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Abstract: Metabolic flexibility is the ability to efficiently adapt metabolism based on nutrient 
availability and requirement that is essential to maintain homeostasis in times of either caloric 
excess or restriction and during the energy-demanding state. This regulation is orchestrated in 
multiple organ systems by the alliance of numerous metabolic pathways under the master 
control of the insulin-glucagon-sympathetic neuro-endocrine axis. This, in turn, regulates key 
metabolic enzymes and transcription factors, many of which interact closely with and culmi-
nate in the mitochondrial energy generation machinery. Metabolic flexibility is compromised 
due to the continuous mismatch between availability and intake of calorie-dense foods and 
reduced metabolic demand due to sedentary lifestyle and age-related metabolic slowdown. The 
resultant nutrient overload leads to mitochondrial trafficking of substrates manifesting as 
mitochondrial dysfunction characterized by ineffective substrate switching and incomplete 
substrate utilization. At the systemic level, the manifestation of metabolic inflexibility com-
prises reduced skeletal muscle glucose disposal rate, impaired suppression of hepatic gluco-
neogenesis and adipose tissue lipolysis manifesting as insulin resistance. This is compounded 
by impaired β-cell function and progressively reduced β-cell mass. A consequence of insulin 
resistance is the upregulation of the mitogen-activated protein kinase pathway leading to a pro- 
hypertensive, atherogenic, and thrombogenic environment. This is further aggravated by 
oxidative stress, advanced glycation end products, and inflammation, which potentiates the 
risk of micro- and macro-vascular complications. This review aims to elucidate underlying 
mechanisms mediating the onset of metabolic inflexibility operating at the main target organs 
and to understand the progression of metabolic diseases. This could potentially translate into 
a pharmacological tool that can manage multiple interlinked conditions of dysglycemia, 
hypertension, and dyslipidemia by restoring metabolic flexibility. We discuss the breadth and 
depth of metabolic flexibility and its impact on health and disease. 
Keywords: metabolic flexibility, DBCD, insulin resistance, prediabetes, diabetes, 
microvascular and macrovascular complication

Introduction
There is an alarming surge in the prevalence of diabetes globally, and it has become 
a significant public and economic health burden. According to the 2019 International 
Diabetes Federation (IDF) estimates, the global prevalence of Type 2 diabetes mellitus 
(T2DM) is 463 million (9.3%) and is projected to reach 578 million (10.2%) by 2030.1 

Among these, the second-highest number of people with diabetes after China is in India 
(69.2 million), and it is estimated to increase to 123.5 million by 2040. In the latest report 
of the Indian Council of Medical Research (ICMR), the estimated prevalence of diabetes 
and prediabetes was 7.3% and 10.3%, respectively, indicating a large pool of individuals 
at the risk of T2DM.2
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To add to the complexity, the young Asian Indian popula-
tion has a unique phenotype distinguishable from the western 
population characterized by the higher incidence of insulin 
resistance (IR), increased levels of triglyceride (TG) and 
small low-density lipoprotein (LDL) and, decreased levels 
of high-density lipoprotein (HDL), adiponectin, and β-cell 
mass.3,4 ICMR-INDIAB study estimates the prevalence rate 
of low HDL, hypertriglyceridemia, and high LDL to be 
72.3%, 29.5%, and 11.8%, respectively.5 Similarly, Yadav 
et al noted an increased occurrence of dyslipidemia (64%) 
and hypertension (49%) in patients with T2DM.6 

Collectively, the evidence suggests that young Asian 
Indians are at a higher risk for IR despite a low body max 
index (BMI) due to increased waist circumference, visceral 
fat, and increased prevalence of dyslipidemia.7,8 This obser-
vation is of grave concern considering that IR triggers not 
only an increased risk of prediabetes and, subsequently, 
T2DM but also carries an inherent risk of micro- and macro- 
vascular diseases. Consequently, there is a recognition of the 
need for a renewed focus on prevention by intervening in the 
early phase of the disease.9

For decades, studies related to metabolic disorders have 
focused on the metabolic pathways or target organs that 
involved regulation of metabolism at different levels inde-
pendent of each other. Lifestyle and drug interventions, such 
as those focusing on simultaneously reversing multiple path-
ways, had limited success. Besides, these interventions failed 
to stop the progression of β-cell dysfunction and reduction of 
micro- and macro-vascular complications. Interestingly, 
these conditions frequently co-exist in individuals at the 
stage when they are not frankly diabetic, ie, prediabetes.10,11 

Prediabetes predisposes individuals to a higher risk of T2DM 
than the general population.12 Observational studies have 
also shown the association between prediabetes and the 
development of microvascular changes manifesting as neuro-
pathy, nephropathy, retinopathy, and macro-vascular 
complications.13–16 In general, the onset of IR plays 
a fundamental role in the early development of the disease 
spectrum of prediabetes, T2DM, micro- and macro-vascular 
complications.17–19 Recently, the disease spectrum has been 
redefined as Dysglycemia-Based Chronic Disease 
(DBCD).20 The DBCD model positions prediabetes and 
T2DM along a continuous spectrum of IR-prediabetes- 
T2DM-vascular complications to bring focus onto diagnos-
ing an actionable condition and developing means to address 
it more efficiently and in a cost-effective manner (Figure 1).

Evidence is now gathering, which suggests metabolic 
inflexibility as the underlying mechanism that interlinks 

the defect across the disease spectrum, and which lies in 
the human evolutionary history. Adaptive obesity was 
deemed advantageous in the harsh environment aiding 
“survival of the fittest,” and provided the human organism 
tools to cope with metabolic challenges induced by food 
deprivation due to the regular occurrence of famine. With 
limited food availability, adaptive obesity enabled humans 
to adjust their energy needs to develop a flexible metabo-
lism, ie, efficiently adapt metabolism depending on 
demand and supply.21 The term “Metabolic flexibility” is 
the ability to efficiently adapt substrate utilization, ie, 
glucose or fatty acids (FA), based on nutrient availability 
and requirements. However, in the modern era of nutrition 
excess, adaptive obesity has become an adaptation that has 
led to negative consequences.22 Overnutrition, at the sup-
ply end and sedentary lifestyle coupled with an age-related 
slowing of basal metabolism on the demand side, has 
resulted in a state of “metabolic inflexibility.”23 In general, 
the metabolically “inflexible” individual cannot switch 
between FA and glucose for fuel oxidation in response to 
metabolic demands thereby leading to nutrient overload 
and dysregulation of energy homeostasis.24 Extensive 
research suggests that IR is the key component of meta-
bolic inflexibility that encompasses defects in skeletal 
muscle, white adipose tissue (WAT), and liver causing 
dysglycemia, hypertension, and hyperlipidemia.10,25,26

Therefore, the pathophysiological basis of metabolic flex-
ibility linking multiple components of the DBCD spectrum 
provides a more holistic approach in managing the disease. 
Surprisingly, very few studies have investigated the vicious 
synergy between multiple independent and interdependent 
mechanisms involving glycemic and hemodynamic dysfunc-
tion, lipotoxicity, glucotoxicity, and oxidative and non- 
oxidative inflammatory state in DBCD. This review discusses 
the cellular, biochemical, physiological, and morphological 
consequences of metabolic inflexibility leading to the disease 
spectrum of IR-prediabetes-T2DM-vascular complications 
and causative linkage to hypertension and dyslipidemia seen 
in this population.

Metabolic Flexibility and Its 
Physiological Relevance in 
Maintaining Energy Homeostasis
Mitochondria, the powerhouse of the cell, plays 
a critical role in the generation of energy from the 
three sources, namely glucose, FA, and amino acids. 
These macromolecules are metabolized through the 
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pathways that are compartmentalized within the cell. 
Metabolic processes such as glycolysis, glycogenesis, 
glycogenolysis, pentose phosphate pathway, and lipo-
genesis occur in the cytosol. On the other hand, 
enzymes of the citric acid cycle, β-oxidation of FA, 
respiratory chain, and adenosine triphosphate (ATP) 
synthase are present in mitochondria. Besides, the endo-
plasmic reticulum contain the enzymes for several other 
processes, including triacylglycerol synthesis. Among 
these metabolic reactions, acetyl coenzyme A (Acetyl 
CoA) serves as an intermediate substrate that feeds into 
the tricarboxylic cycle (TCA), generating high energy 
molecules nicotinamide adenine dinucleotide (NADH) 

and flavin adenine dinucleotide (FADH2). These redu-
cing equivalents generate ATP after transversing through 
a series of reactions in the mitochondrial complexes 
through the electron transport chain (ETC) located in 
the inner mitochondrial membrane through the process 
of oxidative phosphorylation (OXPHOS) (Figure 2).

Under normal circumstances, a diurnal oscillation 
between the usage of substrates, namely FAs and glucose, 
occur based on the nutritional supply and physiological 
demands. The intake of meals determines the supply side, 
and so the mitochondria flexibly utilize these substrates 
under different physiological conditions, namely, fed and 
fasting states.

Figure 1 Key features of dysglycemia-based chronic disease and the insulin resistance-prediabetes-type 2 diabetes spectrum. Insulin resistance is the driving factor leading to 
prediabetes, diabetes, micro- and macro-vascular complications.

Figure 2 Overview of macromolecule metabolism for generating ATP. 
Abbreviations: ADP, adenosine diphosphate; ATP, adenosine triphosphate; TCA, tricarboxylic acid cycle.

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021:14                                         submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
167

Dovepress                                                                                                                                                            Kalra et al

http://www.dovepress.com
http://www.dovepress.com


Metabolism in Post-Prandial Condition
After the consumption of a meal, there is an ample supply 
of carbohydrates, amino acids, and fats. Increased blood 
glucose concentration in the portal blood stimulates pan-
creatic β cells and the parasympathetic nervous system 
leading to insulin secretion into the bloodstream.27 Under 
insulin-stimulated conditions, glucose is a major fuel for 
oxidation in most tissues, and the excess supply is con-
verted into and stored, mainly as triacylglycerol in WAT. 
Under the influence of insulin, the absorption of glucose is 
initiated in the peripheral tissues, including skeletal mus-
cles, WAT, liver, cardiomyocytes, and the brain, and con-
versely, the mobilization of endogenous carbohydrate and 
lipid stores is suppressed under these conditions28 

(Figure 3).
After absorption of nutrients, the liver receives a wide 

range of nutrients, including carbohydrates, amino acids, 
and short-chain FAs. Among these, glucose enters the 
hepatocytes directly, independent of insulin via glucose 
transporter, GLUT2.29 In hepatocytes, regulation happens 
at the level of glucokinase (GK) enzyme under the 

influence of insulin, which catalyzes the phosphorylation 
of glucose to glucose-6-phosphate (G-6-P), which is essen-
tial for committing glucose to glycolytic, glycogenesis, or 
lipogenic pathways.30 Subsequently, G-6-P may follow 
a number of metabolic pathways, including glycogen 
synthesis, hexosamine pathway, pentose phosphate path-
way, and oxidative routes.31 Amongst these, insulin stimu-
lates glycogen synthesis and suppresses hepatic 
gluconeogenesis and glycogenolysis.32 When the liver 
glycogen stores are replenished, glucose undergoes glyco-
lysis, and generates pyruvate, which gets oxidized in the 
mitochondria through pyruvate dehydrogenase (PDH) to 
generate acetyl-CoA. In the presence of excess energy as 
in the fed state, acetyl-CoA is transferred to the cytosol 
and then carboxylated to form malonyl CoA by acetyl 
CoA carboxylase (ACC).33 The malonyl CoA, an essential 
regulator of de novo lipogenesis, is utilized through fatty 
acid synthase (FAS) reactions to generate FAs, which is 
then utilized to synthesize TGs. Besides, malonyl-CoA 
inhibits the carnitine palmitoyltransferase-I (CPT1), 
thereby suppressing fatty acid oxidation (FAO), which is 

Figure 3 Regulation of blood glucose via insulin and glucagon feedback.
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not required at this stage due to the abundance of carbo-
hydrate. In these pathways, insulin is involved in inducing 
these rate-limiting enzymes; namely, FAS and ACC, to 
drive carbohydrate utilization, de novo lipogenesis, inhibit 
fat utilization, and promote storage (glycogen and trigly-
cerides) of excess nutrients (Figure 4). Consequently, 
newly formed endogenous TGs are incorporated into 
very low density lipoprotein (VLDL) for transport to 
WAT for storage34 (Figure 5).

In the WAT and skeletal muscle, insulin binds to insu-
lin receptor substrate (IRS), leading to active recruitment 
of glucose transporters (GLUT), mainly GLUT1/4, to the 
plasma membrane, allowing rapid removal of glucose 
from circulation35 (Figure 4). Approximately 80% of the 
glucose utilization is accounted for by skeletal muscle due 
to its large mass compared to other tissues, and this glu-
cose is then incorporated into glycogen.36 These storage 
reserves serve as a local energy source in the muscle for 
exercise and not for fasting as muscles lack glucose 
6-phosphatase essential for conversion to glucose, wherein 
it depends on hepatic gluconeogenesis to provide the fuel 
source. In fact, during exercise, these muscle glycogen 

stores are broken down to lactate, which is then trans-
ported to the liver to be recycled to glucose and maintain 
euglycemia.37

Besides glucose, blood also has a high concentration of 
FAs available from chylomicrons for systemic utilization 
or storage. These FAs are delivered to the tissue expres-
sing lipoprotein lipase (LPL) bound to endothelial cells of 
capillaries, including skeletal muscle and WAT. The LPL 
is activated in response to insulin and increases the re- 
esterification of FA into TG for storage in WAT.38 The 
storage of TGs differs between males and females.39 

Females preferentially store TG derived FAs in the gluteo- 
femoral subcutaneous WAT. In contrast, males store meal 
derived FAs in the visceral WAT.40 Some of the non- 
esterified fatty acids (NEFA) are released in the plasma 
and are bound to albumin. The liver takes up FAs in 
various forms and packages and liberates TGs and FA as 
VLDL particles.41 Similarly, skeletal muscles can take up 
FAs from the plasma circulating TGs in chylomicron or 
VLDL and from the albumin-bound NEFA pool through 
the action of LPL. The FAs enter muscle through facili-
tated diffusion or the fatty acid transport protein (FATP) 

Figure 4 Mechanism of inhibition of fatty acid oxidation in mitochondria in post-prandial state. Malonyl CoA generated from acetyl CoA derived from utilization of 
carbohydrates through glycolysis and TCA cycle by acetyl CoA carboxylase, inhibits the entry of long-chain fatty acyl CoA into mitochondria. 
Abbreviations: ATP, adenosine triphosphate; ACC, acetyl CoA carboxylase; CPT, carnitine palmitoyltransferase; FAS, fatty acyl synthase; LDH, lactate dehydrogenase; 
TCA, tricarboxylic acid cycle; PDH, pyruvate dehydrogenase.
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and are stored as lipid droplets, often in close contact with 
mitochondria34 (Figure 5).

In cardiomyocytes, glucose uptake occurs through 
insulin-independent (GLUT1) and insulin-dependent 
(GLUT4) transporters.42 After glucose uptake, it is phos-
phorylated by hexokinase to G-6-P, which can then 
undergo a metabolic pathway similar to the hepatocyte. 
Pyruvate derived from the glycolysis can either be con-
verted to lactate by lactate dehydrogenase (LDH) or trans-
ferred to the mitochondria matrix, where PDH catalyzes 
the conversion of pyruvate to acetyl CoA. The fate of 
acetyl CoA appears to be similar, as described above, for 
the liver, while many of the features of FA metabolism in 
the fed state are similar to skeletal muscle.

As described above, the system functions efficiently in 
the feeding state in the presence of an adequate supply of 
glucose to meet the immediate energy demand through the 
glycolytic pathway, thereby generating reducing equiva-
lents. These reducing equivalents are used for ATP gen-
eration in the mitochondria and for converting excess 
glucose into FA by the FA synthetic pathway in different 
tissue.

Metabolism in Fasting Conditions
The metabolic rate is not substantially affected in that 
there is a continued need for oxidative metabolism to 
meet basal energy demands. In a fasted state, the metabolic 
fuel switches from glucose to FA in most tissues except 
the brain and red blood cells.43 During the initial stages of 
fasting (8–12 hours), the glucose level in the portal blood 
coming from the intestine declines, leading to a drop in 
insulin levels. In response to dropping blood glucose level, 
α-cells of the pancreas release hormone glucagon,44 and 
adrenal glands stimulate epinephrine release.45 There is 
less glucose available for target tissues, ie, skeletal muscle 
and WAT, and simultaneously, the conversion of glucose to 
glycogen and TG storage slows down. As a result, there is 
the mobilization of TGs contained within WAT. Hormone- 
sensitive lipase is activated by glucagon resulting in 
hydrolysis of TGs to give NEFAs and glycerol.46 The 
circulating NEFAs are bound to albumin and/or released 
from triacylglycerols (TAG) contained in chylomicrons or 
very-low-density lipoproteins (VLDL). There is also an 
increased release of glycerol from the WAT, which serves 
as a precursor for gluconeogenesis in the liver.

Figure 5 Lipid transport and storage.
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In the liver, glucagon inhibits glycogenesis and stimu-
lates glycogenolysis to increase blood glucose levels.47 

The glycerol released from hydrolysis is converted into 
glucose; however, this remains a minor source of glucose. 
The peripheral tissue and the brain use the glucose 
released from the liver. As blood glucose levels continue 
to fall, insulin secretion remains suppressed while the 
glucagon and epinephrine stimulate glycogenolysis 
through activation of glycogen phosphorylase, catalyzing 
the breakdown of glycogen. Concurrently, gluconeogen-
esis also begins in the liver to replace the glucose that has 
been used by the peripheral tissues.48 There is concomitant 
suppression of lipogenesis and activation of FAO. 
Inhibition of glucose utilization by FAO is mediated by 
inhibition of pyruvate dehydrogenase and phosphofructo-
kinase. PDH inhibition is caused by acetyl CoA, NADH 
accumulation, and inactivation by Pyruvate dehydrogenase 
kinase (PDK) resulting from FAO, while citrate causes 
inhibition of PFK. Glucagon mobilizes glucose from the 
available sources including, FAs, glycogen, glycerol, 
amino acids, and lactate through gluconeogenesis.

In other peripheral organs such as skeletal muscle and 
cardiomyocytes, the extracellular FAs are transported into 
the cell through passive diffusion or via FATP or fatty acid 

translocase. Once FAs are in the cytosol, they are esterified 
to acyl-CoA and are shuttled directly into the mitochondria 
for FAO. Consequently, FAO increases the proportion of 
acetyl CoA, which allosterically inhibits PDH and acti-
vates PDK leading to suppression of glucose oxidation as 
this is not the fuel of choice under fasting condition due to 
its limited availability.49 Besides, activation of AMP- 
activated kinase (AMPK) due to increased AMP/ATP 
ratio leads to simultaneous activation of CPT-1 and inhibi-
tion ACC, resulting in increased FAO (Figure 6). 
Simultaneously, as gluconeogenesis depletes oxaloacetic 
acid levels in the TCA cycle, acetyl CoA can no longer 
be used by the mitochondria and therefore is diverted to 
ketone body (KB) production. From then on, FAO and 
KBs meet the whole-body energy requirements, especially 
during prolonged fasting.50

Thus, the switch between the fuel substrate to meet 
energy demands is mainly mediated through counter- 
regulatory hormones, with mitochondria being a critical 
driving force from the nutritional and physiological per-
spective. In the fed state, mitochondria sense the fuel 
source availability and activate appropriate enzymes to 
utilize glucose preferentially in most tissue to generate 
adequate reducing equivalents to meet ATP generation 

Figure 6 Metabolism in fasting condition. Inhibition of glucose utilization by fatty acid oxidation mediated by inhibition of pyruvate dehydrogenase and phosphofructokinase. 
Abbreviations: ATP, adenosine triphosphate; ACC, acetyl CoA carboxylase; Cyt C, cytochrome C; CoQ, coenzyme Q; CPT, carnitine palmitoyltransferase; FAS, fatty acyl 
synthase; DHAP, dihydroxyacetone phosphate; LDH, lactate dehydrogenase; NAD/NADH, nicotinamide adenine dinucleotide; PFK, phosphofructokinase; PEPCK, phos-
phoenolpyruvate carboxykinase; PDH, pyruvate dehydrogenase; TCA, tricarboxylic acid cycle.
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requirement and store the excess. On the other hand, in the 
fasting state, the mitochondrial requirement for reducing 
equivalents for ATP generation by the ETC drives FAs 
mobilization from the WAT stores. With glycolysis no 
longer generating NADH and NADPH, there is the release 
of inhibition of CPT-1 to drive FA towards generating 
reducing equivalents through the TCA cycle to provide 
for the ETC cycle to continue generating the ATP to meet 
energy demand.

Metabolism in Caloric Restriction or 
Prolonged Fasting
During caloric restriction (CR) or prolonged fasting, besides 
FAs, ketone bodies (KB) and branched-chain amino acids 
(BCAAs) also provide an excellent source of energy. KBs 
synthesized in the liver through ketogenesis play a critical 
role in survival during the energy crisis by serving as 
a substrate for the brain and heart as the body glucose levels 
are low, and free fatty acid (FFA) cannot cross the blood- 
brain barrier. The synthesis of KBs, acetoacetate, and 
3-beta-hydroxybutyrate is markedly increased due to excess 
supply of acetyl CoA from the breakdown of FA. Also, 
BCAAs are consumed in response to a protein-rich diet and 
prolonged fasting in the liver.51 The branched-chain α- 
ketoacid dehydrogenase (BCKD) complex, the rate- 
limiting enzyme in mitochondria, is inhibited by acyl-CoA 
and NADH, ensuring conservation of cellular proteins dur-
ing short interval fasting or light exercise.52,53

Within 2 days of CR, whole body FA metabolism 
changes occur, and there is a shift to a diurnal cyclic 
pattern. In the initial phase lasting for 4–6 hours after 
food intake, there is elevated endogenous FA synthesis in 
the WAT, followed by a prolonged period of FA 
oxidation.54,55 In the second phase, FAs are effectively 
mobilized from WAT and oxidized in the mitochondria in 
the peripheral organs. Since this occurs where energy 
demand exceeds supply, the efficiency of FAO is explicitly 
increased in the muscle and the liver. Ratios of NAD+/ 
NADH and the resultant redox state of the cell trigger 
activation of nuclear-encoded genes, including FoxO1, sir-
tuin-1 (SIRT 1), and Peroxisome proliferator-activated 
receptor-gamma co-activator (PGC-1α) activity, which in 
turn regulate enzymes in the metabolic pathway to facilitate 
utilization of the available fuel substrate and mitochondrial 
oxidative function regulating energy homeostasis.56

Furthermore, the shift to FAO with efficient mitochon-
drial function reduces the production of reactive oxygen 

species (ROS), attenuating oxidative damage and main-
taining the cellular redox balance.57,58 Energy depletion is 
marked by the accumulation of adenosine monophosphate 
(AMP), an impending energy crisis activates the serine/ 
threonine AMP-activated protein kinase (AMPK). AMPK 
interrupts ATP-consuming reactions and activates ATP- 
generating pathways, thereby promoting mitochondrial 
biogenesis. Energy homeostasis by the mitochondria in 
the face of changes in nutrient availability is regulated in 
part by the NAD-dependent deacetylase, SIRT1. During 
nutrient depletion, SIRT1, in response to increased NAD 
+/NADH ratio, deacetylates PGC-1α, allowing the co- 
activator to facilitate target gene transcription, which reg-
ulates lipid homeostasis in the liver during fasting and 
starvation through nuclear peroxisome proliferator- 
activated receptors (PPAR).59 Simultaneously, it also 
directly regulates the activity of acetyl-CoA synthetases 
through deacetylation, thereby regulating upstream path-
ways providing reducing equivalents for the generation of 
ATP.60 Therefore, CR may be another beneficial way of 
improving mitochondrial function inducing changes in 
macronutrient metabolism, specifically FA synthesis and 
FAO, thereby restoring metabolic flexibility.

During exercise, the oxidative metabolism of glucose 
and FAs provides almost all of the ATP required for the 
exercise, the two substrates being utilized differentially 
depending on the intensity and duration of the increased 
energy demand. Among all tissues, skeletal muscles use 
more than 95% of energy requirement, and the major 
substrates for oxidation are glycogen, TGs, FAs, and 
plasma glucose.61 The glucose is derived from liver gly-
cogenolysis and gluconeogenesis and also directly through 
diet. FAs derived from both WAT and intramuscular TG 
breakdown is another source of the substrate.

In the skeletal muscle, the substrate uptake and oxida-
tion are highly dependent on the intensity and duration of 
the exercise. FAO dominates in the low-intensity exercise 
up to ~60– 65% VO2 max.62 With increasing intensity of 
exercise, the fuel switches to muscle glycogen and glucose 
to meet energy demand efficiently, reduced FA delivery 
and lower mitochondrial FAO secondary to glycolytic 
flux.63 The increase in skeletal muscle glucose uptake is 
due to enhanced liver glucose output, initially from glyco-
genolysis, but later from gluconeogenesis with increasing 
intensity of exercise.

However, there is increased pyruvate production with 
accelerated glycolysis, more than mitochondrial intake 
capacity. So the pyruvate is converted into lactate in the 
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cytosol, resulting in the replenishment of NAD+. Increased 
NAD+-NADH ratio generation promotes substrate flux for 
sustained glycolysis for ATP generation.31 Sustained 
endurance training diminishes lactate formation due to 
the increased efficiency of OXPHOS.64 Skeletal muscle 
senses limitation in glucose availability and adapt metabo-
lically by SIRT1-dependent deacetylation of transcrip-
tional regulators PGC-1α and FOXO1, culminating in 
transcriptional modulation of mitochondrial and lipid uti-
lization genes.65 Interestingly, with longer duration of 
exercise, FAs from WAT (subcutaneous > visceral) make 
more significant contribution to overall energy supply due 
to exercise mediated adrenergic activation.66 Therefore, 
sustained regular exercise can upregulate glucose and FA 
metabolism and improve the state of metabolic 
inflexibility.

Hormones Involved in Maintaining Energy 
Homeostasis
Insulin
Insulin is an anabolic hormone in energy homeostasis. In 
healthy, non-obese individuals, post-meal, glucose enters 
β-cells of the pancreas through the GLUT2 transporter, 
and go through the glycolytic pathway and subsequently 
through OXPHOS to generate ATP. The rise in the ATP- 
ADP ratio leads to the closure of ATP-sensitive potassium 
channels, which in turn, depolarizes cell membranes. 
Consequently, it opens voltage-gated Ca2+ channels, 
resulting in Ca2+ influx into the cells triggering the initial 
phase of insulin secretion from prestored insulin in intra-
cellular secretory vesicles.67 In the second phase, 1–2 
hours after a meal, there is new recruitment of insulin 
secretory vesicles to the β-cell membrane resulting in 
slow and sustained insulin release from the pancreas in 
a pulsatile manner until blood glucose remains elevated.68 

Insulin binds to IRS and triggers intracellular signaling 
cascade by activation of two pathways; the phosphatidyli-
nositol-3-kinase (PI3K) and Mitogen-Activated Protein 
Kinase (MAPK).69 The PI3K pathway is responsible for 
metabolic action, while the MAPK pathway regulates gene 
expression and mitogenic effect.70 The metabolic actions 
primarily result in post-meal utilization of carbohydrates 
as preferred fuel and storage of excess as glycogen and 
after conversion to fat.

Besides metabolic fuel disposal and storage in tissues, 
insulin plays a crucial role in cardiac contractility and 
vascular tone.71 It causes vasodilation through the release 

of endothelium-derived nitrous oxide (NO) and increases 
capillary recruitment through its action on vascular endothe-
lium leading to increased delivery of the hormone as well as 
glucose.72,73 Besides, insulin also exerts vasoconstriction 
through the Endothelin-1 (ET-1)74 and increased expression 
of vascular cell adhesion molecule (VCAM-1), intracellular 
adhesion molecule (ICAM), and E-selectin on endothelium 
mediated by MAPK pathway.75,76

Glucagon
Glucagon, a key catabolic hormone secreted by the α-cells 
of the pancreas, maintains the glucose concentration in the 
narrow range. The hormone mediates its glucoregulatory 
effects, mostly in the liver.77 When the glucose concentra-
tion falls below the threshold, the glucagon hormone sti-
mulates hepatic glucose production, initially through 
glycogenolysis followed by gluconeogenesis. It also 
induces amino acid uptake except for BCAA to generate 
glucose through gluconeogenesis.78 Alternatively, the ala-
nine released from the skeletal muscle during prolonged 
fasting is also used for gluconeogenesis. Glucagon also 
inhibits glycogenesis. Besides inducing FAO, it also sti-
mulates ketogenesis, increasing β-hydroxybutyrate and 
acetoacetate production in the prolonged fasting state.79 

Similarly, in WAT, glucagon increases lipolysis in elevat-
ing the plasma level of free FAs and induces FAO in the 
liver.80 As a result, glucagon is one of the major driving 
forces for metabolic adaptation by facilitating fuel avail-
ability in conditions such as starvation, exercise, and meta-
bolic stress.

Renin-Angiotensin-Aldosterone System (RAAS)
There is evidence demonstrating the role of RAAS in the 
regulation of metabolic and hemodynamic function. 
RAAS interacts with insulin at extra- and intra-cellular 
level.81 Extracellularly, the RAAS controls bradykinin 
release that enhances insulin sensitivity in adipocytes via 
a NO-dependent pathway.82 Intracellularly, angiotensin II 
(ANG) opposes the action of insulin by inhibition of the 
PI3K pathway and its downstream kinases mediating both 
metabolic and hemodynamic effects, including vasocon-
striction, adrenal aldosterone release, and glucose uptake 
in the target organs. Besides, ANG binding to angiotensin- 
1 (AT1) receptor inhibits insulin-induced NO production 
by rapid phosphorylation of tyrosine residues in Janus 
kinase-signal transducer and activator of transcription 
(JAK/STAT) pathway, activation of ERK1/2 pathway, 
and JNK pathway.83,84 As a result, ANG impairs the 
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vasodilatory effects of insulin-mediated via the PI3K 
pathway.

Further, activation of the ANG – AT1 pathway rapidly 
generates ROS, impairing glucose uptake as well as caus-
ing endothelial and B-cell dysfunction.85,86 In contrast, 
Ang (1-7) induces vasodilation, diuresis, and natriuresis 
and inhibits cell growth and nor-epinephrine release.87,88 

Aldosterone might exert direct effects on insulin receptors, 
and recent experiments indicate that aldosterone might 
decrease insulin sensitivity in human adipocytes.89 

Conclusively, RAAS acts directly in WAT, skeletal muscle, 
liver, and the pancreas modulating both central and per-
ipheral insulin sensitivity.90

Other Factors Regulating Metabolic Flexibility
Besides insulin and glucagon, several other glucoregula-
tory hormones also influence metabolic flexibility, such as 
growth hormone (GH), thyroid hormones (TH), glucocor-
ticoids, catecholamines, adiponectin, aldosterone, gluca-
gon-like peptide 1 (GLP-1), gastric inhibitory peptide 
(GIP), inflammatory factors secreted by the WAT, skeletal 
muscle, and the liver. These other hormones play 
a substantial role and maintain circulating glucose concen-
trations in the narrow range by controlling lipolysis 
through direct or indirect pathways, especially under 
stress. GH can exert lipolytic and ketogenic effects in the 
exercise and fasting over 2–3 hours.91 Strangely, glucocor-
ticoids exert a similar effect to GH, exerting catabolic 
actions acutely by increasing the availability of substrate 
for mitochondrial oxidation.92 In the liver, it counterba-
lances the insulin action by promoting hepatic gluconeo-
genesis and increase glycogen storage. Conversely, in the 
skeletal muscle and WAT, it inhibits glucose uptake and 
utilization, which is critical during periods of stress, for 
instance, during fasting/starvation.93 It affects the function 
of the pancreas by increasing glucagon secretion.94

Similar to GH, the effect of TH is pervasive across 
various tissues via several mechanisms. Its action is 
mediated by cytoplasmic or mitochondrial receptors or 
through non-specific binding proteins that alter signaling 
cascade.95–97 TH regulates metabolic rate and adiposity 
through its direct effect on receptors that are expressed 
in the hypothalamus, WAT, brown adipose tissue (BAT), 
skeletal muscles, and liver, modulating glucose and lipid 
metabolism. In BAT tissue, TH regulates uncoupling pro-
tein (UCP1) expression, mitochondrial biogenesis, adipo-
cyte differentiation, increases FAO and lipogenesis.98 

Interestingly, browning (differentiation from WAT to 

BAT) has been reported on exposure to cold.99,100 Like 
BAT, in WAT, TH mobilizes fat, leading to increased FAs 
in the blood.101 It also enhances FAO in the liver and the 
muscle through AMPK dependent and independent 
mechanism.102 In the pancreas, TH is required for the 
physiological maturation of pancreatic β-cells to glucose- 
stimulated insulin-secreting cells.103 Besides, it also 
enhances the insulin-dependent entry of glucose via 
GLUT 4 and induces skeletal muscle fiber shift, thereby 
increasing energy expenditure.104

GLP-1 and GIP are insulinotropic hormones released 
from the gastrointestinal tract and stimulate pancreatic β- 
cells to release insulin and decrease glucagon secretion 
from α-cells.105 Together these gastrointestinal hormones 
promote β-cell proliferation and inhibit apoptosis, thereby 
countering hyperglycemia.106 The hormone, amylin, 
secreted by β-cells, complements the effects of insulin- 
lowering effect of glucose concentration by delaying sto-
mach emptying and suppressing glucagon secretion. The 
hormone leptin secreted from adipocytes exerts its physio-
logical effect by suppressing food intake and increasing 
energy expenditure via the hypothalamic circuit. It reduces 
lipogenesis and increases the FAO of non-adipocyte 
tissues.107 Another hormone from WAT, adiponectin, 
enhances insulin sensitivity through FAO and inhibition 
of hepatic gluconeogenesis.108

Amongst catecholamine, nor-adrenaline modulates 
metabolic homeostasis directly by lipolysis through adre-
nergic receptors expressed on WAT and indirectly by reg-
ulating blood flow to WAT.109 Besides catecholamine, 
aldosterone secreted from the adrenal cortex regulates 
sodium homeostasis controlling blood pressure and 
volume. It modulates insulin function and glucose meta-
bolism through the mineralocorticoid receptor, adversely 
affecting vascular function by reducing NO production and 
increasing ROS causing endothelial dysfunction and VSM 
remodeling.110,111

Epigenetic Regulation of Energy Homeostasis
Besides hormonal regulation, epigenetics, ie, the complex 
interaction between environment and genome, also influ-
ences critical periods of embryonic, fetal, and early post-
natal life that can affect metabolic flexibility with 
a permanent consequence.112 Research data on animal 
models and human studies indicate that epigenetic dysre-
gulation can cause obesity. For example, comparisons of 
siblings before and after maternal bariatric surgery showed 
that maternal obesity before and during pregnancy 
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promotes obesity in offspring.113,114 Maternal undernutri-
tion and offspring obesity in the Dutch Winter Famine of 
1944 and the thrifty gene hypothesis are likely inherited 
epigenetic alterations. These observations are also sup-
ported by vast experimental animal models.115

From an epigenetics perspective, hypothalamus, WAT, 
the liver, and skeletal muscles have been widely explored. 
Overall these studies suggest that the maternal obesity 
during pregnancy may induce epigenetic changes, enhan-
cing adipogenesis, lowering IRS expression, altering hepa-
tic gene expression and neuroanatomic architecture, 
consequently affecting intracellular signaling, hypothala-
mic function, and gene expression.116–119 There is also 
a strong compelling evidence suggesting that epigenetic 
changes are also induced via alteration in spontaneous 
physical activity.120,121 Twin association studies estimate 
approximately 0.3 to 0.8 heritability risk of genetic com-
ponent to human physical activity.122,123 However, the 
extent to which epigenetic mechanisms regulate energy 
balance has not been identified. Further studies are 
required that convincingly demonstrate that epigenetic 
inheritance of environmental induced effects can alter 
metabolic flexibility. Metabolic regulation in an efficient 
manner results from a set of complex gene–environment 
interactions and is an evolutionarily preserved trait. 
However, its modification with associated disease suscept-
ibility is probably predominantly determined by epigenetic 
variations with the potential to be inherited across 
generations.

Sex Difference in Metabolic Flexibility
Males and females distinctly differ in WAT distribution 
that has a significant impact on adaptive metabolic 
response as adipokine production, insulin sensitivity and 
FFAs release varies between the storage depots.124 

Females have a higher percentage and a different pattern 
of body fat, with relatively more WAT in the hips and 
thighs. In contrast, males typically have the fat accumula-
tion in the upper body and abdominal areas, the so-called 
android fat deposition.39 Multiple clinical and epidemio-
logical studies have demonstrated the detrimental effect of 
visceral abdominal fat and protective effect of gluteal- 
femoral fat in T2DM, as a CV risk which eventually 
increases morbidity and mortality. However, this clear 
benefit ceases to exist after menopause indicating sex- 
related differences from the influence of sex 
hormones.125 Besides, sex differences in WAT are not 

limited to storage depots, as females have more BAT and 
an enhanced capacity to beige their WAT.126

The circulating levels of the metabolic hormones and 
their sensitivity also vary enormously.127 These hormones 
mediate some of the sex differences that are responsible 
for maintaining energy homeostasis in response to chan-
ging nutrient status.128 The complex interplay of genetics, 
epigenetics, and hormonal factors affect the structure, 
function, and physiology of above-mentioned tissue- and 
organ-system that impact metabolic flexibility.129 Thus, 
significant sex-based differences exist in the regulation of 
metabolism explains a varied development and progres-
sion of disease spectrum of DBCD.

Metabolic Inflexibility: Cellular and 
Metabolic Pathways
Calorie Excess and Reduced Physical 
Activity Causing Metabolic Inflexibility
Insulin and other glucoregulatory hormones, by virtue of 
their effects on various enzymes in the metabolic pathway, 
provide reducing equivalents to the mitochondria to main-
tain a dynamic utilization of glucose or lipid substrates in 
fed and fasting conditions, thus retaining a state of meta-
bolic flexibility. The flexibility is compromised due to the 
continuous intake of calorie-dense foods with low nutrient 
values leading to the excess on the supply side of the 
supply-demand axis. Under normal circumstances, this is 
coupled to a sedentary lifestyle with a metabolic slowing 
down with age, leading to a state of metabolic inflexibility. 
The cells continuously adapt their metabolic pathways to 
meet their energy needs and respond to nutrient availabil-
ity. At the same time, the mitochondria, which play 
a crucial role in maintaining cellular, tissue, and systemic 
flexibility, fine-tunes the redox reactions occurring at the 
ETC complexes in order to intake only required quantities 
of reducing equivalents to meet the ATP demand of the 
cell. Hence, excess fuel supply in the absence of 
a commensurate increase in demand results in the state 
of metabolic gridlock.24 Since the metabolic intermediates 
are prevented from entering the mitochondria, their accu-
mulation ultimately results in feedback inhibition of 
uptake of both glucose and fat from circulation. The pan-
creas releases more insulin after sensing these excess 
circulating fuel substrates, resulting in the earliest mani-
festation of the insulin-resistant state.130 It has been 
observed that IR results subsequently in defects in the 
mobilization of fat and FAO, resulting in a vicious cycle 
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of intracellular accumulation of FA, increased levels of 
TGs, and downregulation of insulin signaling.131 

Altogether, these observations suggest that mitochondrial 
bioenergetics in the skeletal muscle and the liver plays 
a critical role in maintaining metabolic flexibility.23

In the WAT, surplus energy results in expanding the TG 
pool. Under normal physiological circumstances, the WAT 
can expand passively to accommodate excess nutrients. In 
response to excess glucose, amino acids, and FA, the 
triacylglycerol and glycogen depots are packed to the 
capacity and cannot accommodate more influx of the sub-
strate. Intracellular accumulation of metabolites alters the 
morphology of WAT, and under normal circumstances, the 
influence of insulin, adipocytes undergo hypertrophy due 
to the activation of lipogenic genes.132 As a result of the 
enhanced FA uptake coupled with blunted FAO and lack 
of insulin-mediated inhibition of lipolysis, the net result is 
spilling excess into the circulation that is taken up by the 
non-WATs like the liver, muscle, heart, and pancreas lead-
ing to ectopic fat deposition.133 Data suggest that raised 
FFA levels drive IR in multiple organs.134,135 In this state, 
insulin-stimulated suppression of lipolysis is only partially 
achieved in WAT. While in the other organs, lipids are 
preferentially apportioned towards TGs’ synthesis and 
away from mitochondrial oxidation.136 However, tissues 
such as the pancreas and cardiomyocytes with limited 
compensatory FAO are predisposed to a high risk of 
steatosis.

On the other hand, the liver and muscle, which are 
better equipped for disposing of surplus FA through 
FAO, are affected much later. When stored TG exceeds 
the oxidative capacity of the cell, the excess feeds into 
non-oxidative pathways of FA metabolism, such as cera-
mide formation.137 The dysregulated release and storage of 
FA can further stimulate pro-inflammatory cytokines, 
which interfere with the local and systemic immune 
response. The lipid species and other mediators such as 
ROS, NO, diacylglycerol (DAG), impair insulin signaling 
through different mechanisms and enhance apoptosis.138 

Therefore, excess lipid accretion induces lipotoxicity, 
which further contributes to metabolic inflexibility in dif-
ferent tissues.

At the level of skeletal muscle, type I oxidative, and 
type II glycolytic muscle fibers respond differently to 
nutritional and physiological conditions.139 In response to 
excess fuel, there is a tendency for fiber shift from type 
I oxidative fiber containing a high supply of mitochondria 
that uses TG for fuel towards the type II glycolytic fiber 

with little mitochondrion and which uses glucose as the 
energy source.140,141 These findings are further supported 
by the observation that there is impairment in the balance 
between mitochondrial fusion and fission processes lead-
ing to abnormal mitochondrial fragmentation and degrada-
tion, thereby leading to a fiber shift to glycolytic 
type.142,143 Also, there is a downregulation of nuclear- 
encoded genes, such as PGCl-α, reducing mitochondrial 
biogenesis.144,145

Furthermore, overfed mitochondria continue to catabo-
lize incoming metabolites leading to the competition 
between the substrates and enzyme, generating 
a feedforward inhibition in the network.146 As 
a consequence of the constant influx of FAs, the glucose 
oxidation is blunted by concurrent activation of PDK and 
inhibition of PDH.147 Intracellular accumulation of acetyl 
CoA, NADH, and ATP increased redox potential and 
inhibition of TCA enzymes. As a result of incomplete 
mitochondrial oxidation, there is ineffective switching 
between substrates causing a mitochondrial gridlock.24 

Additionally, a high NADH/NAD+ ratio inhibits AMPK, 
reducing the expression of genes involved in ATP genera-
tion and retarding insulin signaling.148 Altogether, there 
are reduced levels of mitochondrial oxidative enzymes, 
decreased mitochondrial number, abnormal morphology, 
and lower ATP synthesis in the skeletal muscles of IR 
individuals.149,150 Besides, accumulated intracellular meta-
bolites activate the protein kinase C pathway causing 
phosphorylation of IRS, inhibiting insulin signaling PI3K 
pathway, further reducing glucose uptake.151

Conversely, in the liver, there is increased hepatic 
mitochondrial oxidative capacity for both lipid and non- 
lipid substrates. This finding is supported by the gene 
expression study that revealed the upregulation of hepatic 
mRNAs related to OXPHOS, ROS, and 
gluconeogenesis.152 Further, there was a post-prandial 
increase in hepatic ATP by 6-fold in insulin-resistant sub-
jects compared to lean control, suggesting augmented 
post-prandial adaptation of hepatic energy metabolism to 
calorie overload.153 The underlying mechanism is unclear; 
however, it is thought that due to increased release of FFA 
from visceral WAT, there is substrate competition between 
lipids and non-lipid fuel for oxidation. Interestingly, it has 
been shown that while β-oxidation and ketogenesis are 
dysfunctional in the diabetic liver, pyruvate carboxylase 
and TCA cycle flux appear to be elevated.154 This is in 
contrast to the mitochondria from skeletal muscle of dia-
betic rat models, where TCA cycle activity appears to be 
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down-regulated. As such, inefficient hepatic mitochondrial 
functioning in conjunction with elevated FAs further com-
pound oxidative stress from the ROS burden.155 The mito-
chondrial ROS activates the secretion of pro-inflammatory 
adipocytokines, eg, leptin, interleukins (Il-6, IL-8), 
Tumour Necrosis Factor (TNF- α), and monocyte che-
moattractant protein-1 (MCP-1),156 further impairing insu-
lin signaling. The perturbed ROS production affects the 
activities and functions of metabolic enzymes and signal-
ing proteins compromising the flexibility of glucose and 
lipid metabolism in skeletal muscle and WAT.157

Pancreatic Beta-Cell Dysfunction
Chronic nutrient excess synergistically induces a deleterious 
effect on the β-cells’ mass and function. As a consequence of 
hyperglycemia coupled with high FFA, there is 
a compensatory increase in insulin production in the pan-
creatic β-cells. Despite the initial compensatory hyperinsuli-
nemia, there is a relatively minor change in IR, maintaining 
normal glucose tolerance.158 Compensatory hyperinsuline-
mia helps maintain normal or near-normal levels of plasma 
glucose. As time progresses, β-cells increase cell mass to 
compensate for higher insulin requirements.159 It becomes 
even more challenging to control glycemic levels due to the 
inefficiency of insulin to inhibit glucagon secretion resulting 
in increased stress on β-cells. As a result, the overproduction 
of ROS damages β-cell’s mitochondrial DNA and cellular 

proteins.160 Inevitably, progressive dysfunction arises, result-
ing in loss of plasticity for insulin production and secretion, 
and eventual loss of β-cells.161 Likewise, lipotoxicity from 
the accumulation of FA in the β-cells further impairs the 
regulation of glucose metabolism in the skeletal muscle and 
the liver.162 The circulating cytokines also adversely affect β- 
cells by weakening their function and limiting the mass. 
Furthermore, impaired mitochondrial dynamics also play 
a vital role in nutrient-induced β-cell apoptosis, which may 
be a critical factor in pathogenesis.163 The additive effect of 
glucotoxicity and lipotoxicity compound the metabolic insult 
negatively impacting insulin sensitivity triggering pancreatic 
β-cells’ failure.164 The upregulation of mitochondrial fission 
causes overproduction of ROS that further contributes to 
mitochondrial dysfunction in hyperglycemia25,165 (Figure 7).

Metabolic Inflexibility Associated 
with DBCD and the Spectrum of 
Micro- and Macro-Vascular 
Complications
Given the insulin’s central role in glucose and lipid meta-
bolism, it is not surprising that multiple target organs are 
affected by its dysregulation manifesting as a continuum 
of the disease spectrum of DBCD. Typically, there is 
decreased sensitivity and/or response to insulin, affecting 
both metabolic and hemodynamic actions in different tis-
sues and organs. It is likely that the IR originates within 

Figure 7 Metabolic perturbation in different organ system due to mitochondrial dysfunction leading to metabolic inflexibility.
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different tissues, and the degree of resistance varies 
between tissues due to considerable heterogeneity in insu-
lin response.166,167 For instance, impaired glucose toler-
ance (IGT) is associated with skeletal muscle resistance 
and compensatory hyperinsulinemia compared to impaired 
fasting glucose, which is associated with hepatic IR and 
excessive endogenous glucose production.19 In contrast, 
combined IFG/IGT had a combination of increased gluco-
neogenesis, lack of suppression of hepatic glycogenolysis 
by insulin, and impaired glucose disposal in the peripheral 
tissues.168 As discussed in the previous section, metabolic 
inflexibility translates into these phenotypes of prediabetes 
resulting from the erratic selection of fuels in mitochon-
dria, thereby interrupting the insulin-mediated PI3K path-
way. In contrast, uninterrupted signaling of the MAPK 
pathway augments the mitogenic effect resulting in 
endothelial dysfunction and in endothelial cells and vas-
cular smooth muscle cell proliferation.169,170 Thus, in the 
setting of IR due to the downregulation of PI3K and 
upregulation of the MAPK signaling pathway gives rise 
to prohypertensive, atherogenic, and thrombogenic back-
ground promoting atherosclerosis. Besides, advanced gly-
cation end products formed from non-enzymatic glycation 
of proteins and lipids further induce endothelium damage, 
amplify inflammatory response, and increase the risk of 
microvascular dysfunction.171,172 However, the degree of 
damage and/or repair varies across different tissues or 
organs, since these mechanisms may be active preferen-
tially affect some but not all organs, but generally they are 
associated with the development of microvascular 
complications.173

Overall, the evidence suggests that IR and β-cell dys-
function appears to be important initiating events for the 
development of the disease spectrum of diabetes and vas-
cular complication.174 Besides hyperglycemia, other meta-
bolic factors, including hypertension, obesity, and 
dyslipidemia, play a pathogenic role in the development 
of micro and macro-vascular complications. These abnorm-
alities precede as an early event in the T2DM and asso-
ciated micro- as well as macrovascular complications175,176 

(Figure 7).

Unmet Need for Therapy 
Addressing Metabolic Inflexibility
Although the health benefits of lifestyle intervention to 
reduce body weight, including exercise and calorie restric-
tions, are well recognized in restoring metabolic flexibility 

in DBCD; however, these are difficult to sustain at a level 
that results in benefit in most patients.177,178 Also, cur-
rently available drugs such as sodium-glucose co- 
transporter-2 (SGLT2) inhibitors, glucagon-like peptide 1 
(GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) 
inhibitors, sulphonylureas, metformin, etc. have limita-
tions. These therapies being wholly glucocentric, fail to 
control the disease progression and often fail to achieve 
accepted treatment goals. Besides, the treatment being 
symptomatic, is usually initiated often in a stage, when 
the other disease aspects such as risk factors (obesity, pre- 
hypertension, dyslipidemia, etc.) or complications (neuro-
pathy, fatty liver disease, CVD, etc.) have progressed 
beyond control. Thus, there is a significant need for 
addressing metabolic inflexibility to prevent the progres-
sion along the DBCD disease spectrum from IR to pre-
diabetes to frank diabetes and development of micro- and 
macro-vascular complications. There is no denying that 
there is a significant unmet need for safe and effective 
drugs that can prevent the progression of IR. An intensive 
and focused effort is needed to identify new targets for 
pharmacological interventions and also address dysglyce-
mia, dyslipidemia, and hypertension collectively. Agents 
that either inhibit caloric intake or increase energy expen-
diture could result in reversing the process, and these 
could be approaches worth exploring.

Conclusion
Insulin and other glucoregulatory hormones provide an 
integrated set of signals to maintain metabolic flexibility. 
Sex-based differences arising from genetics, epigenetics, 
and hormones influence metabolic flexibility. Disruption in 
metabolic flexibility is most commonly caused by excess 
food intake and sedentary lifestyle, contributing to mito-
chondrial dysfunction characterized by inefficient nutrient 
sensing and ineffective substrate switching deemed as 
“Metabolic inflexibility.” This condition alters metabolic 
and non-metabolic pathways leading to the development 
of IR and β-cell dysfunction. All these effects induce 
cellular events, including increase oxidative stress and 
inflammation, endothelial dysfunction, production and 
accumulation of advanced glycation end products, ectopic 
fat accumulation resulting in dyslipidemia, hypertension, 
and micro- and macro-vascular complications. These com-
plications can be addressed through traditional lifestyle 
measures such as caloric restriction and exercise that are 
vital components for tackling metabolic inflexibility. 
However, these traditional lifestyle measures are 
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challenging over long-term in the modern era of nutrient 
excess. Therefore, pharmacological interventions, in addi-
tion to lifestyle changes, can play a major role in the 
management of dysglycemia, dyslipidemia, and hyperten-
sion collectively, by addressing the underlying defect and 
help prevent progression to vascular and, consequently, 
end-organ damage. Targeting pathways that address mito-
chondrial dysfunction would exert a beneficial effect on 
metabolic inflexibility that may correct IR, β cell dysfunc-
tion, and endothelial dysfunction and, as a consequence, 
would be therapeutically effective across the entire con-
tinuum of DBCD.
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