.578–0.750) (0.805–0.929) (0.504–0.682) (0.314–0.492) (0.778–0.910)
a DT: decision tree, kNN: k-nearest neighbor, LR: logistic regression, MLP: multi-layer perceptron, NB: naive Bayes, SVM: support vector
machine, XGB: extreme gradient boosting. The values are expressed with a 95% confidence interval.

3.5. Analysis of Informative Clinicopathological Factors

The SHAP approach provided information regarding the impact of individual pre-
dicting factors on the directionality of the output of the model. In this study, we passed
the proposed iPMI-Power along with the balanced dataset to obtain the SHAP value for
each clinicopathological factor. As shown in Figure 2, the five top-ranked important clinico-
pathological factors included pelvic node metastasis, tumor size (as measured at outpatient
department), uterine corpus invasion, age, and histology.
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4. Discussion

To establish an effective predictive model, we first collected the training and indepen-
dent test datasets containing 1112 and 116 women, respectively, with FIGO stage IA-IIA
cervical cancer treated at our hospital. Due to the class imbalance between PMIs and
non-PMIs, the oversampling technique SMOTE was used to address the class imbalance
problem as well as to remove bias. Based on the balanced dataset, iPMI-Econ was de-
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veloped by using the RF model trained with the baseline clinicopathological factors that
were generally recognized prior to surgery and included age, parity, HIV infection status,
menopausal status, underlying diseases, prior conization, tumor size, stage, and histologi-
cal type. To maximize the utility of the baseline clinicopathological factors, we effectively
combined with pelvic node metastasis and uterine corpus metastasis to obtain iPMI-Power.
Our empirical studies based on cross-validation and independent tests demonstrated
the effectiveness of the iPMI-Power model by outperforming well-known ML classifiers,
e.g., DT, LR, MLP, NB, XGB, and SVM. In the case of the iPMI-Econ model, however, its
performance was worse than that of the well-known ML classifiers.

The necessity of parametrial removal by performing a radical hysterectomy for early-
stage cervical cancer patients, especially those with FIGO stage IA2 to small IB1 disease,
was challenged. In a recent meta-analysis addressing the impact of LVSI and pelvic node
metastasis on PMI, the reported prevalence of PMI in early-stage cervical cancer varied
from 0.6% to 32.5% in the 20 included studies [47]. Factors found to be associated with PMI
included large tumor size, pelvic node metastasis, LVSI, deep cervical stromal invasion,
histology, high tumor grade, uterine metastasis, and vaginal involvement. A subset of
patients at very low risk for PMI (risk < 1%) were identified with various combinations
of tumor sizes smaller than 2 cm, negative pelvic nodes, negative LVSI, and no more than
inner third cervical stromal invasion [6,48–52]. However, apart from the tumor size, other
factors incorporated in the proposed combinations could not be reliably determined before
surgery. In addition, for the remaining early-stage patients, the reliable prediction of PMI
was not attainable.

Landoni et al. examined the effects of simple extrafascial (class I) hysterectomy versus
radical (class III) hysterectomy in 125 patients with stage IB1 and IIA cervical cancer, with a
tumor size of ≤4 cm (class I 62 patients and class III 63 patients), in a randomized controlled
trial [53]. Sixty-nine percent of the patients in the class I group and 55% of those in the
class III group received adjuvant radiation (p = 0.11). Although recurrence rates were not
statistically different; 24% in the class I group and 13% in the class III group (p = 0.11), it
appeared worrisome for those who had a class I hysterectomy. Likewise, the overall five-
year survival rate was 85% for the class I group and 95% for the class III group (p = 0.11).
However, for patients with a tumor size of 3.1–4 cm, the authors noted a significant
difference in 15-year overall survival between the two study groups; 74% in the class I
group and 97% in the class III group (p = 0.03). Sia et al. recently reviewed the National
Cancer Database regarding the uses and outcomes of a simple hysterectomy versus a
radical hysterectomy for patients with stage IA2 and small IB1 (≤2 cm) [54]. Of 1530
women with stage IA2, 44.6% had a simple hysterectomy and for 3931 women with stage
IB1, 35.3% had a simple hysterectomy. For women with stage IA2, no association between
the type of hysterectomy and survival was identified; the hazard ratio (HR) of death was
0.70, with a 95% confidence interval (CI) 0.41–1.20. However, for patients with small stage
IB1 disease, those who underwent a simple hysterectomy had a 55% increase in the risk of
death (HR 1.55, 95% CI 1.18–2.03) compared with a radical hysterectomy. These findings
suggest that without a more accurate system for PMI prediction, liberal modifications of
surgical treatment for this particular group of patients could be potentially harmful.

Therefore, we aimed to develop a predictive model that could provide more accu-
rate information about the risk of PMI for individual patients enabling the classification
of patients based on risk. As the relationship between clinicopathological factors is fre-
quently non-linear, it is difficult for the conventional statistical model to serve this task.
A supervised machine learning model could effectively reduce bias and fit the data more
appropriately. For the model to be useful in clinical decision making, e.g., performing
a simple hysterectomy, proceeding with a radical hysterectomy, or switching to primary
chemoradiation, we employed clinicopathological factors that could potentially be deter-
mined prior to surgery. Given the known association between cervical cancer and low
socioeconomic status, we chose the factors that were accessible in low-resource settings. In
addition, the measurement of these factors was practical and reasonably reliable.
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We demonstrated that using combinations of both preoperative and postoperative
clinicopathological factors afforded better prediction results than employing only baseline
preoperative clinicopathological factors (Table 2). Additionally, the cross-validation and
independent test results revealed that the combination of baseline+pelvicme outperformed
the combinations of baseline+utmet and baseline+vgmet, indicating that pelvic node
metastasis was more effective and robust in discriminating PMI from non-PMI than uterine
corpus metastasis and vaginal metastasis. This finding was consistent with the findings
from all previous reports on risk factors for PMI in early-stage cervical cancer [6,48,49,51].
Among the various combinations of predicting factors, the baseline+pelvicme+utmet
combination offered the best performances in both the 10-fold cross validation of the
training set and the independent dataset testing, leading to the proposed iPMI-Power
model. The model outperformed other well-known ML classifiers. Of note, although the
iPMI-Econ, which was a simpler and more economical model, delivered an impressive
performance in the 10-fold cross validation of the training dataset, this could not be
reproducible in the validation phase using the independent dataset.

The two versions of our model, the iPMI-Econ and the iPMI-Power, served the same
purpose—predicting PMI in women with stage IA2-IIA cervical cancer. In the situation that
PMI is predicted (high probability for PMI), primary concurrent chemoradiation should be
seriously considered while a radical hysterectomy and a pelvic lymphadenectomy remains
an alternative option. On the other hand, if no PMI is predicted (low probability for PMI),
a simple hysterectomy could reasonably be proposed in place of a radical hysterectomy
combined with a pelvic lymphadenectomy. It should be noted however, that the results of
this study should be considered exploratory at this stage and further validation studies in
similar and different populations are clearly needed before any real clinical applications.
In addition, further prospective studies comparing simple versus radical hysterectomies
would still be worthwhile. In this case, we believe the proposed iPMI-Power model could
be applied for better and safer participant selection and recruitment. To achieve the perfor-
mance benefits of the iPMI-Power, additional information on pelvic node metastasis and
uterine corpus invasion is needed. The lymph node metastasis status can be evaluated by
imaging including MRI, CT, PET, PET-CT, and PET-MRI or by the pathological assessment
of lymph nodes obtained before surgery as a separate procedure, or during surgery with
consideration of the sentinel lymph node procedure [3]. In fact, by adding only the pelvic
lymph node status to the iPMI-Econ model, the predictive accuracy readily improved from
75.6% to 84.6% and the sensitivity increased from 26.7% to 56.7% with high specificity. The
idea of adding uterine corpus invasion to the model is debatable and challenging. Gener-
ally, uterine corpus invasion was a histologic finding from a hysterectomy specimen and
would not be detectable on clinical evaluation. Some authors suggested the possible role of
pretreatment MRI in detecting uterine corpus invasion [55]. However, further studies are
needed to address its accuracy. The possibility and reliability of employing transvaginal
ultrasound and endometrial aspiration biopsy in assessing cervical cancer invasion to the
uterine corpus should be further explored. Importantly, additional risk and expense from
these extra procedures are a substantial trade-off and should be weighted carefully with
the model’s predictive benefit. Furthermore, the proposed model has been developed from
data retrospectively collected and stored in our division database. Inherent inaccuracy
and incomplete data collection could naturally be expected. At our institution, serum
biomarkers were not collected prior to the surgery for early-stage cervical cancer. Therefore,
we did not have this information available for the model development. This could be
considered another limitation of this study and the potential role of the biomarkers as
predictors for PMI clearly deserves further evaluation. In addition, as the model is based on
the single institutional data, generalizability to other population needs further exploration.

5. Conclusions

In this study, we proposed iPMI (i.e., iPMI-Power and iPMI-Econ), an RF-based
predictor for the identification of cancer metastasis in the parametrium in patients with
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early-stage cervical cancer, who were typical candidates for primary radical surgery. To the
best of our knowledge, the iPMI model is the first ML-based predictive model designed
for the identification of PMI in early-stage cervical cancer patients. The iPMI model may
accurately predict PMI in early-stage cervical cancer patients who are surgical candidates.
It may provide a simpler, inexpensive, and effective method to guide important clinical
decision-making. However, before the model can be implemented at the point of care, it
should be further validated in larger external cohorts and updated to confirm its predictive
performance in particular populations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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