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IDO/kynurenine pathway in cancer: possible 
therapeutic approaches
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Abstract 

Cancer is one of the leading causes of death in both men and women worldwide. One of the main changes associ‑
ated with cancer progression, metastasis, recurrence, and chemoresistance is the change in the tumor immune 
microenvironment, especially immunosuppression. Cancer immunosuppression appears in multiple forms, such as 
inhibition of immuno‑stimulant cells with downregulation of immuno‑stimulant mediators or through stimulation of 
immuno‑suppressive cells with upregulation of immunosuppressive mediators. One of the most immunosuppressive 
mediators that approved potency in lung cancer progression is indoleamine 2,3‑dioxygenase (IDO) and its metabolite 
kynurenine (Kyn). The current review tries to elucidate the role of IDO/Kyn on cancer proliferation, apoptosis, angio‑
genesis, oxidative stress, and cancer stemness. Besides, our review investigates the new therapeutic modalities that 
target IDO/Kyn pathway and thus as drug candidates for targeting lung cancer and drugs that potentiate IDO/Kyn 
pathway and thus can be cancer‑promoting agents.
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Introduction
Indoleamine 2,3-dioxygenase (IDO) is a 403-amino-acid 
cytosolic heme-containing enzyme that degrades trypto-
phan (Trp), an essential amino acid, through the kynure-
nine (Kyn) pathway (KP). IDO causes Trp to be degraded, 
which is required for adequate Kyn concentrations and 
other important cellular activities. Endothelial cells in 
the placenta and lung, epithelial cells in the female vagi-
nal canal, and mature dendritic cells (DC) in lymphoid 
organs express IDO in normal human tissues. Endome-
trial and cervical carcinomas have the most consider-
able IDO-expressing cells among human malignancies, 
followed by kidney, lung, and colon cancers. IDO activ-
ity has been linked to acquired immunological tolerance, 
including the suppression of T-cell activation and the 

activation of regulatory T cells (Tregs), which can allow 
tumor cells to avoid immune surveillance [1, 2].

The plasma Kyn to Trp ([Kyn]/[Trp]) ratio is frequently 
used to express or reflect the activity of the extrahepatic 
IDO [3].

Tang et  al. [4] found that as P53 is inactivated in the 
majority of cancer types, which accounts for the rise in 
IDO level, p53 may partially dampen IDO signaling in 
lung cancer cell migration. Additionally, dinaciclib was 
discovered to be an indirect KP inhibitor and was proven 
to cause IDO inhibition [5].

Physiological and pathological conditions that favor 
the anabolic/catabolic pathways of l‑tryptophan
Physiologically, Trp is an amino acid required for the 
production of proteins and cellular survival. Trp can 
be found in several protein-rich meals, including eggs, 
cheese, and meat. Trp serves as a coenzyme in the impor-
tant metabolic pathways nicotinamide adenine dinu-
cleotide (NAD) and nicotinamide adenine dinucleotide 
phosphate (NADP) and is the precursor of the synthesis 

Open Access

Journal of 
Translational Medicine

*Correspondence:  Islam.AbdelFattah@deltauniv.edu.eg

Department of Biochemistry, Faculty of Pharmacy, Delta University for Science 
and Technology, Gamasa, Egypt

http://orcid.org/0000-0003-2611-4797
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-022-03554-w&domain=pdf


Page 2 of 13Abd El‑Fattah  Journal of Translational Medicine          (2022) 20:347 

of Kyn and serotonin. L-tryptophan supplements have 
been used, and Trp has been researched as a potential 
treatment for a range of neuropsychiatric disorders by 
altering the generation of melatonin [6].

Pathologically, Trp deficiency results in depression, 
behavioral changes, cognitive problems, and mood dis-
turbances [6]. On the other hand, Eosinophilia-myalgia 
syndrome has been linked to Trp poisoning (EMS). 
Intense, incapacitating myalgias and severe peripheral 
eosinophilia are characteristics of EMS [7]. Interferon-
gamma (IFN-γ), the classic antitumor-associated T cell 
effector cytokine, and the agonists of the toll-like recep-
tors 9 (TLR9) and 4 (TLR4), CpG DNA and lipopoly-
saccharide (LPS), respectively, are among the strongest 
agonists of IDO transcription [8].

L-tryptophan is converted to serotonin, melatonin, 
protein, and Kyn through various anabolic/catabolic 
activities. The rate-limiting breakdown of the Trp indole 
ring 2,3-double bond and incorporation of molecular 
oxygen is catalyzed by IDO1 and tryptophan 2,3-dioxyge-
nase (TDO). The ultimate result of this reaction is N-for-
mylkynurenine, which is converted to l-Kyn quickly and 
spontaneously. Downstream intermediates of the latter 
catabolite include 3-HK, 3-hydroxyanthranilate (3-HAA), 
and quinolinic acid, all of which alter immunological 
responses [9].

Even though IDO1 and TDO catalyze Trp, their qua-
ternary structures, expression in normal vs. altered tis-
sue, and regulation are very different. While monomeric 
IDO1 can cleave both d- and l-Trp, homotetrameric 
TDO is enantiomer-specific and can only catabolize l-
Trp. IDO1 was the only IDO known to function at the 
2,3 double bond until 2007. The novel paralog, IDO2, 
was then discovered by three different groups. While 
the IDO1 and IDO2 genes are 43 percent homologous 
and located next to each other on chromosome 8, the 
Km of human IDO1 and IDO2 for l-Trp is 20.90 3.95M 
and 6809 917M, respectively, showing that the latter 
enzyme has a significant drop in activity. This is particu-
larly intriguing because both gene products include the 
residues necessary for Trp catalytic activity. Also note-
worthy is that mouse IDO2 has higher enzymatic activity 
than the human homolog, although genetic depletion of 
mouse IDO2 does not affect systemic Kyn levels, in stark 
contrast to IDO1-deficiency [10, 11].

It was once considered that IDO1 served as an innate 
immune effector to limit the quantity of Trp required for 
microbial development since it was elevated in response 
to infection. Munn and Mellor changed their minds after 
demonstrating that in vivo injection of the IDO1 inhibi-
tor 1-methyl tryptophan (1-MT) caused T cell-depend-
ent fetal allograft rejection. According to a recent study, 
IDO1-expressing macrophages, DC, and tumor cells 

limit T cell growth. Downstream stress-response path-
ways such as general control non-depressible 2 (GCN2) 
and mammalian target of rapamycin (mTOR), both 
essential regulators of amino acid sufficiency, medi-
ate IDO1 responses. The GCN2 kinase phosphorylates 
the alpha subunit of translation initiation factor 2 alpha, 
resulting in translation inhibition when amino acid defi-
ciency induces an increase in total uncharged tRNA lev-
els. The ability of GCN2-activated plasmacytoid DC to 
limit T cell proliferation in vivo via an IDO1-dependent 
mechanism was first observed [12].

In a mouse papilloma model, it was later shown that 
genetic deletion of IDO1, but not GCN2, inhibited skin 
carcinogenesis, implying that additional critical pathways 
existed downstream of IDO1 activation. IDO1-mediated 
Trp depletion reduced mTOR, a crucial immunoregula-
tory kinase that could be reactivated in vitro by treatment 
with 1-MT, a Trp mimic [13].

Tumor risk factors and IDO expression
Pertovaara et  al. [14] found that Smoking subjects have 
lower IDO enzyme activity, which suggests that the 
known immunostimulatory effects of smoking may be 
caused by a decrease in IDO-dependent immunosup-
pression. Jiang et al. [15] found that in all of the examined 
brain areas of ethanol addiction/withdrawal animals, 
IDO1 was discovered to rise at both the mRNA and 
protein levels. In behavioral tests, alcohol-exposed mice 
had gradually impaired memory function along with 
anxious and sad behavior. In the hippocampus, cerebral 
cortex, and amygdala of ethanol addiction/withdrawal 
mice, however, it was discovered that KYN was expressed 
more, 5-hydroxytryptamine (5-HT) was expressed less, 
and 3-hydroxykynurenine (3-HK) and kynurenic acid 
(KA) were expressed abnormally.

Regulation of IDO1
Numerous redundant mechanisms lead to IDO1 expres-
sion and activity in the literature. IDO1 expression is 
induced by pro-inflammatory signals such as IFN-γ, CpG 
DNA, and LPS. T tumor necrosis factor-alpha (TNF-
α), IL-6, and IL-1β are only a few cytokines that work 
together to boost IDO1 expression. Prostaglandin E2, the 
oncogene c-KIT, and the tumor suppressor Bin1 are all 
IDO1 modulators. Wnt5 also controls IDO1 activity in 
DC via β-catenin signaling while maintaining continuous 
expression in several cancer cell lines via an AhR-IL-6-
STAT3 (Signal Transducer And Activator Of Transcrip-
tion 3) signaling loop, according to new research [16, 17].

In gastrointestinal cancers, lung cancer, glioma, mela-
noma, prostate cancer, and pancreatic cancer, over-acti-
vation of the Kyn pathway, particularly IDO, predicts 
poor prognosis [18].



Page 3 of 13Abd El‑Fattah  Journal of Translational Medicine          (2022) 20:347  

Factors that regulate IDO‑2 and TDO gene expression 
and enzymatic activity
Regarding IDO-2, IDO2 mediates the autoreactive B 
cell response driving arthritis through an IDO1-inde-
pendent mechanism [19]. IDO2 suppression by 1-MT 
raises the possibility that the IDO2 enzyme plays a role 
in tumors’ ability to evade the immune system [20]. 
IDO2 mRNA expression might be induced in human 
mesenchymal stem cells and certain cancer cells by 
IFN-γ. At the same time, it was discovered that LPS, 
prostaglandin E2, and interleukin-10 (IL-10) all con-
tributed to the activation of IDO2. It’s interesting to 
note that the expression of IDO2 could be induced by 
the aryl hydrocarbon receptor (AHR), indicating that 
the promoter of the ido2 gene contains an AHR respon-
sive region [21].

Regarding TDO, The anti-TDO-2 antibody was nev-
ertheless able to recognize the protein generated by the 
mutant with the 9 bp deletion (tdo-2 (PLD)), even though 
it was likely lacking exactly three amino acid residues. 
Higher Trp levels and lower Kyn levels were observed in 
samples from animals whose TDO-2 proteins had large 
truncations as well as in samples from the PLD mutants, 
indicating that the three amino acids missing in this 
mutant are necessary for TDO-2 enzymatic activity. The 
deletions resulted in complete knockout mutations [22].

IDO, Kyn, and Trp levels in cancer
Onesti et  al. [23] observed that notably increased plas-
matic Kyn, Trp, and their ratio in breast cancer patients 
compared to healthy controls. Onesti et al. [23] observed 
In contrast to tumors with hormone receptors, patients 
with hormone receptor-negative disease have lower plas-
matic Trp and a greater Kyn/Trp ratio. Compared to 
other histologies, lobular tumors had the lowest ratio. 
Lower Trp levels and higher Kyn/Trp ratios were linked 
to more advanced tumors, respectively. Higher Kyn read-
ings were related to pathological complete response. Trp, 
Kyn, and Kyn / Trp ratios in plasma did not predict sur-
vival. Suzuki et  al. [24] found that lung cancer patients 
had higher IDO activity, and higher IDO activity was 
linked to more advanced stages of the disease.

This meta-analysis comprised a total of 31 papers. 
In general, there was a strong correlation between high 
IDO expression and poor OS (Overall survival) [25]. 
IHC staining revealed that 63.2 percent of bladder can-
cer tissues had high levels of IDO1 expression, compared 
to 29.4 percent of the adjacent normal tissues. This dif-
ference was statistically significant between the bladder 
tumor tissues and the adjacent normal tissues, and IDO1 
expression was significantly correlated with tumor size, T 
stage, and N stage. [26].

IDO expression was found in all but three patient 
tumor samples, in all but four autologous non-malig-
nant lung tissues, in three of the nine human lung can-
cer cell lines, and 28 patients with diverse primary lung 
cancers. The relative expression of IDO was considera-
bly lower in lung cancer cell lines (4.7 ± 11.1) compared 
to all patient tumor samples (p = 0.006) and autologous 
non-affected lung tissues (p = 0.027) [27].

The plasma Kyn/Trp ratio is frequently used to 
express or reflect the activity of the extrahepatic Trp-
degrading enzyme IDO was added as a method of 
assessment of the IDO/Kyn pathway.

IDO angiogenesis
IDO has no influence on lewis lung cancer cell prolif-
eration, but it can boost adhesion and promote inva-
sion, metastasis, and vasculogenic mimicking abilities. 
It can also help vascular endothelial cells become more 
angiogenic, implying that IDO’s immunological role is 
not the only one. In lewis lung cancer cells, overexpres-
sion of IDO enhanced Janus tyrosine kinase 2 (JAK-
2) and STAT3 phosphorylation and up-regulated the 
production of Matrix metalloproteinase-2 (MMP-2) 
and MMP-9, two essential genes involved in invasion 
and metastasis [28] (Fig.  1). The microvascular den-
sity (MVD)-CD105 level was higher in IDO positive 
tissue than in IDO negative tissue (10.90 vs 7.46) [29]. 
CD34 and CD146 protein expression were dramati-
cally reduced in experimental tumor tissues from IDO1 
short hairpin RNA (shRNA) treated mice [30]. Gao 
et  al. [31] found that in colon cancer patients, among 
the TDLN without metastases, a higher density of 
IDO + cells was documented in 21/60 cases (35%).

The numbers of invasion cells transfected with 
IDO1 Small interfering RNA (siRNA), GL2 siRNA, 
and control cells, respectively, were 108.6676.658/well, 
341.33316.773/well, and 333.33316.442/well, indicating 
a significant difference [30]. Pagano et al. [32] observed 
that in a mouse colon cancer xenograft, activation 
of GPR35 (G Protein-Coupled Receptor 35), a target 
protein for KYNA and 3-HAA, is linked to increased 
neoangiogenesis, tumor tissue remodeling, and tumor 
development. IDO1/TDO expression was found to be 
positively linked with aquaporin expression, suggesting 
that IDO1/TDO may play a role in glioma cell motility 
[33]. Comparing these bladder cancer cells to the con-
trol group, IDO1 knockdown decreased their capac-
ity to migrate, and si-IDO1 transfection dramatically 
decreased the expression of N-cadherin and vimentin 
proteins as compared to the si-NC group [26].
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IDO and apoptosis
The Kyn triggers apoptosis in cells with considerably 
higher Caspase-3 and Caspase-9 activity [34]. Zhong 
et al. [35] mentioned that TUNEL research revealed that 
IDO1–/– fibrosis mice had lower rates of apoptotic cell 
death in liver tissues than WT fibrosis mice, demonstrat-
ing that IDO causes apoptosis. Transgenic expression 
of IDO increased renal tubular epithelial cells (TEC) 
death without pro-inflammatory cytokine exposure, sug-
gesting that IDO is involved in TEC damage [36]. The 
JAK-STAT1 pathway is required for IDO activation by 
IFN-gamma, and its induction triggers 3OHKyn-medi-
ated apoptosis in HLE-B3 cells [37]. IDO suppression 
lowered the expression of p53 and p21 in T-cells in mixed 
lymphocyte reactions (MLRs), indicating that IDO has a 
pro-apoptotic effect [38]. Sas et  al. [39] mentioned that 
IDO inhibition lowers NAD+ production, which leads to 
cell death (Fig. 1).

IDO and proliferation
The Ki67 index (mitotic index) and overall survival were 
favorably linked with IDO1/TDO expression. In human 
colon cancer cells, diminished IDO1 activity reduced 
nuclear and activated β-catenin, transcription of its tar-
get genes (cyclin D1 and Axin2), and, ultimately, prolif-
eration [33, 40].

In human colon cancer cells, inhibiting IDO1 activity 
reduced nuclear and activated β-catenin, transcription 

of its target genes such as cyclin D1, and, ultimately, 
proliferation [41]. IDO1 and other Kyn pathway genes 
were decreased by dinaciclib, a cyclin-dependent kinase 
(CDK) inhibitor [5]. In a colorectal model, Kyn treatment 
caused fast and dose-dependent Protein kinase B (Akt) 
activation, as demonstrated by elevations in pAKT S472 
and phosphorylated PRAS40 pT246, a direct target of 
Akt activity [42]. IDO reduced the expression of ζ-chain, 
c-Myc, LDH-A, and GLS2 in MLRs when compared to 
untreated MLRs [38]. Compared to usual settings, KYNA 
serum deprivation decreased the growth of U-343 MG 
cells [43] (Fig. 1).

The CCK-8 assay revealed that IDO1 knockdown dra-
matically reduced the proliferation of T24 and UMUC3 
cells, and after 2 weeks of culture, the colony formation 
rate of cells with IDO1 knockdown was significantly 
reduced in comparison to the control group [26].

IDO and oxidative stress
3-HK produces hydrogen peroxide and other reactive 
oxygen species (ROS), linked to neuronal cell death in 
a brain region implicated in the pathogenesis of neuro-
degenerative diseases such as Alzheimer’s disease [44]. 
IDO-1 is induced in response to oxidative stress as well 
as inflammation. The inflammatory mediators up-regu-
late IDO-1 expression; TNF-α, IL-1β, IL-2, and IL-6 [45].

Accordingly, IDO1 activation and resultant L-Trp 
metabolism along the Kyn pathway can protect against 

Fig. 1 The effect of the IDO/Kyn pathway on cancer proliferation, apoptosis, and angiogenesis. MMP‑2: Matrix metalloproteinase, NAD: 
Nicotinamide adenine dinucleotide
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oxidative stress via promoting de novo NAD+ synthe-
sis in a human astroglioma cell line exposed to hydro-
gen peroxide (H2O2) [46]. 3-OH-KYN is transferred 
into cells by neutral amino acid transporters. Only after 
interaction with cellular xanthine oxidase is 3-OH-KYN 
capable of producing sufficient amounts of ROS, such 
as superoxide radicals, hydrogen peroxide, and hydroxyl 
radicals, inducing internucleosomal DNA cleavage lead-
ing to apoptosis [47].

IDO and hypoxia
Indoleamine 2, 3-dioxygenase is an enzyme that metabo-
lizes Trp which up-regulates degradation of l-tryptophan 
and increases hypoxia-inducible factor-1 expression 
[48]. Endogenous Trp derivatives, such as Kyn and ITE 
(2-(10H-indole-30- carbonyl)-thiazole-4-carboxylic acid 
methyl ester), may play opposite roles in cancer progres-
sion and stemness, regulating OCT4 expression through 
AhR modulation: accumulation of the low-affinity AhR 
agonist Kyn in the tumor microenvironment favor car-
cinogenesis, whereas the high-affinity AhR agonist ITE 
promotes its binding to the OCT4 promoter to suppress 
its transcription and, consequently, inducing cell differ-
entiation in U87 glioblastoma neurospheres [49].

IDO and CSCs
Indoleamine 2, 3-dioxygenase mRNA was enhanced 
four to sevenfold in spheres compared to adherent coun-
terparts for different cell types. Trp in the media with 
spherical cells decreased by 3  mg/ml in 24  h, whereas 
adherent cells declined only 1–1.5 mg/ml [50]. Low et al. 
[51] found that IDO1 protein expression was upregulated 
in cervical tumorspheres from HeLa and SiHa cervical 
cancer cells compared to 2D cultured cells. In addition 
to the protein level, the IDO1 activity, which was deter-
mined by the conversion of Kyn from Trp using Ehlrich 
reagent, was also increased in HeLa and SiHa tumor-
spheres in comparison to 2D cultured cells. Compared 
to control shRNA transduced cells, the colony number 
of IDO1 knockdown cervical tumorsphere cells derived 
from HeLa and SiHa cells reduced dramatically as radia-
tion increased [51].

IDO and cancer energetics (NAD)
Using human MDMs has provided evidence that indi-
cates that an immune-mediated increase in IDO activity 
does increase NAD biosynthesis concomitantly with an 
increase in NAD catabolism [52] (Fig. 1).

IDO/Kyn and cancer immune escape
The main theory linking IDO, TDO, and IDO2 to immu-
nosuppression focuses on how each of them contributes 
individually and/or collectively to Trp metabolism. This 

dogma’s foundation is the Trp Starvation Theory, which 
holds that Trp depletion at or below 1M, which is con-
sidered to be nearly absolute, promotes the accumulation 
of uncharged tRNAs, which in turn activates the GCN2 
kinase pathway and causes T cells to malfunction. Stud-
ies conducted in  vitro lend credence to the idea that 
Trp depletion suppresses the main metabolic regulators 
mTOR and protein kinase C (PKC) in cancer cells, hence 
promoting autophagy and Treg formation, respectively.

Through the production of Kyn and other downstream 
derived metabolites, Trp degradation may also inhibit 
immune cell activity. Kyn activates the AhR, a ligand-
activated transcription factor that has significant effects 
on immune cells and is implicated in the differentiation 
of inducible Tregs, in vitro and further requires co-treat-
ment with transforming growth factor-beta (TGF-β). 
Kyn metabolites from the downstream pathway, such as 
KA, xanthurenic acid (XA), and cinnabarinic acid (CA), 
interact with AhR and may influence the immunologi-
cal response. Contrastingly, it has been shown that Trp 
catabolites can also cause CD4+ T cell death. Kyn, 3-HK, 
and 3-HAA inhibit T cell growth concurrently with 
apoptotic induction. This data was independently prov-
ing that Kyns selectively trigger the apoptosis of murine 
thymocytes and Th1-cells, but not Th2-cells, in  vitro. 
Maintaining peripheral lymphocyte homeostasis and 
preventing the buildup of autoreactive and/or inflamma-
tory lymphocytes may depend on Kyns’ immunoregula-
tory effects on several lymphocyte subsets [8].

Drugs that inhibit IDO/KYN pathways
1‑methyl‑dl‑tryptophan (1‑MT)/(indoximod)
Indoximod is similarly effective in suppressing IDO1 
enzymatic activity in human monocyte-derived DCs [53, 
54].

Epacadostat
Epacadostat is an IDO1 selective inhibitor with little 
activity against IDO2 that is currently in clinical devel-
opment and is expected to be the first IDO1 inhibitor to 
achieve registration approval. In its early phase I/II tri-
als, epacadostat demonstrated preliminary promising 
anticancer effects when used in conjunction with anti-
programmed cell death protein (anti-PD-1) drugs such 
as pembrolizumab and nivolumab in individuals with 
advanced malignant melanoma [55, 56].

Doxorubicin (DOX) and navoximod combination
Doxorubicin treatment of breast tumor cells resulted in 
IDO1 upregulation. These findings showed other poten-
tial methods of DOX impact on tumor repression, par-
ticularly in metastatic breast cancer, where traditional 
DOX treatment causes a variety of adverse effects and 



Page 6 of 13Abd El‑Fattah  Journal of Translational Medicine          (2022) 20:347 

consequent therapeutic failure [57]. Recent improve-
ments in understanding the immunological changes 
caused by chemotherapy and advances in combining 
checkpoint IDO1 inhibitors with conventional chemo-
therapy are promising for increasing numbers of cancer 
[58]. Navoximod is a potent IDO pathway inhibitor with 
promising pharmacological effects for treating cancer-
related immunosuppression [59].

Linrodostat
Linrodostat is a small molecule effectively and specifi-
cally inhibits IDO1, preventing Trp from being converted 
into the immunosuppressive Kyn [60] to lower serum 
Kyn levels and inhibit tumor, IDO1’s heme is particularly 
labile, and linrodostat inhibits IDO1 by binding to the 
heme-free (apo) form of the enzyme [60, 61].

Imatinib
Imatinib stimulated CD8+ T cells and triggered Treg 
death within the tumor via decreasing IDO1 expression 
on tumor cells. In a mouse model of the spontaneous 
gastrointestinal stromal tumor (GISTs), IDO1 regulation 
was shown to contribute significantly to imatinib’s anti-
cancer effects [62].

Nimesulide
Epithelial malignancies could over-express cyclooxy-
genase-2 (COX-2) like non-small lung cancer (NSLC). 
Consequently, it gives it malignancy and metastatic 
characters [63]. COX-2 enhances immunosurveillance 
escape which is demonstrated by the finding that inhib-
iting COX-2/PGE2 in animals with lung cancer reduces 
Treg-cell frequencies while increasing the frequency of 
anti-tumor effector T cells [64]. A cancer study in an ani-
mal model derived us from understanding the relation-
ship between COX-2 and IDO1. In the tumor site, the 
inhibition of COX2 can down-regulate IDO1 expression 
and fall serum Kyn levels [65, 66]. Nimesulide, a selec-
tive COX-2 inhibitor, lowered IDO1 mRNA/protein and 
decreased Kyn production, implying that total IDO1 
inhibition was caused by both reduced IDO1 gene tran-
scription and hindered IDO1 catalytic activity [67].

Metformin
Patients with insulin resistance were accompanied by 
elevated Kyn metabolites before hyperglycemia signs 
appeared [68]. It was found that patients on the met-
formin regimen had normal Trp metabolism and Kyn 
metabolites [69].

Dinaciclib
Dinaciclib is a CDK inhibitor that could suppress the 
Kyn pathway in glioblastoma multiforme (GBM) as well 
as head and neck squamous cell carcinomas (HNSCC) 
[5].

Selective serotonin reuptake inhibitor treatment 
with probiotic bacteria Lactobacillus plantarum
Selective serotonin reuptake inhibitor (SSRI) and pro-
biotic bacteria Lactobacillus plantarum 299v could sig-
nificantly decrease Kyn level, associated with cognitive 
functions improvement [70].

Galanal
Methanol extraction of Myoga flower buds contains 
galanal which was found to significantly inhibits IDO1 
activity [71].

The galanthamine–memantine combination
The galanthamine–memantine combination could 
affect the receptors of alpha7 nicotinic acetylcholine 
and N-methyl-d-aspartate; moreover, it can inhibit KA 
in the Kyn pathway [72].

M4112
Although M4112 could block IDO1 activity in vitro and 
there was a safety dose margin, the Kyn plasma level did 
not change and may need further investigations [73].

Candesartan
The candesartan derivatives were associated with IDO 
1 inhibition through the enzymatic active site and not 
through the haem region [74].

Desipramine
Desipramine inhibits the expression of IDO1 and IDO2 
in peripheral blood mononuclear cells (PBMCs) [75].

Simvastatin and sildenafil
It is possible to conclude that co-administration of sim-
vastatin and sildenafil had provided a neuroprotective 
effect against irradiation-induced brain injury. The pro-
tection mechanism was through NO donor/tetrahyd-
robiopterin (BH4). Besides, the combination offered 
anti-inflammatory and anti-oxidant properties with 
IDO/KYN modulation [76].

Lacosamide
Anti-epileptic lacosamide was used to treat partial-
onset seizures in children (> 1 year), and adults had sig-
nificant against a neuroinflammation-mediated model 
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of concurrent seizures with depression by Kyn levels 
reduction in hippocampal [77].

Eicosapentaenoic acid
Eicosapentaenoic acid is one of the omega-3 fatty acids 
extracted from animals and marine plants. It had a sig-
nificant effect on Kyn levels, decreasing its level with 
increasing T-cells survival. The anti-tumor action of 
eicosapentaenoic acid contributed to IDO1 expression 
blockage [78].

Sulfonamide
Sulfonamides have a variety of pharmacological proper-
ties in vivo, including anti-carbonic anhydrase and anti-
t dihydropteroate synthetase, which allows them to be 
used to treat a variety of diseases such as diuresis, hypo-
glycemia, thyroiditis, inflammation, bacterial infection, 
and glaucoma. Sulfonamide has significant potent IDO1 
inhibitory action with similar efficacy to Epacadostat 
in vivo Lewis lung cancer [79].

Carbidopa
Carbidopa had a similar structure to phenylhydrazine, 
which is an IDO1 inhibitor. Carbidopa could significantly 
decrease in vitro and in vivo pancreatic cancer cell prolif-
eration [80].

PCC0208009
PCC0208009 had significant selective pain suppressing, 
as it acts as a potent, selective IDO1 inhibitor, effective in 
treating neuropathic pain [81].

Lavender oil
The mechanism of action of lavender oil and its deriva-
tives, linalool, α-pinene, and limonene involved in the 
catabolism of IDO1 and neopterin production through 
GTP, cyclohydrolase-I, and IFN-γ [82].

Ketoprofen and sertraline combination
Ketoprofen is a nonsteroidal anti-inflammatory drug 
(NSAID) while sertraline is SSRI antidepressant drug. 
Sertraline and ketoprofen had significant results in 
decreasing IDO1 levels and inflammation and immunity 
modulation in major depression disorder. The ketoprofen 
provided a synergetic effect to sertraline towards IDO1 
inhibition and benefited action for T-helper and T-reg 
cells [83].

Chloroquine
The 4-aminoquinoline-based medicines chloroquines 
are primarily used to treat malaria. In in vitro studies of 
human PBMCs, chloroquine had interfered with IFN-γ. 
Moreover, it could stimulate neopterin synthesis and Trp 

catabolism. For that reason, chloroquine had significant 
anti-inflammatory properties to be used clinically [84].

2‑hydrazinobenzothiazole
In vitro, a potent inhibitor for IDO1 was 2-hydrazin-
obenzothiazole, while phenylhydrazine bound to haem 
and inhibited IDO1 [85].

Nitroglycerin
Nitroglycerin is a vasodilator that is commonly used to 
treat angina chest discomfort. An animal study revealed 
that nitroglycerin could significantly down-regulate the 
Kyn level [86].

Nitric oxide (NO)
Nitric oxide produces cGMP, which induces vascular 
relaxation. NO could successfully block IDO1 [87].

Curcumin
Based on IFN-γ stimulation of IDO1 expression, cur-
cumin could inhibit IDO1 and suppress immunological 
t-cells. Consequently, the downregulation of IDO1 in DC 
is a vital mechanism of immunological changes induced 
by curcumin which could be used in cancer therapy [88].

Flavonoids
Flavonoids bind non-competitively with IDO1 confirmed 
by plasmon resonance assays. It was significantly used in 
cancer immunotherapy [89].

Progesterone
Progesterone could significantly inhibit the IFN-γ Kyn 
pathway induction, decreasing excitotoxin quinolinic 
acid concentration. It could promote neuroprotection 
and reduce neopterin. It provided an interpretation of 
gender variations in the inflammatory response [90].

Nicotine
Smokers had significantly lower activity of IDO1 than 
non-smokers with unknown mechanisms of smokers’ 
immunostimulatory action [91].

N‑acetyl‑cysteine
N-acetylcysteine (NAC) is the mainstay of therapy for 
acetaminophen toxicity. The significant cellular protec-
tion from Kyn causes programmed cell death with anti-
oxidant  NAC. It also inhibits NK cells mediated ROS 
pathway in addition to the IDO1 blocking effect [92].

Lithium
Lithium has been the therapy of choice for bipolar disor-
der (BD) for more than six decades. Lithium could inhibit 
IDO1 action in primary cells in immortalized human 
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microglial cells. Moreover, it increased the production of 
IL-10. Lithium blocks the Kyn inflammatory pathway in 
the microglia part of the human brain [93].

Melatonin
Melatonin is produced by the pineal gland during the 
night in reaction to darkness. Exogenous melatonin could 

inhibit neuroinflammation through attenuating IDO 
expression (94).

Hydroxyamidines
In vitro analysis, Hydroxyamidines have significantly 
inhibited the metabolism of Trp in colon carcinoma and 
pancreatic carcinoma cells and in vivo cancers in lymph 

Table 1 Drugs that inhibit IDO/Kyn pathway

Drug Main target Species Model or cells References

1 Indoximod IDO1 (enzyme activity) Human Breast cancer
Melanoma

[53, 54]

2 Epacadostat IDO1 (enzyme activity) Human Melanoma [55, 56]

3 Linrodostat IDO1 (enzyme activity) Human Advanced cancers [60, 61]

4 Imatinib IDO1 (gene expression) Murine Gastrointestinal stromal tumor [62]

5 Nimesulide COX‑2/IDO1 (gene expression) Human (In vitro) AML [67]

6 Metformin Kyn (signal transduction) Human Insulin resistant case [69]

7 Dinaciclib CDK (gene expression) Human (In vitro) Glioblastoma multiforme (GBM)
Head and neck squamous cell 
carcinomas (HNSCC)

[5]

8 SSRI + Lactobacillus Plantarum Kyn (enzyme–substrate binding) Human Major depression [70]

9 Galanal IDO1 (enzyme activity) Human (In vitro) Acute leukemia [71]

10 M4112 IDO1 (enzyme activity) Human Solid tumors [73]

11 Candesartan IDO1 (enzyme activity) Human Hypertension [74]

12 Desipramine IDO1 (gene expression) Human Murine PBMCs [75]

13 Simvastatin and Sildenafil IDO1 (enzyme activity) Murine Irradiation‑induced brain injury [76]

14 Lacosamide Kyn (enzyme activity) Murine Depression [77]

15 Eicosapentaenoic acid IDO1 (gene expression) Murine (In vitro) Breast cancer
Melanoma

[78]

16 Sulfonamide IDO1 (enzyme activity) Murine (In vitro) Lewis lung cancer [79]

17 Carbidopa IDO1 (enzyme activity) Human and Murine 
(In vitro and in vivo)

Pancreatic cancer
Liver cancer

[80]

18 PCC0208009 IDO1 (enzyme activity) Murine Neuropathic pain [81]

19 Lavender oil IDO1 (enzyme activity) Human (In vitro) PBMC [82]

20 Ketoprofen and sertraline combina‑
tion

IDO1 (gene expression) Human Depression [83]

21 Chloroquine IDO1 (enzyme activity) Human In vitro Leukemia [84]

22 2‑hydrazinobenzothiazole IDO1 (enzyme activity) Murine (In vitro) Lung cancer [85]

23 Nitroglycerin IDO1 (gene expression) Murine Migraine [86]

24 Nitric oxide (NO) IDO1 (enzyme activity) Human murine Mononuclear phagocytes [87]

25 Curcumin IDO1 (gene expression) Murine DCs [88]

26 Flavonoids IDO1 (enzyme activity) Human Cervical cancer cells [89]

27 Progesterone Kyn (enzyme activity) Human Monocyte‑derived macrophages [90]

28 Nicotine IDO1 (enzyme activity) Human Peripheral blood [91]

29 N‑acetyl‑l‑cysteine Kyn (enzyme activity) Human NK cells [92]

30 Lithium IDO1 (enzyme activity) Human Brain cortical biopsy [93]

31 Melatonin IDO1 (gene expression) Murine Neuroinflammation [94]

32 Hydroxyamidines IDO1 (enzyme activity) Murine (In vitro) Colon carcinoma [95]

33 Benserazide IDO1 (enzyme activity) Murine Weight Gain, Insulin Resistance, and 
Dyslipidemia

[96]

34 Caffeine Kyn (enzyme activity) Human Anxiety [97]
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node drainage. INCB024360 has a significant IDO1 
inhibitor with desirable clinical outcomes in cancer 
patients [95].

Benserazide
Benserazide is a dihydroxyphenylalanine (DOPA) decar-
boxylase inhibitor that does not penetrate CNS and is 
used as an addition to levodopa in treating Parkinsonism. 

Fig. 2 Drugs that stimulate the effect of the IDO/Kyn pathway. IDO: indoleamine 2,3‑dioxygenase; Kyn: kynurenine (Kyn)

Table 2 Drugs that stimulate IDO/Kyn pathway

Drug Main target Species Model or cells References

1 Statin IDO1 (Gene expression) Human Asthma [98]

2 Nandrolone decanoate IDO1 (IDO activity) Murine Depression [99]

3 Escitalopram Kyn (enzyme–substrate binding) Human Neurotoxicity [100]

4 Dexamethasone IDO1 (IDO activity) Human Peripheral blood monocytes [101]

5 Valproate Kyn (enzyme–substrate binding) Murine Brain [102]

6 Interferon IDO1 (IDO activity) Human Peripheral blood monocytes [101]

7 Tocilizumab IDO1 (IDO activity) Human Diabetes [103]

Table 3 Clinical trials that target IDO/Kyn pathway

NCT Number Title Conditions

1 NCT03047928 Combination Therapy With Nivolumab and PD L1/IDO Peptide Vaccine to Patients With Meta‑
static Melanoma

Metastatic Melanoma

2 NCT01219348 IDO Peptide Vaccination for Stage III‑IV Non‑Small‑cell Lung Cancer Patients NSCLC
Lung Cancer

3 NCT02967419 The Study of the Relationship Between TWEAK/Fn14, JAK/STAT3, and IDO in the Immune Micro‑
environment of Endometrium in Repeated Implantation Failure

Repeated Implantation Failure

4 NCT01397916 IDO Activity in Patients With Chronic Lymphocytic Leukemia (CLL) CLL
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Benserazide inhibits the Kyn metabolism peripherally 
and treats olanzapine-induced metabolic syndrome [96].

Caffeine
Caffeine is the most used stimulant in the world. There 
was a significant correlation between anxiety caused by 
caffeine and the Kyn level. The Kyn level is proportional 
to anxiety peaks [97].

The following table (Table  1) summarizes the above-
mentioned drugs that inhibit IDO/Kyn pathway.

Drugs that stimulate IDO/KYN pathways
Statin
Asthmatic patients were administered  inhaled corticos-
teroids; when they were given statins as statins enhance 
the anti-inflammatory effect, IDO1 activity was altered 
through increasing IDO induction [98].

Nandrolone decanoate
Nandrolone decanoate is one of the most often abused 
anabolic androgenic steroid molecules globally. How-
ever, it comes with a slew of side effects. Nandrolone 
decanoate could promote IDO1 activity, increasing Kyn 
concentration in the brain [99] (Fig. 2).

Escitalopram
Antidepressant selective serotonin reuptake inhibitor, 
Escitalopram, is a drug that is used to treat major depres-
sive disorder and anxiety disorders. The synthesis of neu-
rotoxic Kyn metabolites could be significantly performed 
by escitalopram; moreover, it could inhibit inflammatory 
response [100] (Fig. 2).

Dexamethasone
Dexamethasone belongs to the corticosteroid family that 
is used to treat chronic obstructive pulmonary disease, 
severe allergies, rheumatic disorders, and asthma. Dexa-
methasone could increase the effect of IFN-γ as a super-
stimulation of IDO1. It could modulate the immune 
system and regulate the metabolism of Trp [101] (Fig. 2).

Valproate
Valproate sodium is an anti-epileptic and mood stabilizer 
that could stimulate increasing Kyn in the brain with its 
similar mechanism of action. Valproate could displace 
Trp from albumin, consequently increasing the Kyn of 
the brain [102] (Fig. 2).

Interferon
The only type II interferon, IFN-γ, is innate and adap-
tive immune responses. In human peripheral blood 

monocytes, IFN-γ had significant stimulation of IDO and 
more induction of Trp catabolism. Besides, IFN-γ had a 
higher effect than interferon-alpha [101] (Fig. 2).

Tocilizumab
Tocilizumab is an anti-human IL-6 receptor (IL-6R) 
monoclonal antibody authorized for rheumatoid arthri-
tis. It blocks IL-6 signaling by binding soluble IL-6R 
and membrane IL-6R. Tocilizumab could provide  Trp-
derived catabolites and block IL6 activities [103] (Fig. 2).

Table  2 summarizes the above-mentioned drugs that 
stimulate IDO/Kyn pathway.

Besides these are some of the clinical trials that target 
the IDO/Kyn pathway as mentioned in https:// www. clini 
caltr ials. gov (Table 3).

Conclusion
As IDO and its metabolite Kyn are potential targets for 
cancer control due to their immunosuppressive effect, 
IDO/Kyn also induces its carcinogenic effect on prolif-
eration, apoptosis, angiogenesis, metastasis, oxidative 
stress, and cancer stemness potentiality. Besides, many 
drugs inhibit IDO/KYN pathway in different diseases, 
which can be tested for their effectiveness against cancer 
progression. On the other hand, different drugs induce 
the IDO/KYN pathway, which may potentiate cancer 
progression and thus look for alternatives in case of can-
cer risk with other comorbidities.
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