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Abstract 
Assessing pulmonary lesions using computed tomography (CT) images is of great significance to the severity diagnosis and 
treatment of coronavirus disease 2019 (COVID-19)-infected patients. Such assessment mainly depends on radiologists’ sub-
jective judgment, which is inefficient and presents difficulty for those with low levels of experience, especially in rural areas. 
This work focuses on developing a radiomics signature to quantitatively analyze whether COVID-19-infected pulmonary 
lesions are mild (Grade I) or moderate/severe (Grade II). We retrospectively analyzed 1160 COVID-19-infected pulmonary 
lesions from 16 hospitals. First, texture features were extracted from the pulmonary lesion regions of CT images. Then, feature 
preselection was performed and a radiomics signature was built using a stepwise logistic regression. The stepwise logistic 
regression also calculated the correlation between the radiomics signature and the grade of a pulmonary lesion. Finally, a 
logistic regression model was trained to classify the grades of pulmonary lesions. Given a significance level of α = 0.001, 
the stepwise logistic regression achieved an R (multiple correlation coefficient) of 0.70, which is much larger than Rα = 0.18 
(the critical value of R). In the classification, the logistic regression model achieved an AUC of 0.87 on an independent test 
set. Overall, the radiomics signature is significantly correlated with the grade of a pulmonary lesion in COVID-19 infection. 
The classification model is interpretable and can assist radiologists in quickly and efficiently diagnosing pulmonary lesions.
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Graphic Abstract

This work aims to develop a CT-based radiomics signature to quantitatively analyze whether COVID-19-infected pulmonary 
lesions are mild (Grade I) or moderate/severe (Grade II). The logistic regression model established based on this radiomics 
signature can assist radiologists to quickly and efficiently diagnose the grades of pulmonary lesions. The model calculates 
a radiomics score for a lesion and is interpretable and appropriate for clinical use

Keywords COVID-19 · Radiomics signature · Pulmonary lesion · Quantitative assessment

1 Introduction

Coronavirus disease 2019 (COVID-19) has spread rap-
idly in most countries. As of March 29, 2020, there were 
722,088 confirmed cases worldwide. Frontier technolo-
gies such as IoMT (internet of medical things) and AI 
(artificial intelligence) are widely used in the diagno-
sis, treatment, and prevention of COVID-19 [1, 2]. The 

common diagnosis of COVID-19 is to use RT-PCR (real-
time reverse-transcriptase polymerase chain reaction). 
In addition, CT (computed tomography) also plays an 
important role in diagnosing COVID-19 cases. To faster 
examination, techniques for automated diagnoses, such 
as methods based on AI with deep learning, have been 
developed [3–7]. Moreover, assessing whether pulmonary 
lesions are mild or severe using CT images is of great 



63Interdisciplinary Sciences: Computational Life Sciences (2021) 13:61–72 

1 3

significance to the severity diagnosis and treatment of 
COVID-19-infected patients. Although radiologists will 
make a diagnosis report based on the whole CT images 
of a patient, assessing lesion regions are mild or severe 
is still an important part of radiologists’ work. Assessing 
lesion regions that are mild or severe provides radiologists 
with more detailed diagnostic information. Currently, this 
assessment mainly relies on the subjective judgment of 
radiologists, which is inefficient and presents difficultly 
for radiologists with low levels of experience, especially 
in rural areas. Few studies have focused on quantitatively 
analyzing the grades (mild or moderate/severe) of pulmo-
nary lesions in COVID-19 infection. This work labeled 
mild lesions as Grade I and labeled moderate or severe 
lesions as Grade II. We used radiomics-based AI technolo-
gies to perform binary classification tasks.

In radiomics, texture as a quantitative feature can pro-
vide interpretability [8, 9]. CT textures as radiomics features 
have been widely used to assist physicians in making deci-
sions on lung diseases. In 2015, Coroller et al. [10] extracted 
CT-based texture features to predict lung adenocarcinoma 
metastasis. In 2016, Liu et al. [11] extracted CT-based tex-
ture features to analyze a mutation status in lung adenocar-
cinoma. In 2017, Yip et al. [12] investigated associations 
between semantic and CT-based texture features of nonsmall 
cell lung adenocarcinomas.

Given that radiomics-based quantitative assessment 
is objective and has assisted radiologists in the rapid and 
accurate diagnosis of lung diseases, radiomics-based AI 
techniques may be also applicable in the assessment of pul-
monary lesions in COVID-19-infected patients. Therefore, 
this work aims to build a radiomics signature (composed of 
CT-based texture features) and apply this radiomics signa-
ture to quantitatively analyze the grade of pulmonary lesions 
in COVID-19 infection, including (1) assessing the correla-
tion between the radiomics signature and the grade of a pul-
monary lesion and (2) classifying the grades of pulmonary 
lesions.

2  Materials and Methods

This work is a retrospective study based on the CT images of 
COVID-19-infected patients and was approved by the Ethics 
Committee of West China Hospital of Sichuan University 
(number 2020190). Figure 1 shows the framework of this 
work.

2.1  Patients and Acquisition of ROIs

Chest CT images of eighty-four COVID-19-infected patients 
were collected. In total, 1160 pulmonary lesions were ret-
rospectively analyzed. The patients were selected from 16 

hospitals in Sichuan Province, China, from January 1, 2020 
to February 29, 2020, including 49 males and 35 females. 
In the female patients, the minimum age, the maximum age, 
and the median age were 28, 74, and 45.2 years old, respec-
tively. In the male patients, the minimum age, the maxi-
mum age and the median age were 20, 76, and 42.4 years 
old, respectively. All patients were confirmed by RT-PCR 
examinations and received nonenhanced CT scans. Figure 2 
illustrates the inclusion and exclusion of patients and the 
acquisition of ROIs (regions of interest).

Nine senior radiologists with more than 6 years of experi-
ence in chest CT diagnosis at West China Hospital filtered 
the CT images and delineated the bounding boxes. Given 
the complexity of the prevalent grading system, two of the 
radiologists assessed the bounding boxes independently. Dis-
crepancies were solved by discussion or consulting a third 
radiologist. Briefly, a bounding box with scattered GGOs 
(ground-glass nodules) was regarded as a mild bounding box 
(Grade I), and a high-density bounding box with continuous 
GGOs or even large areas of GGOs was regarded as a mod-
erate or severe bounding box (Grade II) [13, 14]. Figure 3 
illustrates delineating bounding boxes from DICOM images. 
Multiple bounding boxes with overlapping areas were 
defined as a lesion region. For a lesion region, the bounding 
box with the largest area was selected and regarded as the 
ROI. The grade of the selected bounding box was the grade 
of this ROI. An ROI represented a pulmonary lesion (lesion 
region). In total, 1160 ROIs were acquired, of which 910 
ROIs were Grade I and 250 ROIs were Grade II.

2.2  Texture Feature Extraction

The unit of a pixel value in CT images is HU (Hounsfield 
unit). This paper omits the unit to express the pixel values 
concisely. We scaled the pixel values of ROIs to [1 128] 
based on [− 1000 200], as shown in Eq. (1).

Here, c is a pixel value, s is the scaled value of c, [l h] is 
[− 1000 200], and [1 n] is [1 128]. In this work, 936 texture 
features were extracted from each ROI. These 936 features 
were used as candidate features, including coefficient statis-
tics features, histogram features, gray-level co-occurrence 
matrix (GLCM) features, gray-level run-length matrix 
(GLRLM) features, Laplacian of Gaussian (LoG) features, 
wavelet features, contourlet features, angle cooccurrence 
matrix (ACM) features, absolute gradient features, autore-
gression features, and gray-level differential matrix (GLDM) 
features [15–25]. The value of a feature extracted from an 
ROI was normalized based on the number of pixels in this 
ROI. Section A of the supplemental material describes these 
texture analysis methods in detail.

(1)s =
n

h − l
(c − l) + 1.
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2.3  Feature Preselection

We performed feature preselection using the least abso-
lute shrinkage and selection operator (LASSO) algorithm 
on the candidate features [26–28]. This work randomly 
partitioned the dataset into a training set and a test set at 
a ratio of 7:3. The classification model was built based on 
the training set and tested using the independent test set. 
In the training set, 637 ROIs were Grade I, and 175 ROIs 
were Grade II. In the independent test set, 273 ROIs were 
Grade I, and 75 ROIs were Grade II. Feature preselection 
and the subsequent building of radiomics signature were 
both calculated on the training set. In the implementation 

of the LASSO algorithm, tenfold cross-validation was 
used, and those features corresponding to the smallest 
MSE (mean squared error) value are selected as the pre-
selected features.

2.4  Building a Radiomics Signature

Next, we performed stepwise logistic regression on the 
preselected features to build a radiomics signature. Logis-
tic regression and stepwise logistic regression are both 
generalized linear regression approaches, and the regres-
sion results can be statistically tested and have significant 
interpretability. Stepwise logistic regression, as the name 

Fig. 1  Framework of this work: steps A–E will be described in detail in subsections
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suggests, will produce a series of models step by step. 
We used the features in the final model to constitute the 
radiomics signature.

Equation (2) demonstrates a regression equation, where 
y = 1 represents that its corresponding ROI is Grade II and 
y = 0 represents that its corresponding ROI is Grade I. The 
radiomics signature can be expressed by (x1, x2, …, xm).

To test the linear correlation between y and (x1, x2, …, 
xm), the following should be tested:

where H0 is the null hypothesis. To test H0, F test can be 
used. Equation (4) shows the definition of statistic F.

Here, U denotes the regression sum of squares, Q denotes 
the residual sum of squares, n denotes the number of sam-
ples, and R denotes the multiple correlation coefficient used 
to assess the regression effect. The regression effect repre-
sents the quantitative correlation between (x1, x2, …, xm) 
and y. The closer the value of R is to 1, the stronger is the 
correlation. Equation (5) defines R.

(2)logit(y) = b +

m
∑

i=1

�ixi.

(3)H0 ∶ �1 = �2 ⋯ = �m = 0.

(4)F=
U∕m

Q∕(n − m − 1)
∼ F(m, n − m − 1).

We can find Fα (the critical value of F, α denotes a sig-
nificance level) from the F distribution table and calculate Rα 
(the critical value of R) using Eq. (6). If R > Rα, the regression 
effect (the correlation) is statistically significant at significance 
level α.

2.5  Classification

Section 2.3 describes how the dataset was partitioned. We used 
this partitioning to train a logistic regression model on the 
training set and classify the lesions in the independent test set. 
We also conducted a preliminary classification experiment and 
trained other machine learning models. We calculated the aver-
age AUC of the tenfold cross-validation for each model. Con-
sidering the interpretability of the models and their AUCs, we 
chose the logistic regression model to perform a further clas-
sification task and constructed a nomogram. Section C of the 
supplementary material describes the preliminary experiment.

3  Results

The LASSO algorithm preselected 40 features from 936 can-
didate features. The stepwise logistic regression ultimately 
selected nine features from these 40 features to constitute the 
radiomics signature. Table 1 shows the features of the radiom-
ics signature. For more details of the texture analysis methods, 
please refer to section A of the supplemental material.

Using the nine features, the stepwise logistic regression 
achieved an R of 0.6996. Given α = 0.001, Fα and Rα were 
calculated based on Eqs. (4) and (6), respectively.

Using the regression equation shown in Eq. (2), the esti-
mated coefficients (b, β1, β2, …, βm) obtained through the step-
wise logistic regression are shown in Table 2. The t test was 
performed on these estimated regression coefficients. Accord-
ing to Eq. (2) and Table 2, the grade of a pulmonary lesion 
(i.e., the radiomics score for a lesion) can be expressed by

(5)R =

√

U

U + Q
=

√

mF

(n − m − 1) + mF
.

(6)R� =

√

mF�

(n − m − 1) + mF�

F�(m, n − m − 1) = F�(9, 812 − 9 − 1) ≈ 1.8915,

R� =

√

mF�

(n − m − 1) + mF�

≈

√

9 × 1.8915

(812 − 9 − 1) + 9 × 1.8915
= 0.1844.

Include the patients with COVID-19 infection
(confirmed by RT-PCR examinations and received 

nonenhanced CT scans)

Acquire the non-enhanced CT images (DICOM images)

Delineate bounding boxes 
and label them as mild 
or moderate/severe

Check the bounding boxes and labels by 
a  different radiologist to maintain 
the consistency of different observers

Group the bounding boxes by examination ID (study 
ID in DICOM) and lesion region.

Remove the redundant bounding boxes in each group: 
a bounding box with the largest area is taken for 

each lesion region

84 patients

14350 DICOM images

28282 bounding boxes

1160 bounding boxes

Include the DICOM images with pulmonary lesions

Define the corresponding regions as the ROIs

Fig. 2  Inclusion and exclusion of patients and acquisition of ROIs. 
Multiple bounding boxes with overlapping areas were defined as a 
lesion region. For a lesion region, the bounding box with the largest 
area was selected and regarded as the ROI
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Fig. 3  Examples of delineating 
bounding boxes. a An example 
with a mild bounding box 
(Grade I); the patient’s age was 
43 years, female. b An example 
with a moderate bounding box 
(Grade II); the patient’s age was 
36 years, male. c An example 
with a severe bounding box 
(Grade II); the patient’s age was 
57 years, male

Table 1  Features of the radiomics signature: COM (co-occurrence matrix); RLM (run-length matrix); CS (coefficient statistics)

No. Method Component Feature name

x1 Wavelet The approximate component in the 1st-level decomposition Homogeneity in the COM at d = 1
x2 Wavelet The horizontal component in the 1st-level decomposition Correlation in the COM at d = 1
x3 Wavelet The horizontal component in the 2nd-level decomposition Run percentage in the RLM
x4 Contourlet The approximate component Mean in the CS
x5 Contourlet The approximate component Contrast in the COM at d = 1
x6 Contourlet The 2nd component in the 2nd-level decomposition Percentage of 0.01 in the histogram
x7 Contourlet The 1nd component in the 1st-level decomposition Percentage of 0.01 in the histogram
x8 Contourlet The 2nd component in the 1st-level decomposition Kurtosis in the histogram
x9 Contourlet The 4nd component in the 1st-level decomposition Percentage of 0.01 in the histogram
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where y is the grade and (x1, x2, …, x9) is the radiomics sig-
nature. We trained a logistic regression model based on the 
radiomics signature to classify the lesions in the independent 
test set. Figure 4 depicts the ROC (receiver operating char-
acteristic) curves and AUCs (areas under the ROC curves) 
of the classification results.

To simultaneously obtain relatively high values of sensi-
tivity and relatively high values of specificity, we adjusted 
the threshold of the classification output from 0.1 to 0.9. The 
results are illustrated in Fig. 5.

Figure 5 shows that high sensitivity values and high spec-
ificity values appear simultaneously when the threshold is 

y = −30.4 + 1.96 × x1 − 3.79 × x2 + 20.519 × x3 − 1.21 × 10−3 × x4+

1160 × x5 + 3.159 × x6 + 1.71 × x7 + 0.02 × x8 + 2.54 × x9,

varied from 0.7 to 0.8. Table 3 lists some thresholds and 
their sensitivity and specificity values.

To assist radiologists in quickly diagnosing patients 
infected with COVID-19, object detection is also very 
important. Object detection finds the locations of objects 
in images and classifies the objects. A YOLO model can 
perform object detection and classify the detected objects 
[29]. If a YOLO model can achieve a promised classifica-
tion performance, it is very appropriate to use the objects 
detected by the YOLO model as ROIs (lesion regions) and 
to use the classification results of this YOLO model to clas-
sify the grades of ROIs. For comparison with the logistic 
regression model, we trained a YOLO v3 model to perform 

Table 2  Results of coefficient 
estimation: SE (standard error)

Estimate Confidence intervals (α = 0.05) SE t stat p value

B − 30.40 [− 38.84, − 21.95] 4.30 − 7.07 1.58 × 10−12

β1 1.96 [1.13, 2.80] 0.43 4.60 4.19 × 10−06

β2 − 3.79 [− 6.65, − 0.92] 1.46 − 2.59 9.52 × 10−03

β3 20.519 [7.34, 33.67] 6.70 3.06 2.21 × 10−03

β4 − 1.21 × 10−03 [− 1.70 × 10−03, − 7.00 × 10−04] 2.33 × 10−04 − 5.18 2.24 × 10−07

β5 1.16 × 10−03 [8.00 × 10−04, 1.50 × 10−03] 1.82 × 10−04 6.34 2.29 × 10−10

β6 3.159 [− 0.66, 6.98] 1.94 1.62 0.10
β7 1.71 [0.22, 3.20] 0.76 2.25 0.02
β8 0.02 [3.70 × 10−03, 0.04] 9.64 × 10−03 2.35 0.02
β9 2.54 [0.92, 4.16] 0.83 3.07 2.00 × 10−3
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Fig. 4  Results of ROC curves and AUCs in the classification. The 
validation ROC curve and its corresponding AUC value shown in the 
figure refer to the average performance
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Fig. 5  Sensitivity values and specificity values as the threshold var-
ies. High sensitivity values and high specificity values appear simul-
taneously when the threshold is varied from 0.7 to 0.8
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one-class object detection (only detecting lesion regions and 
not classifying the grades of these lesion regions) and the 
classification of grades (detecting lesion regions and clas-
sifying the grades of these lesion regions). The mAP (mean 
average precision) indicator is frequently used to assess an 
object detection model in training.

In the experiment involving one-class object detection 
(only detecting lesion regions and not classifying the grades 
of these lesion regions), a mAP of 0.81 was achieved in the 
training, and an accuracy of 0.948 was achieved in the test-
ing. In the experiment involving the classification of grades 
(detecting lesion regions and classifying the grades of these 
lesion regions), the training achieved a mAP of 0.050 for 
Grade I and a mAP of 0.59 for Grade II, and the testing 
achieved an accuracy of 0.264 for Grade I and an accuracy 
of 0.836 for Grade II. Table 4 shows the testing results as 
the threshold varies.

4  Discussion

Assessing whether pulmonary lesions are mild or severe 
using CT images is of great significance to the severity 
diagnosis and treatment of COVID-19-infected patients. 
Currently, this assessment is subjective, which is inefficient 
and presents difficultly for radiologists with low levels of 
experience, especially in rural areas. Relatively, AI models 
can quantitatively and objectively analyze images. Recently, 
some radiomics-based AI models have been developed for 
aided diagnosis, efficacy evaluation, or prognosis analysis 
of COVID-19. Wu et al. [30] developed a CT-based signa-
ture to perform prognostic analysis in patients with COVID-
19. Fang et al. [31] developed a radiomics model to predict 
COVID-19 pneumonia. Fu et al. [32] used a machine learn-
ing-based tool to develop radiomics signatures and perform 
prognosis analysis of COVID-19 patients. Ozturk et al. [33] 
developed a COVID-19 detection model based on X-ray 
images to diagnosis COVID-19. However, few studies have 
focused on quantitatively analyzing the grades (mild or mod-
erate/severe) of pulmonary lesions in COVID-19 infection.

Applications of radiomics-based AI models can greatly 
save time for radiologists in producing image reports and 
can reduce the workload of radiologists. Radiologists com-
bined with AI models for diagnosis can reduce the possibil-
ity of misdiagnosis and missed diagnosis. AI applications 
can extend the knowledge and experience of senior experts 
to medical institutions in less developed regions. Unfor-
tunately, many machine learning-based models, including 
deep learning models, mainly focus on the accuracy, AUC, 
etc., and rarely pay attention to interpretability. There are 
two main schemes for radiomics including deep learning 
and feature engineering combining classic machine learning 
methods [8, 9]. Deep learning has achieved good results in 
some image recognition problems and image segmentation 
problems [34–37]. But deep learning has substantial diffi-
culties and challenges in AI applications involving small 
sample sizes, small regions, or expecting interpretability 
[34, 35]. A deep learning model generally has an N-layer 

Table 3  Classification results of 
the logistic regression model as 
the threshold varies

The row with high values of accuracy, sensitivity, and high specificity are shown in bold

Threshold Tenfold cross-validation Test

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

0.50 0.879 0.953 0.611 0.839 0.916 0.560
0.55 0.877 0.940 0.646 0.842 0.912 0.587
0.60 0.872 0.926 0.674 0.845 0.897 0.653
0.65 0.877 0.923 0.709 0.836 0.879 0.680
0.70 0.862 0.900 0.726 0.839 0.868 0.733
0.75 0.853 0.874 0.777 0.813 0.832 0.747
0.80 0.814 0.816 0.806 0.799 0.799 0.800

Table 4  Test results of the objection detection as the threshold varies

The bold row shows the best result

Threshold One-class clas-
sification

Grade classification

Accuracy Accuracy for 
Grade I

Accuracy 
for Grade II

0.50 0.948 0.264 0.836
0.55 0.946 0.222 0.789
0.60 0.943 0.181 0.570
0.65 0.912 0.097 0.484
0.70 0.852 0.056 0.359
0.75 0.789 0.042 0.258
0.80 0.684 0 0.172
0.85 0.596 0 0.117
0.90 0.450 0 0.055
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structure. It is difficult to determine which layer is more 
appropriate for extracting features, and the extracted fea-
tures are abstract. Although deep learning features are highly 
versatile, their ability to solve specific problems is relatively 
weak [38]. In contrast, building an interpretable AI model 
based on feature engineering is relatively easy. The output 
of the model is expected to be understood by physicians in 
clinical applications [39]. We built a nomogram based the 
logistic regression and used the nomogram to classify ROIs. 
The nomogram is illustrated Fig. 6.

Figure 6a shows an interpretable classification process. 
Figure 6b is the calibration curve of Fig. 6a. It visually 
evaluates the classification performance of Fig. 6a. We also 
calculated the index of concordance (C-index) to evaluate 
the classification performance of the nomogram (Fig. 6a). 
The nomogram achieved a C-index of 0.875. Both the cal-
ibration curve and the C-index were calculated based on 
the independent test set. Figure 6 indicates that the logistic 

regression model can achieve a promised classification result 
and its classification process is interpretable. It interprets 
what drives the identification, and the identification can be 
quantitatively assessed by a multiple correlation coefficient. 
As can be seen from Eq. (2), a logistic regression model can 
clearly express a value called the radiomics score. In future 
studies, we can use the radiomics score as a factor and com-
bine it with other clinic factors or demographic factors to 
perform aided diagnoses.

In this work, senior experts in the radiology department 
of West China Hospital labeled the grades of pulmonary 
lesions in COVID-19 infected patients. The diagnostic 
ability of the radiology department of West China Hospital 
ranks among the best in China’s medical institutions. We 
quantitatively analyzed the grades of pulmonary lesions 
in COVID-19 infection using a CT-based radiomics sig-
nature. The regression analysis showed that the radiom-
ics signature significantly correlated with the grade of a 

Fig. 6  Nomogram of classifying ROIs and its calibration curve. a 
Nomogram: for an unknown lesion, a vertical line of xi upward to 
axis “Points” to assign the score indicating the probability of Grade 
II. The process is repeated for each variable (from x1 to x9), and 
the assigned scores are summed. The sum is located on axis “Total 
Points”, and a vertical line downward to axis “Risk” to find the 
lesion’s probability of Grade II. b Calibration curve of a: the x-axis 

represents the nomogram-estimated probabilities and the y-axis rep-
resents the observed probabilities. A perfect estimation of an ideal 
model is represented by the diagonal dotted line. In the diagonal dot-
ted line, the estimated outcome perfectly corresponds to the actual 
outcome. The performance of a is represented by the solid line. In 
the solid line, a closer to the diagonal dotted line indicates a better 
estimation



70 Interdisciplinary Sciences: Computational Life Sciences (2021) 13:61–72

1 3

pulmonary lesion (the value of R was much larger than Rα, 
α = 0.001), and the trained model achieved the promised 
AUC for the independent test set. This indicates that the 
model can be used to assist radiologists, especially those 
with low levels of experience, in diagnosing the grades of 
pulmonary lesions in COVID-19 infection.

The grades of pulmonary lesions are considered critical 
indicators for assessing a patient’s condition in COVID-19 
infection or progression, as well as determinants for subse-
quent treatment strategies. Empirically, patients with more 
mild pulmonary lesions (Grade I) merely need supportive 
treatment with close surveillance, while for patients with 
more moderate or severe pulmonary lesions (Grade II), 
symptomatic treatment or even ventilator treatment is usu-
ally required. Nevertheless, the accurate assessment of the 
grades of lesions highly relies on the profound knowledge 
of a radiologist. Although radiologists can also visually 
confirm ROIs one by one as Grade I or Grade II, it is 
subjective and is difficult for hospitals in rural areas or 
radiologists with high workloads. Obviously, our work can 
greatly improve the diagnosis efficiency, and the calculated 
aided-diagnosis information is objective.

Texture-based radiomics signatures can deeply mine the 
heterogeneous data contained in CT images and other medi-
cal images at the tissue level and even molecular level [40]. 
We also performed one-class object detection and the clas-
sification of grades using a YOLO v3 deep learning model. 
However, regarding the classification of grades, the YOLO 
model yields poor classification of the detected objects, and 
its testing results are better than the training results. This is 
because the trained YOLO v3 deep learning model lacks 
interpretability, so the model’s generalization ability may 
be poor. Section B of the supplemental material describes 
more details. However, the experiment involving one-class 
object detection achieved an accuracy of 0.948. Although 
the YOLO model can detect the ROIs accurately, it yielded 
a poor classification of the detected objects (ROIs): It failed 
to classify the ROIs into Grade I and Grade II. By contrast, 
the developed logistical regression model yielded a prom-
ised result for classifying the ROIs into Grade I and Grade 
II. This work aimed to develop a radiomics signature and 
explore an interpretable model, and then use this model to 
calculate the diagnosis information of lesion grades. How-
ever, it can be inferred that combining the one-class object 
detection of the YOLO v3 model and the logistic regression 
model developed in this paper may greatly assist radiologists 
in quickly and efficiently diagnosing COVID-19 pulmonary 
infections.

This work is a retrospective study of multicenter institu-
tions. There are also some limitations: (1) more samples 
need to be collected; (2) we use a bounding box to mark a 
lesion region such that the ROI includes non-lesion regions, 
which may affect the results of quantitative analysis; (3) 

this work aimed to give the diagnosis information of lesion 
grades, we will collect more information to conduct some 
patient-level classifications for more comprehensive diag-
nosing in future studies; and (4) although the trained YOLO 
model yields poor classification on the detected objects, it 
achieves a high accuracy in object detection; thus, we may 
combine the object detection of the YOLO model with the 
logistic model developed in this paper in further works.

5  Conclusion

This work built a CT-based radiomics signature to quan-
titatively analyze the grades of pulmonary lesions in 
COVID-19 infection. The experimental results indicated 
that the developed radiomics signature is significantly cor-
related with the grade of a pulmonary lesion. The logistic 
regression model established based on this radiomics sig-
nature achieved a promised classification performance for 
Grade I and Grade II. This result indicated that this model 
can assist radiologists in quickly and efficiently diagnosing 
the grades of pulmonary lesions in COVID-19 infection. 
Furthermore, the nomogram based on the logistic regres-
sion model showed an interpretable classification process, 
which is rewarding for clinical use.
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