
Methodology to create 3D models of COVID-19
pathologies for virtual clinical trials

Sunay Rodríguez Pérez ,a,b,* Johan Coolen,a,c Nicholas W. Marshall,a,c

Lesley Cockmartin ,c Charlotte Biebaû,c Jeroen Desmet ,c

Walter De Wever,a,c Lara Struelens,b and Hilde Bosmans a,c

aKU Leuven, Medical Physics and Quality Assessment, Leuven, Belgium
bSCK CEN, Radiation Protection Dosimetry and Calibration, Mol, Belgium

cUZ Gasthuisberg, Department of Radiology, Leuven, Belgium

Abstract

Purpose: We describe the creation of computational models of lung pathologies indicative of
COVID-19 disease. The models are intended for use in virtual clinical trials (VCT) for task-
specific optimization of chest x-ray (CXR) imaging.

Approach: Images of COVID-19 patients confirmed by computed tomography were used to
segment areas of increased attenuation in the lungs, all compatible with ground glass opacities
and consolidations. Using a modeling methodology, the segmented pathologies were converted
to polygonal meshes and adapted to fit the lungs of a previously developed polygonal mesh
thorax phantom. The models were then voxelized with a resolution of 0.5 × 0.5 × 0.5 mm3 and
used as input in a simulation framework to generate radiographic images. Primary projections
were generated via ray tracing while the Monte Carlo transport code was used for the scattered
radiation. Realistic sharpness and noise characteristics were also simulated, followed by clinical
image processing. Example images generated at 120 kVp were used for the validation of the
models in a reader study. Additionally, images were uploaded to an Artificial Intelligence (AI)
software for the detection of COVID-19.

Results: Nine models of COVID-19 associated pathologies were created, covering a range of
disease severity. The realism of the models was confirmed by experienced radiologists and by
dedicated AI software.

Conclusions:Amethodology has been developed for the rapid generation of realistic 3D models
of a large range of COVID-19 pathologies. The modeling framework can be used as the basis for
VCTs for testing detection and triaging of COVID-19 suspected cases.

© 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.8.S1.013501]

Keywords: COVID-19 pathologies; voxel phantoms; mesh modeling; COVID-19 imaging;
computed tomography segmentation; computer simulations.

Paper 20147SSRR received Jun. 2, 2020; accepted for publication Dec. 11, 2020; published
online Jan. 4, 2021.

1 Introduction

During the ongoing COVID-19 outbreak, thoracic imaging by means of computed tomography
(CT) and/or planar chest x-ray (CXR) is being used as a key tool in early diagnosis and disease
monitoring, in particular, to establish severity and clinical progress. Reverse transcription poly-
merase chain reaction (RT-PCR) results are considered the gold standard for diagnosis of
COVID-19, but as thoracic imaging has been able to positively confirm cases after false-negative
RT-PCR tests,1 this is often used in clinical practice. Access to chest CT or CXR is especially
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useful where there is a high influx of symptomatic patients, a shortage of tests, and potentially
long waiting times for the results.

Although CT is the preferred imaging modality for diagnosing COVID-19 patients, CXR is
widely used for follow-up of the disease, with CXR performed daily on patients in the intensive
care unit. CXR systems have many logistical advantages over CT, among them their wide avail-
ability and short examination times. A CTexamination requires transport of infectious patients to
dedicated rooms followed by extensive and time-consuming decontamination of the system. In
contrast, portable CXR devices can be transported to areas designated for COVID-19 patients
within the hospital and even to external locations including care homes. Early research has
shown that the sensitivity of CXR for COVID-19 is in the range of 70%,2 whereas a figure
of ∼90% has been found for CT.3

The rationale for this study is that an attempt should be made to improve the performance of
CXR when used in the diagnosis of COVID-19. There are different technical approaches avail-
able for this, including new detectors, improved antiscatter rejection techniques, rib suppression
software, and/or dual-energy acquisitions. Given the urgency of the situation, we have developed
a virtual clinical trial (VCT)4–6 platform that will allow for dedicated optimization studies with-
out the difficulties associated with clinical studies on (critically ill) patients. The objective of this
work was, therefore, to create a series of COVID-19 models that can be used to generate simu-
lated CXR images for future VCTs. The method for producing the COVID-19 lesion models is
described in detail; nine models were then evaluated for realism by radiologists. Alongside the
radiologist rating, an Artificial Intelligence (AI)-based software tool, developed for real patient
cases, was used to assess the virtual cases for the presence of COVID-19 pathology. This tool
was used as an extra realism estimate in addition to the realism scores of radiologists.

2 Materials and Methods

2.1 Realistic Anthropomorphic Flexible Phantom

Modeling started from the realistic anthropomorphic flexible (RAF) phantom, a full body male
phantom developed by Lombardo et al.7 using polygonal mesh modeling. This type of geomet-
rical representation is widely used in computer graphic modeling8 and describes the phantom
with a collection of polygons that share vertices and edges fulfilling certain rules.

The RAF phantom had been validated against the ICRP Publication 110 phantom9 and pro-
vides a detailed depiction of human anatomy [Fig. 1(a)]. The polygonal mesh format of the
phantom allows for further modification of anatomy and posture. This flexibility is important
for the accurate modeling of patient position during radiographic examinations, as this can range
from an erect chest posterior anterior (PA) to a bedside anterior posterior examination. For cur-
rent chest imaging applications, only the organs in the thorax region of the RAF phantom have
been developed further. Additional modifications included the modeling of a more detailed lung
background10 with bronchial trees, pulmonary arteries, and pulmonary veins [Figs. 1(b)
and 1(c)].

The RAF phantom represents a human male with a body mass index (BMI) of 24 kg∕m2.
Additional versions of the phantom were created to represent an overweight (BMI ¼ 29 kg∕m2)
and obese (BMI ¼ 40 kg∕m2) male as well as a female version with a BMI of 29 kg∕m2

[Fig. 1(d)]. The different body types were created by modifying the external shape of the phan-
tom. Graphic modeling software 3ds Max (Autodesk, USA) was used for this purpose. The soft
selection tool was employed as this allows the vertices of the meshes to be deformed in an
organic way. Figure 1(d) shows an example of the soft selection; the red color represents the
meshes explicitly selected, whereas the remaining colors represent the vicinity meshes. As the
selected meshes are transformed (i.e., translated, rotated, and/or scaled), the elements in the
vicinity are drawn along smoothly, and this effect decreases with distance or the “strength”
of the selection. The internal organs of the phantom were kept unchanged. A study by
Lemanowicz et al.11 found the level of patient obesity to have the highest correlation with the
chest soft tissue thickness; thus, it was considered correct to keep the internal organs unchanged
for the first set of models.
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2.2 Modeling of the Pathologies from CT Scans

Ethical approval was requested for a retrospective study making use of patient CT images; the
ethical committee waved any dedicated patient consent. A 3D modeling methodology was
implemented to create the COVID-19 disease within the RAF phantom. CT images of patients
suspected of COVID-19 confirmed by CT scans were used as reference for the development of
the pathology models. The CT scans had been acquired with a low-dose thorax protocol using
120 kVp, 1.2 mm pitch, and 46 mAs (tube current modulation off). CT image voxel size ranged
from 0.68 to 1.00 mm and slice thickness was 3 mm.

A range of cases was selected by a radiologist to ensure that the different stages of the disease
would be covered. Areas of ground glass opacities (GGO) and consolidation were segmented
manually using ImageJ12 [Fig. 2(a)]. The segmentation was carried out by a medical physicist but
was closely guided by a radiologist. The segmented pathology was then converted to a binary
stack image in which the pathology was colored white and the background black. Next, the
marching cubes algorithm13 was applied to extract polygonal meshes from the isosurfaces of
the three-dimensional pathological structures [Fig. 2(b)]. This conversion from CT voxels to
meshes was done using the 3D visualization library in ImageJ.14 A resampling factor of 1 was
chosen for the marching cubes, so the meshes would replicate the voxel structures without a loss
of resolution. The mesh volume of the pathology was then exported as an OBJ file containing the

Fig. 1 (a) Picture of the RAF mesh phantom; (b) mesh version of the RAF phantom adapted for
chest imaging applications; (c) voxelized version of the RAF phantom; and (d) different versions of
the RAF phantom representing (from left to right) the standard male, the modified overweight male,
and a female.
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coordinates of the vertices in 3D space; this in turn defined the shape and size of the surface of
the segmented pathology.

The OBJ lesion model was imported into 3ds Max, where two steps were used to correct the
meshes and generate consistent models. First, the voxel scaling effect due to the segmentation
process in anisotropic CT data was smoothed. Artifacts generated by the marching cubes algo-
rithm were removed using the TurboSmooth and Relax modifiers. The latter were sparingly
applied to avoid loss in the model volume. Second, the shape of the pathology was modified
to fit the RAF phantom lungs, while respecting the volume of the segmented disease [Fig. 2(c)].
This step was carried out using the free form deformation modifier. The deformations applied
in this step required manual intervention since the shape of the lung and its pathology changes
from case to case. Non-isotropic scaling was utilized. The original spatial distribution of
the pathology over the lung was preserved, and changes in the volume ratio disease/lung
(Vsegmented_pathology∕Vpatient_lung) were kept below 15%. The set of models represented the typical
distributions of the disease: predominantly in the lower lobe, multifocal, peripheral, and
bilateral.15 To quantitatively assess differences between the segmented lesion and the final model
used in the phantom, the Hausdorff distance (HD) was calculated for the mesh models. Meshlab
software,16 which samples a set of points over the mesh and finds the closest point in the refer-
ence mesh, was used.

The modeling methodology enables the representation of different grades of severity of lung
involvement by changing the x-ray attenuation in the simulated pathology or by changing its size
and distribution. As a proof of concept for the development of different lesion severities from the
reference set, the mesh of one of the segmented lesions was modified by changing its size
and shape.

An example of a model in which the x-ray attenuation of the pathology was changed to study
the impact on lesion detection was also simulated. Finally, the influence of BMI on lesion detec-
tion is also illustrated for one disease model simulated in the different BMI and gender real-
izations of the phantom. These examples are shown in the results (Sec. 3.5).

Fig. 2 Workflow of the methodology followed to model the pathologies: (a) patient CT slice with
segmented pathology (green); (b) 3D surface of the pathology converted to mesh format; (c) slice
of the 3D mesh model of the pathology (green) inside RAF phantom lungs; and (d) slice of vox-
elized RAF phantom with highlighted pathology (green).
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2.3 Creation of Voxelized Phantoms

The polygonal mesh models were then exported separately and loaded into voxelization
software.7 The latter software tool is based on the work of Laine17 and is optimized such that
the mass and thickness of the organs is preserved. The algorithm uses a conservative eight-
separating voxelization method by calculating intersections between the triangles and quads
from the meshes with a cube used as the test object.17 The voxel resolution used for the models
was 0.5 × 0.5 × 0.5 mm3, which was a compromise that maintained fine detail within the phan-
tom anatomy and yet kept the computational load reasonably low. Once all of the organs and
pathologies were voxelized; they were combined and assigned an ID number using a script
developed for ImageJ.12 The process started from the thoracic wall and went in an increasing
hierarchy to the bones, diaphragm, lungs, heart, up to the pulmonary veins, vessels, and the
bronchi (highest priority) [see Fig. 2(d)]: IDs were overwritten where there was superposition.
The GGO ID was added after the lungs since GGO represent an area of increased opacity in
which bronchial structures and vessels are still visible. The consolidation ID was added last, as
consolidations obscure all pulmonary structures within some region18 (see Fig. 3).

Finally, the volume ratio of the segmented pathology to that of the patient lung
(Vsegmented_pathology∕Vpatient_lung) was compared with the volume ratio of the voxelized pathology
model to that of the phantom lung (Vfinal_pathology∕Vphantom_lung). This served as a validation of the
method to ensure that the volume ratio of pathology/lung was kept similar, regardless of
differences between the patients and the RAF chest phantom.

2.4 Generating Radiographic Images Using a Simulation Framework

An imaging chain simulation platform developed in-house was used to generate radiographic
images of the models. The simulation platform includes all elements from the imaging chain: x-
ray source, patient model, antiscatter grid,19 and detector. The simulations combined a ray trac-
ing algorithm20 and Monte Carlo simulations using the PENELOPE/penEasy21,22 transport code.
The ray tracing was used to create noise free, high-resolution primary projections (i.e., images
generated by unscattered photons) in relatively short computation times. PenEasy was used to
create scatter images by tracking photons that underwent energy loss or angular deflection before
arriving in the detector. The random nature of the Monte Carlo simulations required long com-
putational times to obtain low uncertainty values. To reduce the computational time, pixels of
5 × 5 mm2 were used in the scatter image. This was considered sufficient to represent the var-
iations of the scatter radiation since these images do not contain fine details.23 The uncertainty of
the Monte Carlo calculations was kept below 3%. The materials and proportions of the mixtures
used for the different phantom organs were taken from ICRP Publications 8924 and 110.9 GGO
and consolidations are areas of increased levels of x-ray attenuation due to the presence of fluid
in the lungs. To obtain realistic pathology densities, the Hounsfield unit (HU) histograms of the
corresponding segmented lesions in the CT images were measured and subsequently converted

Fig. 3 Slice of mesh model of the lung containing GGO and consolidation regions. GGO are
regions of increased opacity in the lungs where pulmonary structures are still visible, whereas
in the consolidation the pulmonary structures are obscured.
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to density (g∕cm3) using the data of Schneider.25 A random distribution of densities was used in
the pathology region of the phantom. A random value generator was used to assign different
attenuation coefficients to each voxel in the pathology region: each density value was given the
probability of the corresponding HU in the CT images. To achieve this, the probability distri-
bution was taken from the normalized HU histogram of the segmented lesion.

Realistic levels of sharpness and noise, relevant to a typical x-ray detector for chest projection
imaging, were then applied to the simulated phantom images. Sharpness and noise were quan-
tified using the presampling modulation transfer function (MTF) and the normalized noise power
spectrum (NNPS), respectively. These metrics were measured from a Carestream flat panel CsI
digital detector with a beam quality of 120 kVp and 9 cm PMMA (i.e., lung equivalent
thickness10) at the tube exit. The presampling MTF was measured using a version of the edge
technique described by Samei et al.26 A square tantalum edge test object of dimension
50 × 50 mm2 and 1-mm-thickness was placed at the center of the image receptor and oriented
manually to obtain an angle of ∼3 deg between the edge and the detector matrix. The MTF
images were acquired at a detector air kerma (DAK) of 8 μGy. The NNPS was measured from
flat field images acquired at different dose levels, with DAK values ranging from 0.7 to
25 μGy.27 A region of 1024 × 1024 pixels was extracted from the image center and a 2D poly-
nomial fitted to and then subtracted from this region to reduce the influence of large area
non-uniformities on the final NNPS.28 Half-overlapping regions of interests of dimension 128 ×
128 pixels were then extracted from this region, from which the 2D NNPS was calculated.29

The sharpness and noise, as characterized by the MTF and NNPS, respectively, were then
applied as follows. The 1D presampling MTF was fitted and expanded to a 2D MTF using
weighting matrices described in the literature.30 The fast Fourier transform (FFT) of the simu-
lated phantom image was then multiplied with the 2DMTF, and an inverse FFTapplied to obtain
a noise-free image with a realistic level of blurring.23 Image noise was then applied to the blurred
images via the NPS following the methods of Båth et al.31 and Mackenzie et al.32 The method
consists of forming a noise image using the different components of the NNPS, i.e., electronic,
quantum, and fixed pattern noise. Three random Gaussian white noise images with zero mean
and unit standard deviation were weighted by these components. These images were individually
multiplied with the blurred phantom images and added to form the total noise image. The final
simulated x-ray projection was obtained by summing the noise image and the blurred image.
Radiographic images of all of the models were generated at 120 kVp, grid in, and 180 cm source
to detector distance, settings commonly used in thorax PA examinations. A DAK level of
∼8 μGy, which is higher than in the clinical protocol, was simulated. A PA exposure setting
with grid and a higher dose level were selected to obtain high-quality images, in which the
pathology was clearly visualized. Finally, clinical image processing corresponding to an adult
thorax examination was applied to the images using image processing software MUSICA (Agfa,
Belgium).

The imaging chain simulation was validated by comparing the signal difference to noise ratio
(SDNR) values from real and simulated images of a test object consisting of a PMMA block (10
and 20 cm thickness) and an aluminum detail (2 mm thickness). Relative differences between
SDNR in the real and simulated images were below 10%. This validation was performed over a
range of tube voltages and dose levels.

2.5 Assessment of Task Realism

To assess the realism of the pathologies in the RAF phantom, the simulated radiographic images
were presented to three thorax radiologists, trained during the outbreak to diagnose COVID-19
suspected patients. A reader study in which the observers were asked to score nine different
images for each of the COVID-19 models inserted within the standard BMI male RAF was set
up. The score was carried out according to three realism criteria: question 1: realism of the lung
background, question 2: realism of the lesions in terms of appearance, and question 3: realism of
the lesions in terms of position within the lungs. A five-point scale was used for all criteria:
(1) not at all realistic: critical elements that affect the realism, (2) poor: obvious elements that
may affect the realism, (3) adequate: minor elements that did not affect the realism, (4) good:
minimal unrealistic elements, and (5) very realistic: no unrealistic elements. In addition, the
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readers were asked to write a description of the pathology that was seen. Images were displayed
using Viewdex software.33 Contrast and brightness levels could be adjusted if desired, and no
time limit was imposed.

As an additional validation of the models, the images were uploaded to the AI software Lunit
INSIGHT CXR for COVID-19 (Lunit, South Korea).18 This software can detect areas of con-
solidation or GGO in the chest and is intended to support the interpretation of CXR of suspected
COVID-19 cases. The software analyses the images and reports an abnormality score given by
the likelihood of the presence of the detected lesion, i.e., low (0% to 15%), moderate (16% to
50%), and high (51% to 100%).

3 Results

3.1 Pathology Models

Nine COVID-19 disease models were created, covering the typical manifestations of lung
involvement distribution characteristics of COVID-19 pneumonia. Eight of the models were
created from the segmented lesions in CT images and one extra case was created by modifying
the mesh of one of the segmented models. The HU histograms obtained for the lesions of the
eight segmented CT datasets are shown in Fig. 4. The differences in HU are related to the stage of
the disease. Although GGOs lie in the range −800 to −400, higher opacities like consolidations
reach 100 HU, consistent with data reported by Lanza et al.34

Figure 5 shows a comparison of different slices of the CT data [(a)–(c)] to the corresponding
slice of the voxelized phantom [(d)–(f)] for case 4. The pathology voxels are highlighted in green
in all of the images.

Different stages of the disease were modeled, from the more subtle in the initial stage to more
advanced. Figures 6(a)–6(c) show the mesh models of the RAF phantom lungs including the
pathologies from cases 6, 4, and 7, respectively. As illustrated, the level of lung involvement
changes from case to case; the ratios of pathology volume to lung volume of the voxelized ver-
sions of these models can be found in Table 1.

3.2 Mesh and Volume Comparison

Table 1 shows the volume ratios of pathology/lungs for the developed models. As can be seen,
the percentage of lung involvement ranges from 2.2% to 38.2%. The pathology/volume ratios for
the segmented CT images and the relative differences compared with the voxelized models are
also shown. As observed, maximum differences between the initially segmented lesion and the

Fig. 4 HU distribution within the lesions for the pathologies modeled from the segmentation of CT
images (cases 1 to 8).
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corresponding final phantom version stayed below 16%. Volume ratios were usually smaller
when the pathology was placed in the phantom. No comparison is shown for case 9 since this
model is a modification of case 4; thus, no reference volume ratio is available.

The mean HD between the original mesh and the mesh adapted to the RAF phantom can be
found in Table 1. Mean HD values were below 0.64 cm.

3.3 Simulated Radiographic Images

Figures 7(a)–7(i) show the set of simulated radiographic images of the RAF phantom featuring
the nine pathology models. For each case, a projection is also shown with the voxels containing
the pathology highlighted in green. As observed, the pathologies in all cases are bilateral, often
located in the periphery of the lungs and involving several lobes. The degree of spread of the
disease is easily noticeable in each of the cases.

3.4 Assessment of Task Realism

Table 2 presents the percentage of cases marked as at least adequate or at least good for the
individual observer and the mean realism criteria of all three observers used in the reader study.

Fig. 6 3D mesh models of the pathologies (green) modeled within the lungs of the RAF phantom.
Different levels of lung involvement can be seen, from subtle (a) case 6 to more prominent in
(b) case 4 and (c) case 7.

Fig. 5 (a)–(c) Comparison of CT slices of a patient (case 4) and (d)–(f) the respective slices of the
voxelized RAF phantom. Voxels corresponding to the pathology are highlighted in green.
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For questions 1, 2, and 3 (Q1, Q2, and Q3, respectively), the average percentages of cases
marked at least adequate were 100%, 92%, and 96%, respectively. The average percentage
of cases marked at least good were 59%, 54%, and 65% for Q1, Q2, and Q3, respectively.
The mean value for the three quality criteria was at least adequate for 96% of the cases and
at least good for 50% of the cases.

For readers 1, 2, and 3, 92%, 96%, and 100% of all scores given to the images, respectively,
were at least adequate; they detected only minor unrealistic elements that did not affect the gen-
eral realism of the models. Moreover, 67%, 52%, and 59% of all scores were at least good for
readers 1, 2, and 3, respectively. A moderate agreement was found between the readers with an
intraclass correlation coefficient (ICC) of 0.5 (95% CI ¼ 0.10 to 0.84).

Radiologists 1, 2, and 3 detected 78%, 89%, and 89% of all COVID-19 pathologies, respec-
tively. Case 6 was missed by all three readers, and case 5 was missed by reader 1. Although
reader 3 had marked an area of opacities in this lung, he was uncertain about its presence. These
two cases, in fact, represent the more subtle simulated pathologies. Further investigation of case
5 revealed, that after three PCR tests, this patient was negative for COVID-19, and it represents a
rare case where CT and PCR arrived at different conclusions. This highlights the difficulty in the
radiological practice where lesions with spatial distributions typical for COVID-19 and HU dis-
tributions like COVID-19 cases can in fact be negative.

The AI algorithm was able to identify consolidation areas in 56% of the cases. The algorithm
successfully identified pathologic areas in cases 3, 4, 7, 8, and 9. For the rest of the cases, no
lesions were detected. Figures 8(a)–8(e) show simulated images with the pathology highlighted
in green and the corresponding output from the AI software for cases 3, 4, 7, 8, and 9, respec-
tively. The heat map displayed from the AI software output represents the likelihood of the
presence of the lesion as detected by the software. The abnormality scores reported by the
AI were 90%, 93%, 77%, 92%, and 92% for cases 3, 4, 7, 8, and 9, respectively.

3.5 BMI and Pathology Modifications

Figure 9 presents the images from the RAF phantom with different body types, namely
(a) female, (b) overweight male, and (c) obese male. The same pathology, taken from case
4, was used for all of these images [Fig. 7(d)]. As observed, the visualization of the pathology
is affected by the increased size of the phantom and by the presence of breasts. These images
were analyzed by the AI COVID-19 detection software, and the corresponding output is shown

Table 1 Volume ratios of pathology to lung for the segmented CT images and those for the cor-
responding phantom models. Relative deviation between the developed models and the patient
data is also shown. Mean Hausdorff distance calculation for the mesh models of cases 1 to 8. No
CT data are available for case 9 since it is a modified version of case 4.

Case
number

V segmented_pathology∕
V patient_lung (%)

V final_pathology∕
V phantom_lung (%)

Relative
deviation (%)

Mean
HD (cm)

1 12.2 13.1 7 0.64� 1.02

2 13.2 12.7 −4 0.42� 0.53

3 39.0 38.2 −2 0.21� 0.31

4 14.0 12.6 −10 0.16� 0.34

5 2.6 2.3 −12 0.21� 0.29

6 2.6 2.2 −16 0.34� 0.66

7 34.6 29.3 −15 0.18� 0.24

8 34.2 36.7 7 0.25� 0.20

9 — 9.8 —
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Fig. 7 Simulated images of the RAF phantom including the COVID-19 models created. From
(a)–(i) cases 1 to 9, respectively. Below each image, an equivalent version with pathology regions
highlighted in green is shown.
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below each case. The different body types had a clear influence on the detection of the pathology,
as can be seen in the heat maps of the AI software. The abnormality scores were 88%, 78%, and
56% for the female, male overweight, and male obese, respectively, compared with 93%
obtained for the same case in the standard BMI male.

Figure 10 shows the x-ray images of two versions of case 8: (a) represents the original path-
ology and (b) is a modified version where lower attenuation in the lungs was simulated to re-
present a more subtle case. These images were uploaded to the AI software for analysis. The
respective results are displayed below each simulated image. Heat map intensity falls for the
more subtle case, with the abnormality score going from 92% in the original model to 77%
in the modified subtler version.

4 Discussion

With this work, we have established a methodology for developing computational models of
COVID-19 patients. To generate the models presented in this work, it was sufficient to segment
the pathology and the lungs of each patient instead of having to segment all of the organs present
in the thorax: this reduced the overall modeling time. Depending on the complexity of the path-
ology and for an experienced developer, segmentation took between 2 to 6 h while 3D modeling
ranged from 3 to 6 h. Generation of the input files and images took from 4 to 5 h, which was
mostly computational time. The average human input needed to create one model was about 9 h.
Having a solid simulation framework and expertise with the creation of computational models
played an important role in terms of development time. Tools to automatically segment the path-
ology from CT images are improving in accuracy and availability, and this could improve the
simulation process by making the creation of the models faster. However, this work represents a
proof of concept of the creation of COVID-19 patients. If many more models are required for a
VCT or any other study, then the use of the latest segmentation tools may have to be explored.

The changes in the ratio of pathology volume to lung volume between the patient and the
final model of the phantom remained below 16%. This was considered acceptable because the
shape of the pathology was largely preserved; note that 16% represents a deviation of less than
one voxel in each direction. The differences can be ascribed to the surface smoothing used to
eliminate artifacts from CT, the discretization error introduced by the marching cubes algorithm
and the conservative nature of the voxelization algorithm.35 The Hausdorff distance, used to
compare the meshes of the segmented pathology and the model adapted to the phantom, had
mean values below 0.64 cm. These differences were expected since they are attributed to the
mesh modification applied when fitting to the lungs of the phantom and the smoothing to elimi-
nate the staircase effect from the CT.

To demonstrate the flexibility of the modeling methodology, the lesion from case 9 was
created by modifying the mesh of case 4. This allowed for the creation of an additional model
without the need for additional segmentation, but by modifying the shape and size of a

Table 2 Percentage of cases rated by radiologists as at least adequate and at least good for each
of the realism criteria in the images. Q1: realism of lung background, Q2: realism of lesion (appear-
ance), and Q3: realism of lesion (position).

Percentage of cases marked
at least adequate

Percentage of cases marked
at least good

Q1 (%) Q2 (%) Q3 (%)
Mean

Q1–Q3 (%) Q1 (%) Q2 (%) Q3 (%)
Mean

Q1–Q3 (%)

Radiologist 1 100 88 88 88 88 50 63 63

Radiologist 2 100 89 100 100 0 67 89 56

Radiologist 3 100 100 100 100 89 44 44 33

Average 100 92 96 96 59 54 65 50
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pre-existing mesh. When performing this procedure, reported findings from COVID-19 pneumo-
nia and the progression of the disease over time should be verified to ensure correct modeling.
Case 9 was included in the validation dataset for the reading study and was classified as at least
good by the three readers.

An overweight and obese version of the male phantom and a female version were developed
to extend the range of patient types simulated. An example of the effect of BMI and body shape

Fig. 8 Simulated images for cases (a) 3, (b) 4, (c) 7, (d) 8, and (e) 9. In the upper part is the image
with the pathology highlighted in green and below is the corresponding result from the AI software.
The heat maps in the bottom images represent the likelihood of the detected lesion to be sug-
gestive for COVID-19.
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on the pathology from case 4 could be seen when uploading the images to the AI software (see
Fig. 9). Another illustration of the potential scope of the method and the models was the reali-
zation of different grades of severity of lung involvement. An example (Fig. 10) in which the
attenuation in the simulated pathology of case 8 was modified, resulting in a more subtle case,
was presented. This modification was reflected in the abnormality score reported by the AI soft-
ware, which decreased from 92% to 77%. These data suggest that a greater range of BMI values
and disease severities can be modeled if required for the VCT.

One of the potential uses of our simulation platform in combination with the COVID-19
models is to assess the influence of x-ray acquisition parameters on the visibility of the models.
For example, different tube voltages, x-ray spectral filtering, dose levels, and the presence or
absence of antiscatter methods could be investigated by generating images with these character-
istics. The models could also be exploited as a means of evaluating new or improved x-ray
detector performance by applying the measured characteristics of a new detector, without or
with a (new) grid.

The realism of the models was assessed by a reading and scoring experiment in which three
thorax radiologists classified the images of the phantoms including the lesions. The mean realism
score (mean value of the three scoring criteria) stayed at about 3 (i.e., adequate) for 100% of the
cases for reader 2 and 3, whereas for reader 1 this value dropped to 92%. For reader 1, the mean
score below 3 was given to case 6, which in fact corresponded to a missed lesion by this reader.
On the other hand, 67%, 52%, and 59% of the cases had mean scores above or equal to 4 (i.e.,
good) for readers 1, 2, and 3, respectively. The fact that the readers missed some of the path-
ologies is considered acceptable as these cases had very subtle lesions, and it was probably
expected that they would be missed on CXR. This is consistent with the modeling of realistic
pathologies, but it also shows the need for optimization of planar x-ray imaging for the detection
of COVID-19 if high sensitivity is required, for example, if CXR would be used for triage.
Although the percentage of cases with mean scores 3 or above (adequate) is similar for the three
readers (92% to 100%), the ICC showed only a moderate agreement between the readers. This is
due to the differences in the scores of the single cases, given by the readers’ subjectivity and
interpretation for this type of study. Additional validation was performed using the Lunit AI

Fig. 9 Images of the RAF phantom (with the pathology of case 4) with different body types
(a) female (BMI ¼ 29); (b) male overweight (BMI ¼ 29); and (c) male obese (BMI ¼ 40); below
each image, the respective output from the AI software is displayed.
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algorithm for the detection of COVID-19 disease in CXRs. The algorithm was applied to the
same phantom images and was able to identify 56% of the cases.

A major advantage of using models for VCT type studies is that the ground truth of the
models is always known: the exact position and attenuation of the pathology is known. The
VCT approach can be used for several types of studies. (1) It was shown that at least the current
AI algorithm could be tested for sensitivity in our cases. (2) New technologies could also be
investigated, for example, dual energy imaging, a technique with good potential for this type of
applications since bone structures can be subtracted from the images, providing a clearer view of
the lung field. The 3D models can also be used in VCTs carried out using other imaging modal-
ities such as CTand to compare modalities. Case 5, in particular, highlights the potential of VCTs
to study sensitivity and specificity of imaging devices. The 3D pathology models developed
during this study can be shared upon request with other research groups working in the fight
against COVID-19.

Current limitations of the modeling include the lack of anatomical variation in the thorax
phantom except for the different versions representing thicker patients. Additionally, the method
involves several manual steps, some of them requiring a steep learning curve for less experienced
developers. An example is the adaptation of the pathology inside the existing phantom, which
can be time-consuming and requires manual intervention. A possibility for speeding up the cre-
ation of the models is using automatic segmentation software to identify the pathology in the CT
images.34,36

A study using a similar methodology has been recently published by Abadi et al.37 In their
paper, additional structures within the underlying lung parenchyma were simulated by enlarging
the size of the pulmonary lobules to represent crazy paving regions. This can also be imple-
mented in the RAF model if required; however, crazy paving regions are barely visible in plain
radiography, which is the current focus for the models created in this work. For the more
common manifestations of the disease like GGO and consolidations, Adabi et al. combined fluid
with the texture in secondary pulmonary lobules to match the mean linear attenuation coefficient
measured for the segmented abnormalities. In this work, we simulated the variation in x-ray
attenuation within a diseased region using the HU histogram obtained in the segmented
pathology.

Fig. 10 Example of different stages of the disease for case 8. (a) The original models and (b) a
more subtle stage with less attenuation in the lungs. The corresponding AI output is shown.
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5 Conclusions

This work has described a method of creating a set of 3D models to represent COVID-19 related
lung pathologies. Segmentation and polygonal mesh modeling techniques were used to create
nine models from image datasets of CT confirmed COVID-19 patients. The pathologies were
then adapted for inclusion within an existing anthropomorphic phantom and simulated radio-
graphic images of the phantom and pathology were generated. The realism of simulated radio-
graphs of the pathologies was assessed by three radiologists and demonstrated by the
implementation in an AI software package for COVID-19 detection. These models can form
the basis for optimization studies of CXR for COVID-19 imaging using VCTs, but they could
also be used in other imaging applications including CT.
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