





## Strategies for improving health care seeking for maternal and newborn illnesses in low- and middle-income countries: a systematic review and meta-analysis

# Zohra S. Lassi<sup>1</sup>\*, Philippa F. Middleton<sup>1,2</sup>, Zulfiqar A. Bhutta<sup>3,4</sup> and Caroline Crowther<sup>1,5</sup>

<sup>1</sup>Australian Research Centre for Health of Women and Babies, Robinson Research Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, Australia; <sup>2</sup>Women's and Children's Health Research Institute, The University of Adelaide, Adelaide, Australia; <sup>3</sup>Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada; <sup>4</sup>Centre of Excellence for Women and Child Health, The Aga Khan University, Karachi, Pakistan; <sup>5</sup>Liggins Institute, University of Auckland, Auckland, New Zealand

**Background**: Lack of appropriate health care seeking for ill mothers and neonates contributes to high mortality rates. A major challenge is the appropriate mix of strategies for creating demand as well as provision of services.

**Design:** Systematic review and meta-analysis of experimental studies (last search: Jan 2015) to assess the impact of different strategies to improve maternal and neonatal health care seeking in low- and middle-income countries (LMIC).

**Results**: Fifty-eight experimental [randomized controlled trials (RCTs), non-RCTs, and before-after studies] with 310,652 participants met the inclusion criteria. Meta-analyses from 29 RCTs with a range of different interventions (e.g. mobilization, home visitation) indicated significant improvement in health care seeking for neonatal illnesses when compared with standard/no care [risk ratio (RR) 1.40; 95 confidence interval (CI): 1.17–1.68, 9 studies, n = 30,572], whereas, no impact was seen on health care seeking for maternal illnesses (RR 1.06; 95% CI: 0.92–1.22, 5 studies, n = 15,828). These interventions had a significant impact on reducing stillbirths (RR 0.82; 95% CI: 0.73–0.93, 11 studies, n = 176,683), perinatal deaths (RR 0.84; 95% CI: 0.77–0.90, 15 studies, n = 279,618), and neonatal mortality (RR 0.80; 95% CI: 0.72–0.89, 20 studies, n = 248,848). On GRADE approach, evidence was high quality except for the outcome of maternal health care seeking, which was moderate.

*Conclusions*: Community-based interventions integrating strategies such as home visiting and counseling can help to reduce fetal and neonatal mortality in LMIC.

Keywords: health care seeking; maternal health; neonatal health; neonatal mortality; perinatal mortality; developing countries; low- and middle-income countries

\*Correspondence to: Zohra S. Lassi, Australian Research Centre for Health of Women and Babies, Robinson Research Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, Australia, Email: zohra.lassi@adelaide.edu.au

To access the supplementary material for this article, please see Supplementary files under 'Article Tools'

Received: 23 February 2016; Revised: 10 April 2016; Accepted: 10 April 2016; Published: 10 May 2016

## Background

Globally, deaths of mothers and newborn babies are far too high. Every year an estimated 289,000 mothers and 2.62 million newborns die globally (1, 2). Complications during pregnancy and childbirth often lead to emergency situations, with a slim window of time to intervene. Maternal health complications contribute to 1.5 million early neonatal deaths and 1.4 million stillbirths, suggesting that there is a major gap requiring intervention around the time of birth and in the early postnatal period, a time when mothers and babies are most at risk (3). Worldwide, 50 million births take place at home without a skilled birth attendant (SBA) (4). Skilled attendance at birth remains unacceptably low in sub-Saharan Africa and Southern Asia and there are further wide disparities within countries, across socioeconomic status, geographic location, and educational status (5).

With 99% of maternal, newborn, and child deaths occurring in low- and middle-income countries (LMICs), increasing health resources and appropriate intervention in these countries is an urgent priority and global responsibility for reducing the burden of maternal and child mortality (6, 7). Antenatal care provides an opportunity to not only detect potential complications but also to prevent them. Birth preparedness - an easy to deliver and inexpensive intervention - can avert the brunt of maternal and perinatal mortalities. It includes different interventions such as identifying SBAs, the closest appropriate health facility, and sometimes funds for emergency transportation and consultation, all of which can reduce delays in obtaining care (8). During the last decade a number of systematic reviews have been published which have assessed interventions for improving maternal and newborn health (9-38). However, none of these have specifically focused on strategies to improve maternal and newborn health care seeking, the aim of this systematic review and meta-analysis.

## **Methods**

All experimental studies from LMICs that assessed the health care seeking behavior or pattern for maternal and newborn health care and illnesses were included. The population for this review included pregnant women at any gestation, postpartum women up to 6 weeks after giving birth, and neonates less than 28 days of life. We included studies that provided information and education for empowerment and change in the form of group meetings or individual one-to-one counseling at home or at primary health care facilities and compared them with standard/no care. The primary outcomes assessed were health care seeking for maternal and newborn illnesses. The secondary outcomes included maternal, neonatal, and perinatal mortality, stillbirths, (Panel 1) and maternal and newborn care outcomes, such as antenatal care, institutional births, and early initiation of breastfeeding.

Panel 1. Definitions.

- Neonatal death: death of a live born infant within 28 completed days of birth.
- Early neonatal death: deaths arising within 6 completed days of birth.
- Late neonatal death: deaths arising from 7 to 28 completed days of birth.
- \*Stillbirth: baby born with no signs of life at or after 28 weeks' gestation.
- \*Perinatal death: a stillbirth or early neonatal death.
- Maternal death: death of a woman while pregnant or within 42 days of cessation of pregnancy from any cause related to the pregnancy or its management, but not from accidental causes.

\*Stillbirths and perinatal deaths were defined differently in few studies. We considered author's definitions.

The protocol for this systematic review and meta-analysis was registered with PROSPERO 2012:CRD42012003 236 (www.metaxis.com/prospero/full\_doc.asp?RecordID= 3236). This review was conducted in accordance with methods of the Cochrane Collaboration (39). Ovid platform was used to search PubMed, MEDLINE, and EMBASE; Popline, the Cochrane Library, and Google Scholar were also searched up to 12 January2015. Search terms were a combination of and synonyms of ('care seeking' OR 'care-seeking' OR 'health care' OR 'health care seeking' OR 'community based intervention\*' OR 'community-based intervention\*') AND (mother\* OR maternal OR women OR newborn\* OR neonat\*) used as medical subject headings and keyword terms in the title/ abstract (Supplementary File 3). No language restrictions were applied. Grey literature (materials and research produced by organizations, [such as community health workers (CHWs) central, High Impact Practices etc.] outside of the traditional commercial or academic publishing and distribution channels) and reference lists of included studies were also searched to identify studies.

ZSL and PM independently reviewed the retrieved articles in two stages; first assessing relevance from the title and abstract, and if relevance was still unclear, reading the full text. Any disagreement was referred to a third reviewer (CC and ZAB). Studies were analyzed according to their study design i.e. randomized (and cluster) controlled trials (RCTs), non-randomized controlled trials (non-RCTs), and before-after studies.

ZSL and PM extracted data independently from each included study. Study design, country of study, participants, intervention, comparison, and duration of intervention were recorded for each study. If information was missing, authors were contacted. The methodological quality of studies was evaluated using standardized forms. The quality of controlled trials was assessed according to Cochrane methods (40). Prospective studies were graded using the methods described by the Effective Practice, Organization and Communication Cochrane review group (EPOC 2009) (41).

We performed statistical analysis of RCTs, non-RCTs, and before-after studies using the Review Manager software (42). For dichotomous data, we presented results as summary risk ratio (RR) and for continuous data we used mean difference (MD) with 95% confidence intervals (CIs). We included cluster-randomized trials in the analyses along with individually randomized trials and therefore their sample sizes were adjusted by the methods described in the Cochrane Handbook (43) using a design effect reported from the trial.

We have set out the mortality outcomes of the review in summary of findings tables prepared using the GRADE approach (44) using GRADE profiler software. For each of these outcomes, we assessed the quality of the evidence, considering within-study risk of bias (methodological quality), directness of evidence, heterogeneity, precision of effect estimates, and risk of publication bias. We have rated the quality of the body of evidence for each key outcome as 'high', 'moderate', 'low', or 'very low'.

The level of attrition was noted for each study. Heterogeneity between trials was assessed using the I-squared statistic, P value of  $< 0.1 (\chi^2)$ , and by visual inspection of forest plots. When high levels of heterogeneity between trials (I-squared exceeding 50%) were identified, further exploration was conducted by subgroup analysis and was tested by interaction tests. We applied random-effects meta-analysis as an overall summary when substantial methodological heterogeneity between and among the studies was found. A priori subgroup analyses were planned to identify the impact on health care seeking with different strategies (community mobilization, home visitation, combination of two, or perinatal health care/ education); and the extent of intervention (birth preparedness, birth preparedness, and recognition and referrals), or (birth preparedness, recognition and referrals and funds for emergency transportation). Potential publication bias was assessed using funnel plots (45).

## **Results**

Our initial search yielded 20,627 articles, 389 of which had relevant titles and abstracts. After reading the full text of these, 72 appeared to meet our inclusion criteria (Panel 2). After finding 14 of these 72 articles did not meet our inclusion criteria, we included and analyzed 58 original studies (90 published papers), of which 29 were RCTs, 15 were non-RCTs, and 14 were before-after studies (Fig. 1) (characteristics of included studies – Supplementary File 1).

A variety of different interventions and behaviors were assessed in the studies that met the eligibility criteria for inclusion (Panel 3). These interventions and behaviors included promoting routine antenatal care, institutional births, and early breastfeeding; provision of clean delivery kits; training of CHWs, SBA, and health care staff on birth preparedness; and provision of maternal and newborn health interventions. In several included studies these interventions were provided in the form of packages of different strategies including community mobilization, home visitation, or a combination of two.

## Primary outcomes: maternal and neonatal health care seeking

Meta-analyses of 27 RCTs (Table 1) with a range of different interventions (Panel 2) showed a 40% increase in health care seeking for neonatal illnesses when compared with standard/no care (RR 1.40; 95 CI: 1.17–1.68; 9 studies, n = 30,572). However, no significant impact was seen in improving health care seeking for maternal illnesses (RR 1.06; 95% CI: 0.92–1.22; 5 studies, n = 15,828). Heterogeneity was more than 85% for both these primary outcomes (Fig. 1a and b).

Subgroup analyses, based on intensity of interventions, suggested that birth preparedness alone as an intervention had no impact on improving health care seeking for maternal illnesses (RR 1.26; 95% CI: 0.57–2.80; 2 studies,



Panel 2. Search flow diagram.

| Antenatal interventions                       | Intrapartum interventions                               | Postnatal interventions                           | Others                                                                                                      |
|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Promotion of routine antenatal care check-ups | <ul> <li>Provision of safe<br/>delivery kits</li> </ul> | Promotion of early and<br>exclusive breastfeeding | TBA/CHW training                                                                                            |
| Tetanus toxoid immunization                   | <ul> <li>Clean delivery<br/>practices</li> </ul>        | Kangaroo mother care/<br>thermoregulation         | Advocacy group meeting                                                                                      |
| Nutritional counseling                        | Referrals for<br>complications and<br>emergencies       | Newborn resuscitation                             | <ul> <li>Counseling and one-to-one<br/>session regarding birth<br/>preparedness and newborn care</li> </ul> |
| Iron/folate supplementation                   | , , , , , , , , , , , , , , , , , , ,                   | Case management of<br>pneumonia                   | Training staff at health facility                                                                           |
| Maternal health education                     |                                                         | Recognition of neonatal<br>danger signs           | <ul> <li>Provision of drugs and supplies at<br/>health facilities</li> </ul>                                |
| Promotion of institutional deliveries         |                                                         | Referrals for sick     newborn                    |                                                                                                             |
| Promotion of clean delivery kits              |                                                         | <ul> <li>Postnatal visitation</li> </ul>          |                                                                                                             |
| Promotion of breastfeeding                    |                                                         |                                                   |                                                                                                             |
| Skin to skin care for newborns                |                                                         |                                                   |                                                                                                             |
| Care for umbilical cord                       |                                                         |                                                   |                                                                                                             |

n = 8,581) or newborn illnesses (RR 1.16; 95% CI: 0.85– 1.59; 5 studies, n = 25,857). Similarly, recognition and referrals for maternal complications showed no impact on improving health care seeking for maternal illnesses (RR 0.96; 95% CI: 0.83–1.12; 1 study, n = 876). When birth preparedness counseling was combined with recog-

nition of illnesses and provision of referrals by CHWs, health care seeking improved for both maternal illnesses (RR 1.15; 95% CI: 1.11–1.20; 1 study, n = 3,810) and newborn illnesses (RR 1.65; 95% CI: 1.46–1.86; 4 studies, n = 4,715). However, when birth preparedness was combined with recognition and referrals along with collecting

Table 1. Results from randomized controlled trials

|                                                     |                             | Number of studies        |                                                                               |
|-----------------------------------------------------|-----------------------------|--------------------------|-------------------------------------------------------------------------------|
| Outcomes                                            | Summary estimates           | and participants         | Heterogeneity                                                                 |
| Primary outcomes                                    |                             |                          |                                                                               |
| Health care seeking for maternal illnesses          | RR 1.06; 95% CI: 0.92, 1.22 | 5 (n = 15,828)           | $\tau^2$ 0.03; $\chi^2 P < 0.00001$ ; $I^2$ 93%                               |
| Health care seeking for neonatal illnesses          | RR 1.40; 95% CI: 1.17, 1.68 | 9 ( <i>n</i> = 31,006)   | $\tau^2$ 0.07; $\chi^2 P < 0.00001$ ; $I^2$ 87%                               |
| Secondary outcomes                                  |                             |                          |                                                                               |
| Mortality outcomes                                  |                             |                          |                                                                               |
| Maternal mortality                                  | RR 0.80; 95% CI: 0.65, 1.00 | 8 ( <i>n</i> = 114,196)  | τ <sup>2</sup> 0.03; χ <sup>2</sup> <i>P</i> =0.07; <i>I</i> <sup>2</sup> 30% |
| Neonatal mortality                                  | RR 0.80; 95% CI: 0.72, 0.89 | 21 (n = 248,848)         | $\tau^2$ 0.06; $\chi^2 P < 0.00001$ ; $I^2$ 83%                               |
| Early neonatal mortality                            | RR 0.70; 95% CI: 0.61, 0.81 | 11 ( <i>n</i> = 113,147) | $\tau^2$ 0.05; $\chi^2 P < 0.00001$ ; $I^2$ 77%                               |
| Late neonatal mortality                             | RR 0.77; 95% CI: 0.64, 0.93 | 9 ( <i>n</i> = 108,359)  | τ <sup>2</sup> 0.03; χ <sup>2</sup> <i>P</i> =0.08; <i>I</i> <sup>2</sup> 42% |
| Stillbirths                                         | RR 0.82; 95% CI: 0.74, 0.92 | 12 ( <i>n</i> = 176,683) | $\tau^2$ 0.03; $\chi^2$ <i>P</i> =0.0002; <i>I</i> <sup>2</sup> 68%           |
| Perinatal mortality                                 | RR 0.84; 95% CI: 0.78, 0.90 | 16 ( <i>n</i> = 279,618) | $\tau^2$ 0.02; $\chi^2 P < 0.00001$ ; $I^2$ 68%                               |
| Morbidity outcomes                                  |                             |                          |                                                                               |
| Any perceived maternal illnesses                    | RR 0.87; 95% CI: 0.65, 1.15 | 3 (n = 26,005)           | τ <sup>2</sup> 0.00; χ <sup>2</sup> <i>P</i> =0.55; <i>I</i> <sup>2</sup> 0%  |
| Any perceived neonatal illnesses                    | RR 0.61; 95% CI: 0.43, 0.85 | 2 (n = 12,019)           | τ <sup>2</sup> 0.00; χ <sup>2</sup> <i>P</i> =0.79; <i>I</i> <sup>2</sup> 0%  |
| Process outcomes                                    |                             |                          |                                                                               |
| Any antenatal care                                  | RR 1.26; 95% CI: 1.16, 1.37 | 13 ( <i>n</i> = 141,006) | $\tau^2$ 0.02; $\chi^2 P < 0.00001$ ; $I^2$ 96%                               |
| Any tetanus toxoid immunization                     | RR 1.07; 95% CI: 1.04, 1.11 | 8 (n = 83,243)           | $\tau^2$ 0.00; $\chi^2 P < 0.00001$ ; $I^2$ 81%                               |
| Iron/folate supplementation                         | RR 1.49; 95% CI: 1.06, 2.11 | 6 (n = 81,706)           | $\tau^2$ 0.23; $\chi^2 P < 0.00001$ ; $I^2$ 99%                               |
| Birthing by skilled birth attendant                 | RR 1.15; 95% CI: 0.99, 1.34 | 7 (n = 53,583)           | $\tau^2$ 0.04; $\chi^2 P < 0.00001$ ; $I^2$ 89%                               |
| Institutional births                                | RR 1.15; 95% CI: 1.05, 1.26 | 16 ( <i>n</i> = 116,848) | $\tau^2$ 0.03; $\chi^2$ <i>P</i> < 0.00001; <i>I</i> <sup>2</sup> 84%         |
| Initiation of breastfeeding within an hour of birth | RR 1.77; 95% CI: 1.43, 2.19 | 14 ( <i>n</i> = 100,272) | $\tau^2$ 0.16; $\chi^2 P < 0.00001$ ; $l^2$ 98%                               |

Significant estimates are provided in BOLD.

## 1.1 Health care seeking for maternal illnesses

| Chudu an Cubanaun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | le efficie le Detiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | In                                                                                                                                                                                                                                                                                                                                  | tervention (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control                                                                                                                                                                                                          | Mainhé                                                                                                                               | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                       | Risk Ratio                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | log[RISK Ratio]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SE                                                                                                                                                                                                                                                                                                                                  | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total                                                                                                                                                                                                            | weight                                                                                                                               | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                               | IV, Random, 95% CI                   |
| 1.1.1 Community mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0054                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0504                                                                                                                                                                                                             | 10.00                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| Manandhar 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0851                                                                                                                                                                                                                                                                                                                              | 3190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3524                                                                                                                                                                                                             | 12.9%                                                                                                                                | 1.78 [1.50, 2.10]                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Midhet 2010 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.2135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0432                                                                                                                                                                                                                                                                                                                              | 836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 511                                                                                                                                                                                                              | 14.9%                                                                                                                                | 0.81 [0.74, 0.88]                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Tripothy 2010 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0409                                                                                                                                                                                                                                                                                                                              | 703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000                                                                                                                                                                                                              | 15.0%                                                                                                                                | 0.95 [0.88, 1.03]                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.2465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5557                                                                                                                                                                                                                                                                                                                              | 5674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5468                                                                                                                                                                                                             | 46.1%                                                                                                                                | 1.05 [0.39, 1.50]                                                                                                                                                                                                                                                                                                                                                                | -                                    |
| Heterogeneity: Tau <sup>2</sup> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.09° Chiž – 69.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 df = 3 (P                                                                                                                                                                                                                                                                                                                         | < 0.00001) F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 96%                                                                                                                                                                                                            |                                                                                                                                      | 100 [0111, 1110]                                                                                                                                                                                                                                                                                                                                                                 | T                                    |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 = 0.32 (P = 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7, ar = 5 (r<br>5)                                                                                                                                                                                                                                                                                                                  | - 0.00001),1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 30 %                                                                                                                                                                                                           |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| reaction over all encore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 = 0.02 (r = 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| 1.1.2 Home visitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| Bashour 2008 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1075                                                                                                                                                                                                                                                                                                                              | 294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 148                                                                                                                                                                                                              | 11.6%                                                                                                                                | 1.01 [0.82, 1.24]                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Bashour 2008 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1121                                                                                                                                                                                                                                                                                                                              | 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149                                                                                                                                                                                                              | 11.4%                                                                                                                                | 0.92 [0.74, 1.14]                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     | 579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 297                                                                                                                                                                                                              | 23.0%                                                                                                                                | 0.96 [0.83, 1.12]                                                                                                                                                                                                                                                                                                                                                                | <b>*</b>                             |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00; Chi <sup>2</sup> = 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | df = 1 (P =                                                                                                                                                                                                                                                                                                                         | 0.55); I <sup>2</sup> = 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z = 0.48 (P = 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3)                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| 1.1.3 Community mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bilization + nome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | visitation                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| Kumar 2008 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.029                                                                                                                                                                                                                                                                                                                               | 1122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 564                                                                                                                                                                                                              | 15.4%                                                                                                                                | 1.15 [1.09, 1.22]                                                                                                                                                                                                                                                                                                                                                                | •                                    |
| Kumar 2008 (6)<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0273                                                                                                                                                                                                                                                                                                                              | 1559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1120                                                                                                                                                                                                             | 15.5%                                                                                                                                | 1.16[1.10, 1.22]                                                                                                                                                                                                                                                                                                                                                                 | Ī                                    |
| Hotorogonoity Tou?-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00.068-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | df - 1 /P -                                                                                                                                                                                                                                                                                                                         | 0.07\.12-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                | 30.5%                                                                                                                                | 1.15 [1.11, 1.20]                                                                                                                                                                                                                                                                                                                                                                | '                                    |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 - 7 19 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0001)                                                                                                                                                                                                                                                                                                                               | 0.07),1 = 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| resciol overall ellect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 - 7.13 (F < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,001)                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     | 8934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6894                                                                                                                                                                                                             | 100.0%                                                                                                                               | 1.06 [0.92, 1.22]                                                                                                                                                                                                                                                                                                                                                                | •                                    |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03: Chi <sup>2</sup> = 103.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75. $df = 7.0$                                                                                                                                                                                                                                                                                                                      | < 0.00001).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F = 93%                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z = 0.86 (P = 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3)                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  | 0.1 0.2 0.5 1 2 5 10                 |
| Test for subgroup diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ferences: Chi <sup>2</sup> = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .29, df = 2 (                                                                                                                                                                                                                                                                                                                       | P = 0.07), I <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62.2%                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  | Favours control Favours Intervention |
| Footnotes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| (1) Women - Informat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion and Education                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n for Empo                                                                                                                                                                                                                                                                                                                          | werment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Change                                                                                                                                                                                                           |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| (2) Couple - Informati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on and Education                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | for Empoy                                                                                                                                                                                                                                                                                                                           | verment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Change                                                                                                                                                                                                           |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| (3) Single visit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| (4) Four visits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| (5) Essential Newbor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Care + thermo s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | spot                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| (6) Essentail Newbor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| 1.2 Health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | care seekin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g tor ne                                                                                                                                                                                                                                                                                                                            | eonatal I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | liness                                                                                                                                                                                                           | es                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | In                                                                                                                                                                                                                                                                                                                                  | tervention (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control                                                                                                                                                                                                          |                                                                                                                                      | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                       | Risk Ratio                           |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | log[Risk Ratio]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | In<br>SE                                                                                                                                                                                                                                                                                                                            | tervention (<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control<br>Total                                                                                                                                                                                                 | Weight                                                                                                                               | Risk Ratio<br>IV, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                 | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | log[Risk Ratio]<br>bilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In<br>SE                                                                                                                                                                                                                                                                                                                            | tervention (<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control<br>Total                                                                                                                                                                                                 | Weight                                                                                                                               | Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                 | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | log[Risk Ratio]<br>bilization<br>-0.1165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1153                                                                                                                                                                                                                                                                                                                              | tervention (<br>Total<br>4457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control<br>Total<br>4441                                                                                                                                                                                         | Weight                                                                                                                               | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]                                                                                                                                                                                                                                                                                                                            | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | log[Risk Ratio]<br>bilization<br>-0.1165<br>0.6097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1153<br>0.1073                                                                                                                                                                                                                                                                                                                    | tervention (<br>Total<br>4457<br>2823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control<br>Total<br>4441<br>3107                                                                                                                                                                                 | Weight<br>10.2%<br>10.4%                                                                                                             | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]                                                                                                                                                                                                                                                                                                       | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | log[Risk Ratio]<br>bilization<br>-0.1165<br>0.6097<br>-0.0834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1153<br>0.1073<br>0.118                                                                                                                                                                                                                                                                                                           | 4457<br>2823<br>2590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20000000000000000000000000000000000000                                                                                                                                                                           | Weight<br>10.2%<br>10.4%<br>10.1%                                                                                                    | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]                                                                                                                                                                                                                                                                                  | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | log[Risk Ratio]<br>bilization<br>-0.1165<br>0.6097<br>-0.0834<br>0.4253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1153<br>0.1073<br>0.118<br>0.3503                                                                                                                                                                                                                                                                                                 | tervention (<br>Total<br>4457<br>2823<br>2590<br>940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Control</b><br><b>Total</b><br>4441<br>3107<br>2566<br>1050                                                                                                                                                   | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%                                                                                            | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]                                                                                                                                                                                                                                                             | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | log[Risk Ratio]<br>bilization<br>-0.1165<br>0.6097<br>-0.0834<br>0.4253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1153<br>0.1073<br>0.118<br>0.3503                                                                                                                                                                                                                                                                                                 | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4441<br>3107<br>2566<br>1050<br><b>11164</b>                                                                                                                                                                     | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%                                                                                   | Risk Ratio<br>IV, Random, 95% Cl<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]                                                                                                                                                                                                                                        | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | log[Risk Ratio]<br>bilization<br>-0.1165<br>0.6097<br>-0.0834<br>0.4253<br>: 0.15; Chi <sup>2</sup> = 28.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1153<br>0.1073<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P                                                                                                                                                                                                                                                                       | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>2 = 89%                                                                                                                                             | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%                                                                                   | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]                                                                                                                                                                                                                                        | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                   | log[Risk Ratio]<br>bilization<br>-0.1165<br>0.6097<br>-0.0834<br>0.4253<br>: 0.15; Chi <sup>2</sup> = 28.1<br>Z = 0.87 (P = 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1153<br>0.1073<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P                                                                                                                                                                                                                                                                       | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4441           3107           2566           1050           11164           * = 89%                                                                                                                              | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%                                                                                   | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]                                                                                                                                                                                                                                        | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                   | log[Risk Ratio]<br>bilization<br>-0.1165<br>0.6097<br>-0.0834<br>0.4253<br>0.16; Chi <sup>z</sup> = 28.1<br>Z = 0.87 (P = 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1153<br>0.1073<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P                                                                                                                                                                                                                                                                       | tervention (<br><u>Total</u><br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%                                                                                                                                              | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%                                                                                   | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]                                                                                                                                                                                                                                        | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation                                                                                                                                                                                                                                                                                                                                                                                                                          | log[Risk Ratio]<br>bilization<br>-0.1165<br>0.6097<br>-0.0834<br>0.4253<br>: 0.15; Chi <sup>2</sup> = 28.1<br>Z = 0.87 (P = 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1153<br>0.1073<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P                                                                                                                                                                                                                                                                       | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br><sup>2</sup> = 89%                                                                                                                                  | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%                                                                                   | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]                                                                                                                                                                                                                                        | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006                                                                                                                                                                                                                                                                                                                                                                                                             | log[Risk Ratio]<br>bilization<br>-0.1165<br>0.6097<br>-0.0834<br>0.4253<br>≎ 0.15; Chi <sup>2</sup> = 28.1<br>Z = 0.87 (P = 0.38<br>0.5785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1153<br>0.1073<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002                                                                                                                                                                                                                                                       | tervention (<br>Total<br>4457 2823 2590 940 10810 < 0.00001); F<br>270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%                                                                                                                                              | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%                                                                                   | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]                                                                                                                                                                                                                   | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010                                                                                                                                                                                                                                                                                                                                                                                           | log[Risk Ratio]           bilization           -0.1165           0.6097           -0.0834           0.4253           0.15; Chi <sup>2</sup> = 28.1           Z = 0.87 (P = 0.38)           0.5785           0.4804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1153<br>0.1073<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835                                                                                                                                                                                                                                             | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400                                                                                                                                | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%                                                                                   | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.20 [0.79, 1.83]                                                                                                                                                                                                                   | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity. Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013                                                                                                                                                                                                                                                                                                                                                                          | log[Risk Ratio]<br>bilization<br>-0.1185<br>0.6097<br>-0.0834<br>0.4253<br>0.15; Chi <sup>2</sup> = 28.1<br>Z = 0.87 (P = 0.38<br>0.5785<br>0.4804<br>0.3577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1024                                                                                                                                                                                                                                             | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77                                                                                                                          | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%                                                                                   | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]                                                                                                                                                                         | Risk Ratio<br>IV, Random, 95% CI     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                     | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253 $: 0.15; Chi^2 = 28.1$ Z = 0.87 (P = 0.38)           0         0.5785         0.4804           0.3577         0.3577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>0.1002<br>0.0835<br>0.1024                                                                                                                                                                                                                                       | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000000000000000000000000000000000000                                                                                                                                                                           | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>32.3%                                               | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]                                                                                                                               | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                | log[Risk Ratio]           bilization           -0.1165           0.6097           -0.0834           0.4253           0.15; Chi <sup>2</sup> = 28.1           Z = 0.87 (P = 0.38)           0.5785           0.4804           0.3577           0.03677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1024<br>, df = 2 (P =                                                                                                                                                                                                                | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727<br>5.030; F = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20000000000000000000000000000000000000                                                                                                                                                                           | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>32.3%                                               | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]                                                                                                                               | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                                    | log[Risk Ratio]<br>bilization<br>-0.1165<br>0.6097<br>-0.0834<br>0.4253<br>0.4253<br>0.4253<br>0.4253<br>0.4253<br>0.4253<br>0.4804<br>0.5775<br>0.4804<br>0.3577<br>0.4804<br>0.3577<br>0.4804<br>0.3577<br>0.4804<br>0.3577<br>0.4804<br>0.3577<br>0.4804<br>0.3577<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.4804<br>0.48040000000000 | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.024<br>, df = 2 (P =<br>3001)                                                                                                                                                                                                        | tervention 0<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727<br>: 0.30); P = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000 Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734                                                                                                                         | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>32.3%                                               | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.71, 1.75]<br>1.61 [1.43, 1.81]                                                                                                                               | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                                    | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253 $: 0.15; Chi^2 = 28.1$ Z = 0.87 (P = 0.38)           0.5785         0.4804           0.3577         : $: 0.00; Chi^2 = 2.38$ Z = 7.96 (P < 0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1002<br>0.0835<br>0.1024<br>df = 2 (P =<br>0001)                                                                                                                                                                                     | tervention 0<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>365<br>102<br>270<br>365<br>102<br>270<br>365<br>102<br>270<br>365<br>102<br>102<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br><sup>2</sup> = 89%<br>257<br>400<br>77<br>734                                                                                                       | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>32.3%                                               | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]                                                                                                                               | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo                                                                                                                                                                                                                                                              | log[Risk Ratio]           bilization           -0.1165           0.6097           -0.0834           0.4253           0.15; Chi <sup>#</sup> = 28.1           Z = 0.87 (P = 0.36)           0.5785           0.4804           0.3577           0.00; Chi <sup>#</sup> = 2.38           Z = 7.96 (P < 0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1024<br>, df = 2 (P =<br>0001)<br>visitation                                                                                                                                                                                         | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727<br>; 0.30); F = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000 Total<br>4441<br>3107<br>2566<br>1050<br>11164<br><sup>2</sup> = 89%<br>257<br>400<br>77<br>734<br><sup>5</sup> %                                                                                           | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>32.3%                                               | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]                                                                                                                               | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)                                                                                                                                                                                                                                            | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253           c0.15; Chi <sup>2</sup> = 28.1         Z = 0.87 (P = 0.36           0.5785         0.4804           0.3677         50.4804           2 = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1002<br>0.0835<br>0.1002<br>0.01024<br>eff = 2 (P =<br>10001)<br>visitation<br>0.0816                                                                                                                                                | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727<br>: 0.30); IP = 16<br>1522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>*%                                                                                                             | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>32.3%                                               | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.7, 1.75]<br>1.61 [1.43, 1.81]                                                                                                                                                     | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)                                                                                                                                                                                                                          | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253           : 0.15; Chi <sup>#</sup> = 28.1         Z           .0.57; Chi <sup>#</sup> = 0.38         0.4804           0.3577         0.4804           0.3577         0.00; Chi <sup>#</sup> = 2.38           Z = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1024<br>0.0835<br>0.1024<br>df = 2 (P =<br>1001)<br>visitation<br>0.0803                                                                                                                                                             | tervention 0<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>365<br>102<br>727<br>: 0.30); F = 16<br>1522<br>1087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>%                                                                                                              | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>11.1%<br>11.1%                                               | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]                                                                                                          | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)<br>Subtotal (95% CI)                                                                                                                                                                                                     | log[Risk Ratio]           bilization           -0.1165           0.6097           -0.0834           0.4253           0.15; Chi <sup>#</sup> = 28.1           Z = 0.87 (P = 0.36           0.5785           0.4804           0.3577           0.00; Chi <sup>#</sup> = 2.38           Z = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1024<br>, df = 2 (P =<br>0001)<br>visitation<br>0.0816<br>0.0803                                                                                                                                                                     | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727<br>727<br>0.30); F = 16<br>1522<br>1087<br>2609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>%                                                                                                              | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>32.3%<br>11.1%<br>22.2%                                      | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]                                                                                     | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253           : 0.15; Chi <sup>2</sup> = 28.1         Z = 0.87 (P = 0.38           0.5785         0.4804           0.3577         : 0.3677           : 0.00; Chi <sup>2</sup> = 2.38         Z = 7.96 (P < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1024<br>0.0816<br>0.0816<br>0.0816<br>0.0816<br>0.0803<br>, df = 1 (P =                                                                                                                                                              | tervention 0<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727<br>0.30); F= 16<br>1522<br>1087<br>2609<br>0.009); F= 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>%<br>539<br>540<br>1079                                                                                        | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>32.3%<br>11.1%<br>11.1%<br>22.2%                    | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.71, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]                                                                                     | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Heterogeneity: Tau <sup>2</sup> =                                                | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253           : 0.15; Chi <sup>#</sup> = 28.1         Z           Z = 0.87 (P = 0.38         0.4044           0.3577         0.4044           0.3577         0.4004           0.3577         0.00; Chi <sup>#</sup> = 2.38           Z = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>0.1002<br>0.0835<br>0.1024<br>0.0835<br>0.1024<br>0.0835<br>0.1024<br>0.0835<br>0.1024<br>0.0835<br>0.1024<br>0.0835<br>0.001<br>Visitation<br>0.0803<br>0.0803<br>0.0803<br>0.0803                                                                              | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>365<br>102<br>727<br>: 0.30); F = 18<br>1522<br>1087<br>2609<br>: 0.0009; F = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>%<br>539<br>540<br>1079                                                                                        | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>32.3%                                                        | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]                                                                                     | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneily: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneily: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneily: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo                                                                                                              | log[Risk Ratio]           bilization           -0.1165           0.6097           -0.0834           0.4253           0.15; Chi <sup>#</sup> = 28.1           Z = 0.87 (P = 0.38           0.5785           0.4263           0.5785           0.4804           0.3577           0.00; Chi <sup>#</sup> = 2.38           Z = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>0.1002<br>0.0835<br>0.1024<br>, df = 2 (P =<br>0001)<br>visitation<br>0.0816<br>0.0803<br>, df = 1 (P =<br>004)                                                                                                                                                  | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727<br>727<br>0.30); F = 18<br>1522<br>1087<br>2609<br>: 0.0009); F = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>%<br>540<br>1079<br>66%                                                                                        | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>32.3%<br>11.1%<br>22.2%                             | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]                                                                                     | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.4 Enhanced perint                                                                                                           | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253           :0.15; Chi <sup>2</sup> = 28.1         Z = 0.87 (P = 0.38           0.5785         0.4804           0.3577         :0.3677           :0.00; Chi <sup>2</sup> = 2.38         Z = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In<br>SE<br>0.1153<br>0.1073<br>0.1183<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1024<br>0.0816<br>0.0816<br>0.0816<br>0.0833<br>df = 1 (P =<br>004)<br>ion                                                                                                                                       | tervention 0<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727<br>0.30); F= 16<br>1522<br>1087<br>2609<br>: 0.009); F = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**                                                       | Weight<br>10.2%<br>10.4%<br>10.4%<br>35.1%<br>10.6%<br>11.1%<br>32.3%<br>11.1%<br>11.1%<br>22.2%                                     | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]                                                                | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.4 Enhanced perin<br>Sloan 2008                                                                                              | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.15; Chi <sup>2</sup> = 28.1 $Z = 0.87$ (P = 0.38         0.5785           0.4804         0.3577           0.00; Chi <sup>2</sup> = 2.38         Z = 7.96 (P < 0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>0.1002<br>0.0835<br>0.1024<br>df = 2 (P =<br>0.001)<br>visitation<br>0.0803<br>0.1024<br>df = 1 (P =<br>0.04)<br>on<br>0.1094                                                                                                                                    | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>365<br>102<br>270<br>365<br>102<br>102<br>1030; F = 16<br>1522<br>1087<br>2609<br>< 0.0009); F = 8<br>1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>%<br>539<br>540<br>1079<br>56%<br>1913                                                                         | Weight<br>10.2%<br>10.4%<br>10.1%<br>35.1%<br>10.6%<br>32.3%<br>11.1%<br>11.1%<br>22.2%<br>10.4%                                     | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]<br>1.05 [0.95, 1.30]                                                                | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.4 Enhanced perin<br>Sloan 2008<br>Subtotal (95% CI)                                                                                           | log[Risk Ratio]           bilization           -0.1165           0.6097           -0.0834           0.4253           0.15; Chi <sup>2</sup> = 28.1           Z = 0.87 (P = 0.38           0.5785           0.4804           0.3577           0.00; Chi <sup>2</sup> = 2.38           Z = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1024<br>, df = 2 (P =<br>0.0803<br>0.1024<br>, df = 2 (P =<br>0.0803<br>0.0803<br>0.0803<br>, df = 1 (P =<br>0.04)<br>ion<br>0.1094                                                                                                  | tervention (<br>Total<br>4457<br>2823<br>2650<br>940<br>10810<br>< 0.00001); F<br>2700<br>355<br>102<br>727<br>0.30); I <sup>2</sup> = 16<br>1522<br>1087<br>2609<br>0.0009); I <sup>2</sup> = 6<br>1970<br>1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>267<br>400<br>77<br>734<br>%<br>539<br>540<br>1079<br>66%                                                                                 | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>32.3%<br>11.1%<br>11.1%<br>22.2%<br>10.4%<br>10.4%  | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]<br>1.05 [0.85, 1.30]                                                                | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.4 Enhanced perint<br>Sloan 2008<br>Subtotal (95% CI)<br>Heterogeneity: Not ag                                               | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253           : 0.15; Chi <sup>2</sup> = 28.1         Z           Z = 0.87 (P = 0.36         0.404           0.3577         0.30577           : 0.00; Chi <sup>2</sup> = 2.38         Z           Z = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In<br>SE<br>0.1153<br>0.1073<br>0.1183<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1024<br>0.0835<br>0.1024<br>(df = 2 (P =<br>0001)<br>visitation<br>0.0816<br>0.0803<br>, df = 1 (P =<br>004)<br>ion<br>0.1094                                                                                                       | tervention 0<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727<br>0.30); F= 16<br>1522<br>1087<br>2609<br>: 0.009); F= 8<br>1970<br>1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>**<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | Weight<br>10.2%<br>10.4%<br>10.4%<br>35.1%<br>10.6%<br>11.1%<br>32.3%<br>11.1%<br>11.1%<br>11.1%<br>11.1%<br>10.4%<br>10.4%          | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.71, 1.75]<br>1.61 [1.43, 1.81]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]<br>1.05 [0.85, 1.30]<br>1.05 [0.85, 1.30]                      | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.4 Enhanced perin<br>Sloan 2008<br>Subtotal (95% CI)<br>Heterogeneity: Not ag<br>Test for overall effect:                    | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253           : 0.15; Chi <sup>2</sup> = 28.1         Z           Z = 0.87 (P = 0.38         0.4804           0.3577         0.4804           0.3577         0.4804           0.3577         0.00; Chi <sup>2</sup> = 2.38           Z = 7.96 (P < 0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1. df = 3 (P<br>0.1002<br>0.0835<br>0.1024<br>0.0835<br>0.1024<br>df = 2 (P =<br>0.001)<br>visitation<br>0.0803<br>0.0803<br>df = 1 (P =<br>0.04)<br>ion<br>0.1094<br>(P)                                                                                                        | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>365<br>102<br>270<br>365<br>102<br>102<br>103<br>102<br>103<br>103<br>103<br>102<br>103<br>103<br>103<br>103<br>103<br>103<br>103<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>%<br>539<br>540<br>1079<br>56%<br>1913<br>1913                                                                 | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>32.3%<br>11.1%<br>22.2%<br>10.4%<br>10.4%                             | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]<br>1.05 [0.85, 1.30]<br>1.05 [0.85, 1.30]                                           | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.4 Enhanced perin<br>Sloan 2008<br>Subtotal (95% CI)<br>Heterogeneity: Not ag<br>Test for overall effect:                    | log[Risk Ratio]           bilization           -0.1165           0.6097           -0.0834           0.4253           0.15; Chi² = 28.1           Z = 0.87 (P = 0.38           0.5785           0.4804           0.3577           0.00; Chi² = 2.38           Z = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1, df = 3 (P<br>0.0835<br>0.1002<br>0.0835<br>0.1024<br>, df = 2 (P =<br>0.0803<br>0.1024<br>visitation<br>0.0803<br>, df = 1 (P =<br>004)<br>ion<br>0.1094<br>3)                                                                                                                | tervention (<br>Total<br>4457<br>2823<br>2630<br>940<br>10810<br>< 0.00001); F<br>2770<br>355<br>102<br>727<br>0.300; I* = 16<br>1522<br>1087<br>2609<br>0.0009); I* = 6<br>1970<br>1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>267<br>4000<br>77<br>734<br>539<br>540<br>1079<br>56%                                                                                     | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>32.3%<br>11.1%<br>11.1%<br>22.2%<br>10.4%<br>10.4%  | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]<br>1.05 [0.85, 1.30]<br>1.05 [0.85, 1.30]                                           | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.4 Enhanced perint<br>Sloan 2008<br>Subtotal (95% CI)<br>Heterogeneity: Not ag<br>Test for overall effect:<br>Total (95% CI) | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253           :0.15; Chi <sup>2</sup> = 28.1         Z           Z = 0.87 (P = 0.36         0.404           0.3577         0.400; Chi <sup>2</sup> = 2.38           Z = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In<br>SE<br>0.1153<br>0.1073<br>0.1183<br>0.3503<br>1, df = 3 (P<br>3)<br>0.1002<br>0.0835<br>0.1024<br>0.0816<br>0.0816<br>0.0816<br>0.0826<br>0.0833<br>df = 1 (P =<br>004)<br>ion<br>0.1094<br>3)                                                                                                                                | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>355<br>102<br>727<br>0.30); F= 16<br>1522<br>1087<br>2609<br>: 0.009); F= 8<br>1970<br>1970<br>1970<br>1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>**<br>539<br>540<br>1079<br>16%<br>1913<br>1913<br>1913                                                        | Weight<br>10.2%<br>10.4%<br>10.4%<br>35.1%<br>10.6%<br>11.1%<br>10.6%<br>11.1%<br>11.1%<br>11.1%<br>11.1%<br>10.4%<br>10.4%<br>10.4% | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.71, 1.75]<br>1.61 [1.43, 1.81]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]<br>1.05 [0.85, 1.30]<br>1.05 [0.85, 1.30]<br>1.05 [0.85, 1.30] | Risk Ratio<br>IV, Random, 95% Cl     |
| Study or Subgroup<br>1.2.1 Community mo<br>Azad 2010<br>Manandhar 2004<br>More 2012<br>Tripathy 2010<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.2 Home visitation<br>Bari 2006<br>Darmstadt 2010<br>Kirkwood 2013<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.3 Community mo<br>Kumar 2008 (1)<br>Kumar 2008 (2)<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>1.2.4 Enhanced perin<br>Sloan 2008<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =                                    | log[Risk Ratio]           bilization         -0.1165           0.6097         -0.0834           0.4253         0.4253           : 0.15; Chi <sup>2</sup> = 28.1         Z           Z = 0.87 (P = 0.36         0.4804           0.3577         0.4804           0.3577         0.4804           0.3577         0.4004           0.3577         0.00; Chi <sup>2</sup> = 2.38           Z = 7.96 (P < 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In<br>SE<br>0.1153<br>0.1073<br>0.118<br>0.3503<br>1. df = 3 (P<br>0.1002<br>0.0835<br>0.1024<br>0.0835<br>0.1024<br>df = 2 (P =<br>0001)<br>visitation<br>0.08036<br>0.08036<br>0.08035<br>0.1024<br>visitation<br>0.08036<br>0.08036<br>0.08037<br>0.1094<br>0.1094<br>(b)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c | tervention (<br>Total<br>4457<br>2823<br>2590<br>940<br>10810<br>< 0.00001); F<br>270<br>365<br>102<br>270<br>365<br>102<br>1087<br>2609<br>0.0009); F = 16<br>1522<br>1087<br>2609<br>0.0009); F = 16<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>1970<br>19 | Control<br>Total<br>4441<br>3107<br>2566<br>1050<br>11164<br>*= 89%<br>257<br>400<br>77<br>734<br>%<br>539<br>540<br>1079<br>56%<br>1913<br>1913<br>1913<br>1913<br>1913                                         | Weight<br>10.2%<br>10.4%<br>10.1%<br>4.4%<br>35.1%<br>10.6%<br>32.3%<br>11.1%<br>11.1%<br>22.2%<br>10.4%<br>10.4%<br>10.4%<br>10.0%  | Risk Ratio<br>IV, Random, 95% CI<br>0.89 [0.71, 1.12]<br>1.84 [1.49, 2.27]<br>0.92 [0.73, 1.16]<br>1.53 [0.77, 3.04]<br>1.20 [0.79, 1.83]<br>1.78 [1.47, 2.17]<br>1.62 [1.37, 1.90]<br>1.43 [1.17, 1.75]<br>1.61 [1.43, 1.81]<br>1.47 [1.25, 1.72]<br>1.99 [1.70, 2.32]<br>1.71 [1.27, 2.29]<br>1.05 [0.85, 1.30]<br>1.05 [0.85, 1.30]<br>1.40 [1.17, 1.68]                      | Risk Ratio<br>IV, Random, 95% Cl     |

Test for overall effect: Z = 3.70 (P = 0.0002) Test for subgroup differences: Chi<sup>a</sup> = 13.57, df = 3 (P = 0.004), i<sup>a</sup> = 77.9% <u>Footnotes</u> (1) Essential Newborn Care (2) Essential Newborn Care + thermo spot

Fig. 1. Health care seeking for maternal and ewborn illnesses: intensity of intervention.

funds for emergency transportation, it showed no impact on improving maternal health care seeking (RR 0.88; 95% CI: 0.75–1.03, 1 study, n = 2,561) (Fig. 1a and b).

Based on strategies used for enhancing health care seeking, community mobilization alone showed no improvement in health care seeking for maternal illnesses (RR 1.05; 95% CI: 0.77–1.45, 3 studies, n = 11,144) or neonatal illnesses (RR 1.20; 95% CI: 0.79–1.83, 4 studies, n = 21,974,). Home visiting by CHWs alone had a

significant impact on improving health care seeking for neonatal illnesses (RR 1.61; 95% CI: 1.43–1.81; 3 studies, n = 1,461), but no impact was seen for maternal illnesses (RR 0.96; 95% CI: 0.83–1.12, 1 study, n = 876). When home visiting was combined with community mobilization, significant improvements were seen for both maternal illnesses (RR 1.15; 95% CI: 1.11–1.20; 1 study, n = 3,810) and newborn illnesses (RR 1.71; 95% CI: 1.27–2.29; 1 study, n = 3,688) (Fig. 2a and b). Estimates from non-RCTs

## 2.1 Health care seeking for maternal illnesses



Fig. 2. Health care seeking for maternal and newborn illnesses: strategies for delivering interventions.

found no impact on improving health care seeking for neonatal illnesses (Table 2). However, results from beforeafter studies were similar to the results from RCTs showing no impact on health care seeking for maternal illnesses RR 1.13; 95% CI: 0.86–1.48; 1 study, n = 1,443 but significant improvement in health care seeking for neonatal illnesses (RR 1.35; 95% CI: 1.19–1.53; 4 studies, n = 4,348) (Table 3).

## Mortality outcomes

RCTs included in this review displayed a non-significant borderline reduction in maternal mortality (RR 0.80; 95% CI: 0.65–1.00; 8 studies, n = 114,196) (Table 1). However, significant impact was observed on total neonatal mortality (RR 0.80; 95% CI: 0.72–0.89; 21 studies, n = 248,848) (Supplementary File 2) including both early (RR 0.70; 95% CI: 0.61–0.81; 11 studies, n = 113,147) and late neonatal mortality (RR 0.77; 95% CI: 0.6–0.93; 9 studies, n = 108,359) (Table 1). Impact was also significant for reducing perinatal mortality (RR 0.84; 95% CI: 0.78–0.90; 16 studies, n = 279,618) and stillbirths (RR 0.82; 95% CI: 0.74–0.92; 12 studies, n = 176,683) (Table 1). On GRADE analysis, evidence was moderate for maternal

| Outcomes                            | Summary estimates              | Number of studies and participants | Heterogeneity                                                                  |
|-------------------------------------|--------------------------------|------------------------------------|--------------------------------------------------------------------------------|
| Primary outcomes                    |                                |                                    |                                                                                |
| Health care seeking for neonatal    | RR 0.96; 95% Cl: 0.71, 1.31    | 3 ( <i>n</i> = 2,103)              | $\tau^2$ 0.09; $\chi^2 P < 0.00001$ ; $I^2$ 94%                                |
| illnesses                           |                                |                                    |                                                                                |
| Secondary outcomes                  |                                |                                    |                                                                                |
| Mortality outcomes                  |                                |                                    |                                                                                |
| Maternal mortality                  | RR 0.97; 95% CI: 0.64, 1.49    | 5 ( <i>n</i> = 119,078)            | $\tau^2$ 0.19; $\chi^2 P < 0.00001$ ; $l^2$ 89%                                |
| Neonatal mortality                  | RR 0.83; 95% Cl: 0.54, 1.26    | 4 ( <i>n</i> = 28,641)             | τ <sup>2</sup> 0.13; χ <sup>2</sup> <i>P</i> =0.004; <i>I</i> <sup>2</sup> 77% |
| Early neonatal mortality            | RR 0.57; 95% Cl: 0.30, 1.09    | 2 (n = 3,921)                      | τ <sup>2</sup> 0.10; χ <sup>2</sup> <i>P</i> =0.19; <i>I</i> <sup>2</sup> 41%  |
| Late neonatal mortality             | RR 0.84; 95% Cl: 0.12, 5.80    | 2 (n = 3,921)                      | τ <sup>2</sup> 1.55; χ <sup>2</sup> <i>P</i> =0.03; <i>I</i> <sup>2</sup> 79%  |
| Stillbirths                         | RR 0.97; 95% Cl: 0.71, 1.34    | 3 (n = 6,096)                      | $\chi^2 P = 0.01; I^2 77\%$                                                    |
| Perinatal mortality                 | RR 0.74; 95% Cl: 0.44, 1.23    | 4 ( <i>n</i> = 101,834)            | $\tau^2$ 0.22; $\chi^2 P < 0.00001$ ; $l^2$ 89%                                |
| Morbidity outcomes                  |                                |                                    |                                                                                |
| Any perceived neonatal illnesses    | RR 1.12; 95% CI: 0.90, 1.39    | 1 ( <i>n</i> = 459)                |                                                                                |
| Process outcomes                    |                                |                                    |                                                                                |
| Any antenatal care                  | RR 1.05; 95% CI: 1.04, 1.06    | 3 (n = 31,305)                     | $\chi^2 P < 0.00001; I^2 98\%$                                                 |
| Iron/folate supplementation         | RR 24.53; 95% CI: 13.20, 45.59 | 1 ( <i>n</i> = 756)                | _                                                                              |
| Birthing by skilled birth attendant | RR 1.03; 95% CI: 0.97, 1.10    | 1 ( <i>n</i> = 13,826)             | _                                                                              |
| Institutional births                | RR 1.89; 95% CI: 1.48, 2.41    | 2 (n = 2,291)                      | $\tau^2$ 0.03; $\chi^2 P < 0.00001$ ; $l^2$ 86%                                |
| Initiation of breastfeeding within  | RR 6.54; 95% CI: 5.88, 7.27    | 1 ( <i>n</i> = 13,826)             | _                                                                              |
| an hour of birth                    |                                |                                    |                                                                                |

## Table 2. Results from non-randomized controlled trials

Significant estimates are provided in BOLD.

mortality; however, it was high quality for the rest of the other mortality outcomes (Fig. 3).

Based on intensity of interventions and strategies used within RCTs, no differences were seen for reducing maternal mortality (Table 4). Community mobilization alone showed a significant impact on reducing neonatal mortality (RR 0.79; 95% CI: 0.70–0.89; 10 studies, n = 123,047); however, home visitation alone showed no impact (RR 0.87; 95% CI: 0.57–1.32; 4 studies, n = 21,214). Community mobilization and home visitation in combination showed a significant impact on reducing neonatal mortality (RR 0.73; 95% CI: 0.71–0.89; 4 studies,

Table 3. Results from before/after studies

| Outcomes                                            | Summary estimates                | Number of studies and participants | Heterogeneity                                                                           |
|-----------------------------------------------------|----------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|
| Primary outcomes                                    |                                  |                                    |                                                                                         |
| Health care seeking for maternal illnesses          | RR 1.13; 95% Cl: 0.86, 1.48      | 1 ( <i>n</i> = 1,443)              | _                                                                                       |
| Health care seeking for neonatal illnesses          | RR 1.35; 95% CI: 1.19, 1.53      | 4 ( <i>n</i> = 4,348)              | τ <sup>2</sup> 0.01; χ <sup>2</sup> <i>P</i> =0.003; <i>I</i> <sup>2</sup> 75%          |
| Secondary outcomes                                  |                                  |                                    |                                                                                         |
| Mortality outcomes                                  |                                  |                                    |                                                                                         |
| Neonatal mortality                                  | RR 0.55; 95% Cl: 0.18, 1.73      | 2 ( <i>n</i> = 60,762)             | τ <sup>2</sup> 0.66; χ <sup>2</sup> <i>P</i> < 0.00001; <i>I</i> <sup>2</sup> 98%       |
| Early neonatal mortality                            | RR 1.53; 95% Cl: 0.78, 3.01      | 3 ( <i>n</i> = 3,418)              | τ <sup>2</sup> <i>P</i> 0.26; χ <sup>2</sup> <i>P</i> =0.004; <i>I</i> <sup>2</sup> 82% |
| Stillbirths                                         | RR 0.70; 95% CI: 0.60, 0.82      | 4 ( <i>n</i> = 61,176)             | χ <sup>2</sup> Ρ 0.03; <i>Ι</i> <sup>2</sup> 65%                                        |
| Perinatal mortality                                 | RR 0.96; 95% CI: 0.85, 1.09      | 4 ( <i>n</i> = 60,944)             | χ <sup>2</sup> <i>P</i> < 0.00001; <i>I</i> <sup>2</sup> 90%                            |
| Process outcomes                                    |                                  |                                    |                                                                                         |
| Any antenatal care                                  | RR 1.27; 95% CI: 1.24, 1.30      | 3 ( <i>n</i> = 10,137)             | $\chi^2 P < 0.00001; I^2 98\%$                                                          |
| Iron/folate supplementation                         | RR 1.29; 95% CI: 1.25, 1.33      | 1 ( <i>n</i> = 3,480)              | _                                                                                       |
| Any tetanus toxoid immunization                     | RR 1.14; 95% CI: 1.10, 1.17      | 1 ( <i>n</i> = 3,480)              |                                                                                         |
| Institutional births                                | RR 32.76; 95% CI: 0.04, 29028.97 | 2 ( <i>n</i> = 5,859)              | $\tau^2 = 23.02;  \chi^2  P < 0.00001;  l^2  96\%$                                      |
| Initiation of breastfeeding within an hour of birth | RR 1.54; 95% Cl: 0.97, 2.44      | 2(n = 2,474)                       | $\tau^2 = 0.11;  \chi^2  P < 0.00001;  l^2  99\%$                                       |

Significant estimates are provided in BOLD.

#### RCTs for maternal and newborn health

Patient or population: patients with maternal and newborn health

Settings: Intervention: RCTs

| Outcomes                                           | Illustrative com        | parative risks* (95% CI)     | Relative effect           | No of Participants     | Quality of the evidence       | Comments |
|----------------------------------------------------|-------------------------|------------------------------|---------------------------|------------------------|-------------------------------|----------|
|                                                    | Assumed risk<br>Control | Corresponding risk<br>RCTs   | (95% CI)                  | (studies)              | (GRADE)                       |          |
| Maternal care seeking - from skilled care provider | 274 per 1000            | 290 per 1000<br>(252 to 334) | RR 1.06<br>(0.92 to 1.22) | 15828<br>(5 studies)   | ⊕⊕⊕⊜<br>moderate <sup>1</sup> |          |
| Neonatal care seeking - from skilled care provider | 92 per 1000             | 128 per 1000<br>(107 to 154) | RR 1.4<br>(1.17 to 1.68)  | 25850<br>(8 studies)   | ⊕⊕⊕⊕<br>high                  |          |
| Maternal mortality                                 | 3 per 1000              | 3 per 1000<br>(2 to 3)       | RR 0.80<br>(0.65 to 1.00) | 113938<br>(8 studies)  | ⊕⊕⊕⊕<br>high                  |          |
| Neonatal mortality                                 | 34 per 1000             | 27 per 1000<br>(24 to 30)    | RR 0.79<br>(0.71 to 0.89) | 248848<br>(20 studies) | ⊕⊕⊕⊕<br>high                  |          |
| Stillbirths                                        | 25 per 1000             | 21 per 1000<br>(19 to 24)    | RR 0.82<br>(0.73 to 0.93) | 154122<br>(11 studies) | ⊕⊕⊕⊕<br>high                  |          |
| Perinatal mortality                                | 42 per 1000             | 35 per 1000<br>(32 to 38)    | RR 0.84<br>(0.77 to 0.90) | 257057<br>(15 studies) | ⊕⊕⊕⊕<br>high                  |          |

\*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio;

GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate. Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate

Very low quality: We are very uncertain about the estimate.

<sup>1</sup> One of the included study provided single intervention, while rest provided package of interventions. On the other hand, the strategies with which intervention was delivered was different in all the studies.

## Fig. 3. GRADE analysis.

n = 114,509), and enhanced perinatal care/education showed no impact (RR 0.90; 95% CI: 0.57-1.41; 4 studies, n = 12,455). Community mobilization alone (RR 0.69; 95% CI: 0.57–0.82; 6 studies, *n* = 73,288) and community mobilization in combination with home visitation (RR 0.69; 95% CI: 0.54–0.88; 3 studies, n = 32,263) showed a significant impact on reducing early neonatal mortality (ENM): however, enhanced perinatal care/education alone had no impact (RR 0.81; 95% CI: 0.44-1.50; 2 studies, n = 7,569). Community mobilization in combination with home visitation also showed significant impact on reducing late neonatal mortality (RR 0.61; 95% CI: 0.41-0.92; 3 studies, n = 32,263), however, community mobilization (RR 0.83; 95% CI: 0.67–1.03; 5 studies, n = 71,931) together with enhanced perinatal care/education showed no impact (RR 1.09; 95% CI: 0.55-2.18; 1 study, n = 4,165). Community mobilization in combination with home visitation (RR 0.78; 95% CI: 0.71-0.86; 2 studies, n = 33,786) and enhanced perinatal care/education (RR 0.62; 95% CI: 0.49–0.79; 2 studies, n = 6,251) showed a significant impact on reducing stillbirths, however, community mobilization alone showed no impact (RR 0.94; 95% CI: 0.83–1.06; 7 studies, *n* = 136,646). Community mobilization in combination with home visitation (RR 0.78; 95% CI: 0.68–0.89; 5 studies, *n* = 100,553) and community mobilization alone (RR 0.88; 95% CI: 0.82-0.95; 10 studies, n = 205,843) showed a significant impact on reducing stillbirths, however, enhanced perinatal care/ education alone showed no impact (RR 0.84; 95% CI: 0.61-1.16; 3 studies, n = 27,326) (Table 4).

Subgroup analyses based on intensity of interventions showed birth preparedness alone had no impact on improving neonatal mortality (RR 0.91; 95% CI: 0.76–1.09; 11 studies, n = 129,937), however, when birth preparedness was paired with recognition and referrals (RR

0.73; 95% CI: 0.60–0.88; 8 studies, n = 105,846) and then with funds for emergency transportation (RR 0.78; 95% CI: 0.70–0.87; 2 studies, n = 29,927) there was a significant impact on reducing neonatal mortality. Similarly, birth preparedness alone showed no impact on improving late neonatal mortality (RR 0.85; 95% CI: 0.70-1.04; 6 studies, n = 76,096), however, when birth preparedness was paired with recognition and referrals (RR 0.40; 95% CI: 0.24-0.68; 1 study, n = 3,688) there was a significant impact on reducing late neonatal mortality. When funds for emergency transportation was combined with birth preparedness and recognition and referrals (RR 0.80; 95% CI: 0.70-0.87; 2 studies, n = 29,927). Birth preparedness alone showed a significant impact on reducing ENM and stillbirths (ENM RR 0.79; 95% CI: 0.66-0.95; 6 studies, n = 75,196; stillbirths RR 0.85; 95% CI: 0.74–0.96; 10 studies, n = 171,703; it also showed an impact on these outcomes when paired with recognition of complication and referrals (ENM RR 0.55; 95% CI: 0.43-0.71; 2 studies, *n* = 7,119; stillbirths RR 0.72; 95% CI: 0.61–0.84; 3 studies, n = 4,980) and funds for emergency transportation (ENM RR 0.66; 95% CI: 0.50–0.88; 3 studies, n = 30,832; stillbirths RR 0.78; 95% CI: 0.70-0.87; 2 studies, n = 29,927). Birth preparedness alone (RR 0.91; 95% CI: 0.84–0.98; 9 studies, n = 149,097) and in combination to recognition and referrals (RR 0.75; 95% CI: 0.64-0.89; 5 studies, n = 93,665) showed significant impact on reducing perinatal mortality, however when further intensified and paired with funds for emergency transportation (RR 0.81; 95% CI: 0.64–1.01; 3 studies, n = 32,184), there was no impact on reducing perinatal mortality (Table 4).

From non-RCTs (Table 2) and before-after studies (Table 3), significant reductions in stillbirths were observed

| Strategies employed       |                                                                                                                                                                     |                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                                                           |                                                           |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                           | Community mobilization                                                                                                                                              | Home visitation                                                                                                                                                                                 | Community mobilization<br>and home visitation                                                                              | Enhanced perinatal<br>care/education                                                                                                                                      | Subgroup<br>differences<br>(P value of Chi <sup>2</sup> ) |
| Maternal mortality        | RR 0.81 95% CI: 0.54, 1.21<br>6 studies, <i>n</i> = 79,203                                                                                                          | RR 0.62; 95% CI: 0.35, 1.09<br>2 studies, <i>n</i> = 10,021                                                                                                                                     | RR 0.82; 95% Cl: 0.46, 1.46<br>1 study, <i>n</i> = 6,230                                                                   | RR 0.74; 95% Cl: 0.45, 1.22<br>1 study, <i>n</i> = 18,699                                                                                                                 | P=0.16                                                    |
| Neonatal mortality        | τ <sup>±</sup> 0.13, χ <sup>±</sup> P=0.04; μ <sup>*</sup> 56%<br>RR 0.79; 95% CI: 0.70, 0.89<br>10 studies, n = 123,047<br>-² 0.03,² b = 0.0001, ι² 74%            | で 0.00;                                                                                                                                                                                         | RR 0.73; 95% CI: 0.71, 0.89<br>4 studies, n = 114,509<br>-² o.oc² b _ o. 74, i² soo.                                       | RR 0.90; 95% CI: 0.57, 1.41<br>4 studies, <i>n</i> =12,455<br>-2 o to: -2 <i>n</i> -00001, <i>P</i> 0402                                                                  | P=0.78                                                    |
| Early neonatal mortality  | <sup>c</sup> 0.003, <i>X</i> Γ = 0.0001,1 / 1.1%<br>RR 0.69; 95% CI: 0.57, 0.82<br>6 studies, n = 73,288<br>r² <sup>2</sup> ∩ ∩6- v² D ∨ ∩ ∩∩∩01-1 <sup>2</sup> 81% |                                                                                                                                                                                                 | голо; Хг = си.г.н. гос.<br>RR 0.69; 95% СІ: 0.54, 0.38<br>3 studies, n = 32,263<br>-² ∩ ли. √² р – ∩ лэ- г² сем.           | r 0.19, X T < 0.0001,1 94%<br>RR 0.81; 95% CI: 0.44, 1.50<br>2 studies, <i>n</i> = 7,596<br>- <sup>2</sup> 0.14 <sup>. , 2</sup> P = 0.01 <sup>. f<sup>2</sup></sup> 7.0% | P <0.0001                                                 |
| Late neonatal mortality   | RR 0.83; 95% Cl: 0.67, 1.03<br>5 studies, $n = 71$ , 931<br>$\tau^2$ 0.02; $\chi^2 P = 0.22$ ; $l^2$ 31%<br>P = 0.28                                                | 1                                                                                                                                                                                               | RR 0.61; 95% CI: 0.41, 0.92<br>3 studies, n =32,263<br>τ² 0.10; χ² P = 0.04; Ι² 63%                                        | RR 1.09; 95% CI: 0.55, 2.18<br>1 study, n4,165                                                                                                                            |                                                           |
| Stillbirths               | RR 0.94; 95% CI: 0.83, 1.06<br>7 studies, <i>n</i> = 136,646<br>τ <sup>2</sup> 0.01; <i>γ</i> <sup>2</sup> <i>P</i> = 0.09; <i>β</i> 45%                            | I                                                                                                                                                                                               | RR 0.78; 95% CI: 0.71, 0.86<br>2 studies, n =33,786<br>r <sup>2</sup> 0.00; y <sup>2</sup> P =0.74; I <sup>2</sup> 0%      | RR 0.62; 95% CI: 0.49, 0.79<br>2 studies, n =6,251<br>⁺² 0.01; ½ P =0.16; l² 50%                                                                                          | P = 0.004                                                 |
| Perinatal mortality       | RR 0.88; 95% CI: 0.82, 0.95<br>10 studies, n = 205,843<br>r² 0.01; ½ P = 0.08; l² 41%                                                                               | RR 0.82; 95% CI: 0.62, 1.08<br>1 study, <i>n</i> =6,376                                                                                                                                         | RR 0.78; 95% CI: 0.68, 0.89<br>5 studies, n = 100,553<br>τ <sup>2</sup> 0.02; χ <sup>2</sup> P = 0.002; l <sup>2</sup> 73% | RR 0.84; 95% CI: 0.61, 1.16<br>3 stucies, $n = 27,326$<br>$\tau^2$ 0.07; $\chi^2 P = 0.005; P$ 88%                                                                        | P=0.41                                                    |
| Intensity of intervention | Rinth meanarachasse                                                                                                                                                 | Birth preparedness<br>+ reconsition and referrals                                                                                                                                               | Birth preparedness + recognition and referrals<br>+ Funds for emergency transportation                                     |                                                                                                                                                                           |                                                           |
| Maternal mortality        | RR 0.81 95% Cl: 0.54, 1.21<br>6 studies, <i>n</i> = 80,040                                                                                                          | RR 0.73; 95% Cl: 0.51, 1.05<br>3 studies, <i>n</i> = 29,454                                                                                                                                     |                                                                                                                            |                                                                                                                                                                           | P=0.71                                                    |
| Neonatal mortality        | $\tau^2$ 0.13; $\gamma^2$ P = 0.04; $l^2$ 56%<br>RR 0.91; 95% CI: 0.76, 1.09<br>11 studies, $n = 129,937$<br>$\tau^2$ 0.08; $\gamma^2$ P <0.00001; $l^2$ 85%        | τ <sup>2</sup> 0.00; χ <sup>2</sup> P = 0.63; l <sup>2</sup> 0%<br>RR 0.73; 95% CI: 0.60, 0.88*<br>8 studies, n = 105,846<br>τ <sup>2</sup> 0.07; χ <sup>2</sup> P <0.00001; l <sup>2</sup> 79% | RR 0.78; 95% CI: 0.70, 0.87<br>2 studies, n = 29,927<br>τ <sup>2</sup> 0.03; χ <sup>2</sup> P = 0.0001; 1 <sup>2</sup> 0%  |                                                                                                                                                                           | P=0.11                                                    |

Table 4. Mortality outcomes based on intensity of interventions and strategies employed

|                          |                                                        | Birth preparedness                                   | Birth preparedness + recognition and referrals        |          |
|--------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|----------|
|                          | Birth preparedness                                     | + recognition and referrals                          | + Funds for emergency transportation                  |          |
| Early neonatal mortality | RR 0.79; 95% CI: 0.66, 0.95                            | RR 0.55; 95% CI: 0.43, 0.71                          | RR 0.66; 95% CI: 0.50, 0.88                           | P=0.06   |
|                          | 6 studies, n <i>=</i> 75,196                           | 2 studies, $n = 7,119$                               | 3  studies, n=30,832                                  |          |
|                          | $	au^2$ 0.03; $\chi^2$ P = 0.010; l <sup>2</sup> 67%   | $	au^2$ 0.00; $\chi^2$ P = 0.98; l <sup>2</sup> 0%   | $	au^2$ 0.08; $\chi^2$ P < 0.0001; l <sup>2</sup> 90% |          |
| Late neonatal mortality  | RR 0.85; 95% CI: 0.70, 1.04                            | RR 0.40; 95% CI: 0.24, 0.68                          | RR 0.80; 95% CI: 0.60, 1.06                           | P = 0.03 |
|                          | 6 studies, $n = 76,096$                                | 1 study, n =3,688                                    | 2 studies, $n = 28,575$                               |          |
|                          | $\tau^2$ 0.01; $\chi^2 P = 0.28$ ; $\beta$ 21%         | $\tau^2$ 0.00; $\chi^2$ P = 0.43; l <sup>2</sup> 0%  | $\tau^2$ 0.01; $\chi^2$ P =0.23; $l^2$ 30%            |          |
| Stillbirths              | RR 0.85; 95% CI: 0.74, 0.96                            | RR 0.72; 95% CI: 0.61, 0.84                          | RR 0.78; 95% CI: 0.70, 0.87                           | P = 0.28 |
|                          | 10 studies, 171,703                                    | 3 studies, $n = 4,980$                               | 2 studies, n =29,927                                  |          |
|                          | $\tau^2$ 0.03; $\chi^2$ P = 0.0002; I <sup>2</sup> 72% | $\tau^2$ 0.00; $\chi^2$ P = 0.067; l <sup>2</sup> 0% | $\tau^2$ 0.03; $\chi^2$ P = 0.0001; l <sup>2</sup> 0% |          |
| Perinatal mortality      | RR 0.91; 95% CI: 0.84, 0.98                            | RR 0.75; 95% CI: 0.64, 0.89                          | RR 0.81; 95% CI: 0.64, 1.01                           | P=0.11   |
|                          | 9 studies, n <i>=</i> 149,079                          | 5 studies, n =93,665                                 | 3 studies, $n = 32,184$                               |          |
|                          | $\tau^2$ 0.01; $\chi^2$ P = 0.05; l <sup>2</sup> 48%   | $t^2$ 0.03; $\chi^2$ P = 0.003; I <sup>2</sup> 72%   | $\tau^2 0.03; \ \chi^2 \ P = 0.008; \ J^2 \ 75\%$     |          |

(RR 0.70; 95% CI: 0.60–0.82; 4 studies, n = 61,176) (Table 3).

## Morbidity outcomes

From RCTs, significant results were observed in reducing any perceived illnesses in newborns (RR 0.61; 95% CI: 0.43–0.85; 2 studies, n = 12,019), however, no improvements were observed for maternal illnesses (RR 0.87; 95% CI: 0.65–1.15; 3 studies, n = 26,005) (Table 1). Results from non-RCTs were not significant for neonatal illnesses (RR 1.12; 95% CI: 0.90–1.39; 1 study, n = 459) (Table 2).

### Other care seeking outcomes

The review identified a number of RCTs which, when pooled, displayed a positive impact on care practices; these include antenatal care (RR 1.26; 95% CI: 1.16–1.37; 13 studies, n = 14,1006), receiving tetanus toxoid immunization (RR 1.07; 95% CI: 1.04–1.11; 8 studies, n = 83,243), and iron/folate supplementation (RR 1.49; 95% CI: 1.06–2.11; 6 studies, n = 81,706) (Table 1). Improved rates of institutional births (RR 1.15; 95% CI: 1.05–1.26; 16 studies, n = 116,848) and initiating breastfeeding within an hour of birth (RR 1.77; 95% CI: 1.43–2.19; 14 studies, n = 100,272) were also seen. However, no improvements were seen for SBA (RR 1.15; 95% CI: 0.99–1.34; 7 studies, n = 53,583).

For non-RCTS, similar significant improvements were observed on uptake of antenatal care (RR 1.05; 95% CI: 1.04–1.06; 3 studies, n = 31,305), iron/folate supplementation (RR 24.53; 95% CI: 13.20–45.59; 1 study, n = 756), institutional births (RR 1.89; 95% CI: 1.48–2.41; 2 studies, n = 2,291), and initiation of breastfeeding within an hour of birth (RR 6.54; 95% CI: 5.88–7.27; 1 study, n = 13,826). However, no improvements were observed for women birthing with a SBA (RR 1.03; 95% CI: 0.97–1.10; 1 study, n = 13,826) (Table 2).

For before-after studies, significant impact was observed for uptake of any antenatal care (RR 1.27; 95% CI: 1.24–1.30; 3 studies, n = 10137), tetanus toxoid immunization (RR 1.14; 95% CI: 1.10–1.17; 1 study, n = 3,480), and iron/folate supplementation (RR 1.29; 95% CI: 1.25–1.33; 1 study, n = 3,480) after an intervention was delivered but not for institutional births or early initiation of breastfeeding (Table 3).

## Discussion

Adequately addressing women's and children's health care needs would resolve a considerable proportion of global health problems. Improving health care seeking for the health of mothers and newborns can prevent many avoidable deaths. Although there was a paucity of included studies reporting health care seeking as an outcome, the systematic review found promising results of the several interventions for improving health care seeking for maternal and newborn illnesses. Although the impact was not

Table 4. (Continued)

significant for health care seeking for maternal illnesses, care seeking for neonatal illnesses improved by 40% overall. The impact was enhanced when the intervention was provided by CHWs though home visiting (45% increase) or when combined with community mobilization (62%), however the later evidence came from a single study with a positive impact. Impact was even larger when promotion of birth preparedness was combined with interventions where CHW recognized illnesses and provided referrals (65% increase). While interpreting the results, it is important to consider that studies were not similar across the subgroups for health care seeking for maternal illnesses and neonatal illnesses.

The included studies did not find any impact for any of these interventions on improving maternal mortality. Probably these studies were not powered to detect small but important differences. Significant improvements were observed for neonatal mortality (21% reduction) including early (30%) and late neonatal mortality (23%), stillbirths (18%), and perinatal mortality (18%). A similar direction of effect, although not significant, was found from non-RCTs and before/after studies. Although impact on mortality was more convincing when interventions were given in the form of community mobilization in combination with home visiting, the degree of heterogeneity was high. Mortality substantially improved when birth preparedness was combined with recognition of illnesses and provision of referrals; and was even more effective when interventions involved collection of funds for emergency transportation. However, the number of studies with increasing intensity of intervention decreased and there were too few studies in the highest level of intensity to make robust claims.

The review found positive impacts for these interventions from RCTs on improving antenatal care (27%), uptake of tetanus toxoid immunization (8%), iron/folate supplementation (49%), institutional births (16%), and initiation of breastfeeding (85%). Similar direction of effects was observed from other less rigorous study designs.

The subgroup analyses suggest that the impacts on health care seeking, mortality, and morbidity were greater when interventions included recognition of illnesses and provision of referrals. However, the qualitative findings from these trials were scarce and little or no information was provided to relate these findings with the contextual factors of delays in those scenarios. The literature suggests health service demand is not determined by recognition of problems and perceived seriousness alone; there are underlying beliefs which play a vital role in determining health care utilization patterns (46–48). Ineffective or inequitable health decision making at the household level is a major obstacles in accessing health care (49, 50). Timely recognition of danger signs, autonomy of decision making, availability of finances, accessibility of the health facility, and perceived quality of care are necessary considerations when making the decision to seek formal care.

Even though modest improvement in maternal and neonatal health outcomes has been achieved in the last decade, these can be further improved. While the use of advocacy groups and mobilization campaigns can help to optimize the implementation of these strategies; health system investment training the community and facility health staff and equipping them with essential supplies can help them care for a high risk pregnancy, as well as respond to any emergency that may arise. A specific implementation strategy could be the provision of birthing kits to the Traditional Birth Attendant (TBA)s which will ensure access for those residing in remote areas. This is likely to reduce mortality arising from delay in the provision of emergency medical aid during childbirth. In addition, indirect health care costs such as transportation and certain minor charges at the facility should be minimized. Full implementation of these changes will go a long way to improve not only maternal and neonatal health-seeking behavior, but also their health outcomes.

## Conclusions

This systematic review identified that strategies such as mobilization and home visitation can improve health care seeking for neonatal illnesses and can reduce perinatal mortality. Further analyses based on strategies which combined birth preparedness counseling with recognition of illnesses and provision of referrals by CHWs showed an improvement in both maternal and neonatal health care seeking. Similarly, strategies which used mobilization with home visitation showed an improvement in both maternal and newborn health care seeking; however the evidence was only derived from a single study. These interventions had a significant impact on reducing stillbirths, perinatal deaths, and neonatal mortality. Most of the included studies were conducted in Asia, with very a limited number of studies from other LMIC countries such as Africa. Thus, there is a clear need for additional high quality research from other LMIC regions. There is also a need to identify the cost-effectiveness of identified strategies to provide interventions in affordable ways to hard-to-reach communities to prevent illnesses and promote health.

## Authors' contributions

ZSL conceptualized the review in consultation with the co-reviewers (PM, CC, ZAB) and wrote the first draft of the paper with substantial inputs from PM, CC, and ZAB. ZSL and PM contributed to the scientific literature search, screening, collection, and analysis of data for all the included interventions with close inputs from CC and ZAB. All authors saw successive drafts of the paper and provided input. ZSL, PM, CC, and ZAB finalized the paper and are the overall guarantor.

## Conflict of interest and funding

ZAB was part of the following trials; however, he played no role in the quality assessment of these trials:

Bhutta ZA, Soofi S, Cousens S, Mohammad S, Memon ZA, Ali I, Feroze A, Raza F, Khan A, Wall S, et al.: Improvement of perinatal and newborn care in rural Pakistan through community-based strategies: a cluster-randomised effectiveness trial. Lancet 2011, 377(9763): 403–412.

Bull World Health Organ. 2008 Jun;86(6):452-9. Implementing community-based perinatal care: results from a pilot study in rural Pakistan. Bhutta ZA1, Memon ZA, Soofi S, Salat MS, Cousens S, Martines J.

This review was part of the first author's doctoral thesis which was funded as part of International Postgraduate Research Scholarship by University of Adelaide, Australia. The funders had no role in the study design, study conduct, data analysis, data interpretation, or writing of the report. All authors take responsibility for the integrity and the accuracy of the data. The corresponding author had final responsibility to submit the report for publication.

## Paper context

Reducing maternal and newborn mortality will require rigorous efforts to scale up evidence-based interventions, especially community-based preventive, promotive and therapeutic strategies, as well as availability of commodities and health workers in primary care. A lack of appropriate care seeking for ill mothers and neonates is thought to contribute to high mortality rates; therefore, a major challenge is the appropriate mix of strategies for demand creation as well as provision of services. Prior published reviews have systematically assessed the prevalence of care seeking in neonates; however the prevalence of care seeking among mothers has not been systematically assessed. Also there are no reviews which have assessed the strategies or interventions to increase care seeking for maternal and neonatal health. There is a need to systematically review the literature to determine the interventions that can improve the care seeking pattern among mothers and their newborns at primary care setting in developing countries.

## References

- World Bank (2014). Levels and trends in child mortality. Estimates developed by the UN inter-agency group for child mortality estimation (IGME) – report 2014. Washington, DC: World Bank Group.
- Alkema, Leontine; Chou, Doris; Gemmill, Alison; Hogan, Daniel; Mathers, Colin; Mills, Samuel; Moller, Ann-Beth; Say, Lale; Suzuki, Emi. (2014). Trends in Maternal Mortality: 1990 to 2013 - estimates by WHO, UNICEF, UNFPA, the World Bank, and the United Nations population division. Washington DC: World Bank Group.

- Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, et al. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 2010; 375: 1969–87.
- 4. UNICEF (2008). The state of the world's children 2008. New York: UNICEF.
- Darmstadt GL, Lee ACC, Cousens S, Sibley L, Bhutta ZA, Donnay F, et al. 60 million non-facility births: who can deliver in community settings to reduce intrapartum-related deaths? Int J Gynaecol Obstet 2009; 107: S89–112.
- Sines E, Tinker A, Ruben J. The maternal-newborn-child health continuum of care: a collective effort to save lives. Washington, DC: Save the Children and Population Reference Bureau; 2006.
- Bayer A. Executive summary: maternal mortality and morbidity. Population Resource Center; 2001. Available from: http:// www.prcdc.org/files/Maternal\_Mortality.pdf [Cited 10 Sep 2015].
- Lassi ZS, Bhutta ZA. Community-based intervention packages for reducing maternal and neonatal morbidity and mortality and improving neonatal outcomes. Cochrane Database Syst Rev 2015; 3: CD007754.
- Blencowe H, Cousens S, Kamb M, Berman S, Lawn JE. Lives saved tool supplement detection and treatment of syphilis in pregnancy to reduce syphilis related stillbirths and neonatal mortality. BMC Public Health 2011; 11(Suppl 3): S9.
- Blencowe H, Lawn J, Vandelaer J, Roper M, Cousens S. Tetanus toxoid immunization to reduce mortality from neonatal tetanus. Int J Epidemiol 2010; 39(Suppl 1): 102–9.
- Conde-Agudelo A, Rosas-Bermúdez A, Kafury-Goeta AC. Effects of birth spacing on maternal health: a systematic review. Am J Obstet Gynecol 2007; 196: 297–308.
- Demicheli V, Barale A, Rivetti A. Vaccines for women to prevent neonatal tetanus. Cochrane Database Syst Rev 2005; 4: CD002959.
- De-Regil LM, Fernández-Gaxiola AC, Dowswell T, Pena-Rosas JP. Effects and safety of periconceptional folate supplementation for preventing birth defects (Review). Cochrane Database Syst Rev 2010; 10: CD007950.
- Dowswell T, Carroli G, Duley L, Gates S, Gülmezoglu AM, Khan-Neelofur D, et al. Alternative versus standard packages of antenatal care for low-risk pregnancy. Cochrane Database Syst Rev 2010; 10: CD000934.
- Gamble C, Ekwaru JP, ter Kuile FO. Insecticide-treated nets for preventing malaria in pregnancy. Cochrane Database Syst Rev 2006; 2: CD003755.
- Garner P, Gulmezoglu AM. Drugs for preventing malaria in pregnant women. Cochrane Database Syst Rev 2006; 4: CD000169.
- Hofmeyr GJ, Lawrie TA, Atallah AN, Duley L. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst Rev 2010; 8: CD001059.
- Lumley J, Chamberlain C, Dowswell T, Oliver S, Oakley L, Watson L. Interventions for promoting smoking cessation during pregnancy. Cochrane Database Syst Rev 2009; 3: CD001055.
- Pena-Rosas JP, Viteri FE. Effects and safety of preventive oral iron or iron + folic acid supplementation for women during pregnancy (Review). Cochrane Database Syst Rev 2009; 4: CD005462.
- Siegfried N, van der Merwe L, Brocklehurst P, Sint TT. Antiretrovirals for reducing the risk of mother-to-child transmission of HIV infection. Cochrane Database Syst Rev 2011; 7: CD003510.
- Sturt AS, Dokubo EK, Sint TT. Antiretroviral therapy (ART) for treating HIV infection in ART-eligible pregnant women. Cochrane Database Syst Rev 2010; 3: CD008440.

- 22. Duley L, Henderson-Smart DJ, Meher S. Drugs for treatment of very high blood pressure during pregnancy. Cochrane Database Syst Rev 2006; 3: CD001449.
- 23. Duley L, Henderson-Smart DJ, Meher S, King JF. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev 2007; 2: CD004659.
- 24. Gulmezoglu AM, Crowther CA, Middleton P. Induction of labour for improving birth outcomes for women at or beyond term. Cochrane Database Syst Rev 2006; 4: CD004945.
- 25. Hofmeyr GJ, Gyte G. Interventions to help external cephalic version for breech presentation at term. Cochrane Database Syst Rev 2004; 1: CD000184.
- Jabeen M, Yakoob MY, Imdad A, Bhutta ZA. Impact of interventions to prevent and manage preeclampsia and eclampsia on stillbirths. BMC Public Health 2011; 11(Suppl 3): S6.
- Mousa HA, Alfirevic Z. Treatment for primary postpartum haemorrhage. Cochrane Database Syst Rev 2007; 1: CD003249.
- Lopez LM, Hiller JE, Grimes DA. Education for contraceptive use by women after childbirth. Cochrane Database Syst Rev 2010; 1: CD001863.
- Anita Z, Hammad G, Sana S, Simon C, Robert B, Zulfiqar B, et al. Effect of case management on neonatal mortality due to sepsis and pneumonia. BMC Public Health 2011; 11(Suppl 3): S13.
- 30. Bhutta ZA, Zaidi AKM, Thaver D, Humayun Q, Ali S, Darmstadt GL. Management of newborn infections in primary care settings: a review of the evidence and implications for policy? Pediatr Infect Dis J 2009; 28: S22.
- Dyson L, McCormick F, Renfrew MJ. Interventions for promoting the initiation of breastfeeding. Cochrane Database Syst Rev 2005; 2: CD001688.
- 32. Lassi ZS, Haider BA, Bhutta ZA. Community-based intervention packages for reducing maternal and neonatal morbidity and mortality and improving neonatal outcomes. Cochrane Database Syst Rev 2010; 11: CD007754.
- 33. Lewin S, Munabi-Babigumira S, Glenton C, Daniels K, Bosch-Capblanch X, Van Wyk BE, et al. Lay health workers in primary and community health care for maternal and child health and the management of infectious diseases. Cochrane Database Syst Rev 2010; 3: CD004015.
- 34. Sazawal S, Black RE. Effect of pneumonia case management on mortality in neonates, infants, and preschool children: a metaanalysis of community-based trials. Lancet Infect Dis 2003; 3: 547–56.
- Zupan J, Garner P, Omari AA. Topical umbilical cord care at birth. Cochrane Database Syst Rev 2004; 3: CD001057.
- Conde-Agudelo A, Belizan JM, Diaz-Rossello J. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database Syst Rev 2011; 3: CD002771.

- Gogia S, Sachdev HS. Home visits by community health workers to prevent neonatal deaths in developing countries: a systematic review. Bull World Health Organ 2010; 88: 658–66.
- Lawn JE, Mwansa-Kambafwile J, Horta BL, Barros FC, Cousens S. 'Kangaroo mother care' to prevent neonatal deaths due to preterm birth complications. Int J Epidemiol 2010; 39(Suppl 1): 144–54.
- 39. Higgins JPT, Altman DG, Sterne JAC. Chapter 8: Assessing risk of bias in included studies. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1. 0 [updated March 2011]. Cochrane Handbook for Systematic Reviews of Interventions Version. The Cochrane Collaboration 2011, Vol 5.
- Deeks JJ, Altman DG, Bradburn MJ. Statistical methods for examining heterogeneity and combining results from several studies in meta-analysis. London: BMJ; 2001.
- Ottawa Hospital Research Institute (2013). EPOC resources. Suggested risk of bias criteria for EPOC reviews. Ottawa: OHRI.
- The Nordic Cochrane Centre TCC (2012). Review Manager (RevMan). 5.2. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration.
- 43. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0; 2011 [updated March 2011]. The Cochrane Collaboration. Available from: http:// www.cochrane-handbook.org [Cited 10 Sep 2015].
- 44. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336: 924–6.
- Egger M, Smith GD, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. BMJ 1997; 315: 629–34.
- Bhatia JC, Cleland J. Self-reported symptoms of gynecological morbidity and their treatment in south India. Stud Fam Plann 1994; 26: 203–16.
- Stewart MK, Stanton CK, Festin M, Jacobson N. Issues in measuring maternal morbidity: lessons from the Philippines Safe Motherhood Survey Project. Stud Fam Plann 1996; 27(1): 29–35.
- Fikree FF, Ali T, Durocher JM, Rahbar MH. Health service utilization for perceived postpartum morbidity among poor women living in Karachi. Soc Sci Med 2004; 59: 681–94.
- Essendi H, Mills S, Fotso JC. Barriers to formal emergency obstetric care services' utilization. J Urban Health 2010; 88(Suppl 2): S356–69.
- Pritham UA, Sammons LN. Korean women's attitudes toward pregnancy and prenatal care. Health Care Women Int 1993; 14: 145–53.