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Abstract: Ganoderma lucidum, one of the most valued medicinal mushrooms, has been used for health
supplements and medicine in China. Our previous studies have proved that Ganoderma lucidum
extract (GLE) could inhibit activation of microglia and protect dopaminergic neurons in vitro. In the
present study, we investigated the anti-neuroinflammatory potential of GLE in vivo on Parkinsonian-
like pathological dysfunction. Male C57BL/6J mice were subjected to acute 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) lesion, and a treatment group was administered intragastrically
with GLE at a dose of 400 mg/kg. Immunohistochemistry staining showed that GLE efficiently
repressed MPTP-induced microglia activation in nigrostriatal region. Accordingly, Bio-plex multiple
cytokine assay indicated that GLE treatment modulates abnormal cytokine expression levels. In
microglia BV-2 cells incubated with LPS, increased expression of iNOS and NLRP3 were effectively
inhibited by 800 µg/mL GLE. Furthermore, GLE treatment decreased the expression of LC3II/I, and
further enhanced the expression of P62. These results indicated that the neuroprotection of GLE in
an experimental model of PD was partially related to inhibition of microglia activation in vivo and
vitro, possibly through downregulating the iNOS/NLRP3 pathway, inhibiting abnormal microglial
autophagy and lysosomal degradation, which provides new evidence for Ganoderma lucidum in
PD treatment.

Keywords: Ganoderma lucidum; Parkinson’s disease; neuroinflammation; microglial activation; mi-
croglial autophagy

1. Introduction

Parkinson’s disease, the second most common neurodegenerative disorder, is mainly
characterized by motor dysfunctions and non-motor symptoms. Disturbances caused by
PD aggravate patients’ physical and mental state. Although enormous treatment studies
have been conducted in PD, current therapeutic strategies can only manage the symptoms
but neither modulate nor modify pathological alteration or neurodegenerative process.
It is well noted that many agents with great promise in the laboratory have not been
validated in clinical studies [1,2]. Thus, exploring candidates and druggable compounds
capable of delaying or halting progression of PD is constantly and greatly needed. Multiple
lines of evidence show that neuroinflammation induced by microglia activation and/or
mitochondrial dysfunction is closely associated with disease progression, thus making it a
potential therapeutic target for treating PD.
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Traditional Chinese medicine has been extensively and thoroughly studied in the
management of neurological diseases. Ganoderma lucidum (GL), a well-known culinary and
medicinal mushroom which is widely used in Asia (especially in China), is beneficial for
health care and health longevity [3]. They are rich in nutritional, bioactive, and pharma-
cological active compounds such as polysaccharides, triterpenoids, nucleosides, sterols,
alkaloids, amino acids, and a variety of microelements. Thus far, accumulating studies
mainly focus on observing bioactive compounds of Ganoderma lucidum and multi-protective
effects against neurological disorders. As reviewed by Phan, as a typical representative of
fungi, GL has shown neuroprotective properties such as promoting neuronal survival and
neuritogenesis both in vitro and in vivo, indicating underlying improvement in neurologi-
cal recovery and function [4].

Many studies on anti-inflammation of Ganoderma lucidum have been thoroughly re-
searched and discussed. Ganoderma lucidum polysaccharides (GLPs), one of the most
valuable bioactive compounds in GL, has been reported in the literature to modulate in-
flammation against various diseases. GLPs extracted from the sporoderm-removed spores
of GL alleviated azoxymethane/dextran sulfate sodium-induced colitis and tumorigene-
sis in mice, and inhibited lipopolysaccharides (LPS)-induced inflammation markers and
MAPK activation in vitro [5]. A recent study reported that GL product containing a mixture
of spores and fruiting bodies, namely, “GLSF”, had anticancer activity in vivo through at-
tenuating inflammation, NF-kB, and/or KRAS activation [6]. Another bioactive compound,
Ganoderma lucidum triterpenoids (GLTs), can also exert an anti-inflammation effect. Chen
et al. newly found GLT administration could mitigate maternal separation-induced anxiety-
and depression-like performance via reducing peripheral and cerebral inflammation, with
non-toxic effect on the key organs [7]. The safety of Ganoderma lucidum has also been paid
more attention. Biomass extract and exopolysaccharide of GL were considered as non-toxic
for vertebrates [8,9].

Our team previously revealed that Ganoderma lucidum extract (GLE) could suppress
microglia-derived proinflammatory generated by Lipopolysaccharide (LPS) and 1-methyl-
4-phenylpyridinium (MPP+) in cultures of microglia or MES23.5 cells [10,11]. Furthermore,
we employed MPTP-lesioned acute mouse model of PD and found that GLE treatment
could significantly improve motor ability and dopaminergic function in nigrostriatal path-
way [12,13]. However, it remains unknown whether GLE mitigates neurodegenerative
pathologies by modulating neuroinflammation. Although numerous studies have reported
the molecular mechanisms of GL, there is still a lack of clear molecular mechanisms of
anti-inflammation, especially in PD models. In the present study, we aim to investigate the
neuroinflammation effect of Ganoderma lucidum in Parkinsonian model mice, providing
beneficial data for its neuroprotective and neuroinflammatory regulation.

2. Materials and Methods
2.1. Reagents

GLE was kindly provided by PuraPharm Corporation (Guangxi, China). In detail,
GL fruiting bodies were collected from Guizhou province. GLE was produced as outlined
in Figure 1. First, the dried fruiting bodies of GL were broken into small pieces. Then, a
certain amount of fruiting bodies was extracted in the conditions as follows: 80% ethanol
twice, extraction time of 2 h, extraction temperature of 80 ◦C, and the residues were
then extracted with 50% ethanol twice. The residues were then followed by 2 h boiling
water extraction procedure for two repeated times. The above steps were carried out
in the traditional Chinese medicine extraction tank, which can automatically adjust the
temperature. Finally, the supernatant was combined, centrifuged, and lyophilized to
dryness. GLE was standardized to contain about 9.8% w/w polysaccharides, 0.3–0.4% w/w
Ganoderic acid A, and 0.3–0.4% Ergosterol. GLE was prepared freshly using corresponding
vehicle (suspended in 0.5% CMC-Na in vivo or dissolved in cultured medium in vitro) in
the dark.
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gen retrieval was performed before commencing with IHC staining protocol. Then, sec-
tions were permeabilized in 0.3% PBST for 30 min and quenched  endogenous peroxi-
dases using hydrogen peroxide. Brain sections were blocked in 10% fetal bovine serum 
for 1 h and then incubated overnight at 4 °C, with rabbit anti-ionizing calcium-binding 
adaptor molecule 1 (Iba1), (1:1000, Wako, specific for microglia). Finally, the slices were 
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2.2. Animals

Adult (8-week-old) male C57BL6/J mice were purchased from Beijing Vital River
Laboratory Animal Technology (Beijing, China). Animals were maintained under standard
conditions of temperature and humidity with a 12 h light/dark cycle and fed a standard
pellet diet and water ad libitum. All animals were treated in strict accordance with the NIH
Guide for Care and Use of Laboratory Animals and the study was approved by Animal
Care Committee of Capital Medical University, approval Code: XW-20210425-2, approval
Date: 25 June 2021.

2.3. Experimental Procedure

After acclimatization for one week, 45 male mice were randomly divided into three
groups (n = 15) of Control, MPTP(Sigma-Aldrich(Shanghai) Trading Co., Ltd, Shanghai,
China), MPTP + GLE. Briefly, an acute model of PD was conducted with MPTP (20 mg/kg)
intraperitoneal injection to the mice four times at 2 h intervals in 1 day. The next day,
mice in both Control and MPTP groups received equal amounts of 0.5% CMC-Na solution
once daily for 4 weeks successively. Animals in the MPTP + GLE group were treated with
intragastric administration of 400 mg/kg GLE.

2.4. Immunohistochemistry (IHC) and Imaging Analysis

After 4 consecutive weeks of administration, mice were transaortically perfused, firstly
with 0.1 M PBS, then 4% paraformaldehyde (pH 7.4). Brains were carefully removed from
the skull and placed within 4% formaldehyde in PBS overnight, then cryoprotected in 15%
sucrose (w/v PBS), and then, 20% and 30% sucrose. Sections were stored free-floating at
−20 ◦C in cryoprotectant (25% v/v glycerin, 25% v/v ethylene glycol; 50% v/v 0.05 M
phosphate buffer) until staining.

In brief, coronal sections (35 µm) were collected and heat- or trypsin-mediated antigen
retrieval was performed before commencing with IHC staining protocol. Then, sections
were permeabilized in 0.3% PBST for 30 min and quenched endogenous peroxidases
using hydrogen peroxide. Brain sections were blocked in 10% fetal bovine serum for 1 h
and then incubated overnight at 4 ◦C, with rabbit anti-ionizing calcium-binding adaptor
molecule 1 (Iba1), (1:1000, Wako, specific for microglia). Finally, the slices were mounted
and captured using a CCD camera (Olympus, Tokyo, Japan)). Images were analyzed using
Image J software.

2.5. Multiple Assays of 23 Cytokines in Brain Tissues

Cytokine detecting was performed using Bio-Plex Cytokine Assay Kit (Bio-Rad Labo-
ratories, Hercules, CA, USA). Briefly, midbrain and striatum of mice in each group were
rapidly removed for the preparation of brain supernatant homogenates. The remaining
steps were carried out strictly according to the manufacturer’s instructions. We looked
at a panel of 23 cytokines and chemokines, including IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5,
IL-6, IL-9, IL-10, IL-12(p40), IL-12(p70), IL-13, IL-17, Eotaxin, G-CSF, GM-CSF, KC, MCP-1,
MIP-1α, MIP-1β, RANTES, TNF-α, and IFN-γ.
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2.6. Cell Culture

The microglia cell line BV-2 was maintained at 37 ◦C in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 10% fetal bovine serum and 100 U/mL penicillin
and streptomycin in a 5% CO2 humidified incubator.

2.7. Cell Viability Assay

The BV-2 proliferative activity was assayed using CCK-8 kit (Dojindo Molecular
Technologies, Kyushu, Japan). Briefly, cells were seeded in 96-well culture plates and
incubated with different concentrations of GLE in the presence of LPS (1 µg/mL) for the
indicated time. At the end point, the culture medium was removed and the cells were
washed with PBS, and then incubated with CCK-8 reagent for an additional 2 h. CCK-8
was diluted with cultured medium to form a 10% CCK-8 solution. The absorbance was
measured at 450 nm wavelength. Cell viability was evaluated as the ratio of the sample to
that of control.

2.8. Western Blot Analysis

The cellular samples were lysed in RIPA lysis buffer containing a protease and phos-
phatase inhibitor cocktail (Applygen Technologies Inc., Beijing, China) and centrifuged at
12,000× g for 15 min at 4 ◦C. The protein concentration of cell supernatant was determined
with BCA method. Briefly, equal amounts of proteins were loaded and transferred onto the
PVDF membrane. Then, membranes were incubated in blocking solution with 5% milk at
RT for 1 h and then incubated at 4 ◦C overnight, with the following primary antibodies: in-
ducible nitric oxide synthase (iNOS), NOD-like receptor thermal protein domain-associated
protein 3 (NLRP3), LC3B, and SQSTM1/P62 (1:1000, Cell Signaling Technology, Danvers,
MA, USA) in TBST containing 5% milk. The membranes were incubated with the corre-
sponding secondary antibodies for one hour and washed with TBST for 30 min. Then,
the membranes were imaged with the Chemiluminescence Imaging System (Tanon 5200,
Shanghai, China). β-actin was used as a loading control in all Western blot analyses. The
quantification of blot intensity was performed using Image J software.

2.9. Statistical Analysis

Data were statistically analyzed using one-way analysis of variance followed by
LSD or Dunnett’s T3 post hoc test, depending on the homogeneity of the variance test.
Summarized data were expressed as mean ± SEM. Statistical significance was set at p < 0.05.
All statistical analysis was undertaken using SPSS v17.

3. Results
3.1. GLE Treatment Attenuated Microglia Activation in MPTP-Lesioned Mice

IHC assay was used to evaluate the effects of GLE on the microglia activation in
lesioned regions of MPTP-lesioned mice. We used design-based stereology to count the
number of Iba1-positive cells. Notably, we found that, compared with the control group,
the number of Iba1-positive cells was increased in the striatum regions of the MPTP model
group. However, GLE-treated animals evidenced a marked decrease in the number of
Iba1+ cells, as shown in Figure 2A,B. Similarly, as shown in Figure 3A,B of the substantia
nigra (SN) region, our results showed that Iba1 was predominantly expressed by the
microglia and Iba1 levels were significantly higher in the MPTP group, while GLE treatment
significantly inhibited the expression of Iba1 compared with the MPTP group. The changes
in SNpc among groups coincided well with those in SNpr, but the number of Iba1+ cells in
SNpr is about three times more than that of the SNpc region.
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munohistochemistry images of Iba1 immunostaining in striatum, scale bar = 20 um. (B) The statis-
tical results of Iba1-positive cells in the striatum area of each group. ***: p < 0.001, Control group 
vs. MPTP group; ##: p < 0.01, MPTP group vs. MPTP + GLE group. Data are presented as mean ± 
SEM. Each group n/N ≥ 20 images/5 mice. The arrows stand for Iba1+ cells. 

 
Figure 3. Effect of GLE on the expression of Iba1 in substantia nigra of PD mice. (A) and (B) Repre-
sentative immunohistochemistry images of Iba1 immunostaining in substantia nigra pars com-
pacta (SNpc) and substantia nigra pars reticulata (SNpr), scale bar = 20 um. (C) and (D) The statis-
tical results of Iba1-positive cells in the SNpc and SNpr of each group, respectively. */**: p < 
0.05/0.01, Control group vs. MPTP group; #: p < 0.05, MPTP group vs. MPTP + GLE group. Data 
are presented as mean ± SEM. Each group n/N ≥ 20 images/5 mice. The arrows stand for Iba1+ 
cells. (E) Diagram of subregion in substantia nigra, scale bar = 200 um. 

3.2. GLE Treatment Modulated Cytokine and Chemokine Levels in MPTP-Lesioned Mice 

Figure 2. Effect of GLE on the expression of Iba1 in striatum of PD mice. (A) Representative
immunohistochemistry images of Iba1 immunostaining in striatum, scale bar = 20 um. (B) The
statistical results of Iba1-positive cells in the striatum area of each group. ***: p < 0.001, Control
group vs. MPTP group; ##: p < 0.01, MPTP group vs. MPTP + GLE group. Data are presented as
mean ± SEM. Each group n/N ≥ 20 images/5 mice. The arrows stand for Iba1+ cells.
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sentative immunohistochemistry images of Iba1 immunostaining in substantia nigra pars compacta
(SNpc) and substantia nigra pars reticulata (SNpr), scale bar = 20 um. (C) and (D) The statistical
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3.2. GLE Treatment Modulated Cytokine and Chemokine Levels in MPTP-Lesioned Mice

In order to provide additional evidence of the effect of GLE on inflammation following
MPTP neurotoxicity, we performed bioplex assay to quantitate the expression levels of
inflammatory mediators. Tables 1 and 2 showed the cytokine concentrations in the brain-
damaged regions after MPTP neurotoxicity with or without GLE treatment. Our results
(Table 1) indicate that the levels of cytokines (IL-1β, IL-12(p40), IL-17, GM-CSF, KC, MIP-1β,
and TNF-α) and interferon (IFN-γ) were up-regulated in the mesencephalon of MPTP-
injured mice compared to that of control mice. GLE treatment down-regulated GM-CSF
levels compared with MPTP group. No significant changes were found in the levels of
IL-1β, IL-12(p40), IL-17, KC, MIP-1β, TNF-α, or IFN-γ in response to GLE treatment.
Unlike the midbrain, most of the cytokines (especially some important proinflammatory
cytokines such as IL-1α, IL-1β, IL-2, IL-4, IL-12, TNF-α, and IFN-γ) had high expression
levels in the striatum of MPTP mice compared with levels in the striatum of control mice.
Interestingly, whereas treatment with GLE led to declines in proinflammatory cytokine
expression in the striatum, it significantly decreased the expression of IL-1α, IL-1β, IL-3,
and TNF-α. Specifically, MPTP treatment also significantly augmented the expression of
G-CSF, GM-CSF, and chemokines (KC, MIP-1α, and MIP-1β) in striatum regions (Table 2).

Table 1. Mouse midbrain cytokine/chemokine concentrations 1.

Cytokine/Chemokine Control MPTP MPTP + GLE

IL-1α 59.31 ± 7.63 69.06 ± 8.72 67.96 ± 4.83
IL-1β 5985.88 ± 513.24 7048.02 ± 329.99 * 6534.95 ± 176.21
IL-2 2006.17 ± 393.29 2437.60 ± 332.68 2421.81 ± 169.47
IL-3 162.65 ± 11.88 183.67 ± 8.04 169.14 ± 7.93
IL-4 53.63 ± 6.27 65.46 ± 8.04 63.02 ± 3.38
IL-5 123.02 ± 14.17 133.25 ± 9.50 135.11 ± 5.32
IL-6 174.53 ± 15.20 209.65 ± 7.87 198.62 ± 7.90
IL-9 26,312.90 ± 4622.58 30,082.75 ± 3523.41 28,480.24 ± 2334.98

IL-10 254.47 ± 26.70 280.79 ± 26.42 271.50 ± 16.68
IL-12(p40) 115.18 ± 8.51 135.87 ± 7.89 * 127.55 ± 3.78
IL-12(p70) 781.60 ± 84.75 794.76 ± 39.17 847.94 ± 30.29

IL-13 30,195.89 ± 2496.90 34,524.49 ± 1708.82 34,031.25 ± 871.92
IL-17 2384.74 ± 199.21 2820.02 ± 122.31 * 2737.16 ± 48.81

Eotaxin 14,680.31 ± 757.97 14,612.08 ± 289.31 13,475.91 ± 330.17
G-CSF 102.73 ± 11.11 116.59 ± 10.21 114.11 ± 5.11

GM-CSF 1555.74 ± 36.43 1651.85 ± 24.38 * 1514.10 ± 24.59 ##
KC 295.41 ± 16.34 367.05 ± 14.78 ** 355.82 ± 15.63

MCP-1 1952.11 ± 128.24 2134.07 ± 128.52 2165.10 ± 86.53
MIP-1α 447.26 ± 39.74 441.25 ± 26.90 433.75 ± 21.50
MIP-1β 755.20 ± 89.44 936.23 ± 57.13 * 904.77 ± 42.74

RANTES 319.19 ± 33.62 341.21 ± 11.75 332.40 ± 6.73
TNF-α 5008.07 ± 156.57 6403.28 ± 334.58 * 6319.66 ± 253.61
IFN-γ 398.57 ± 38.14 481.55 ± 24.00 * 439.06 ± 26.87

1 All values are means ± SE (in pg/mL); n = 5–6 mice/group. */**: p < 0.05/0.01, Control group vs. MPTP group;
##: p < 0.01, MPTP + GLE group vs. MPTP group. IL, interleukin; IL-12(p40), IL-12 subunit p40; G-CSF, granulocyte
colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; KC,
keratinocyte chemoattractant; MCP-1, monocyte chemotactic protein-1; MIP, macrophage inflammatory protein.

Table 2. Mouse striatum cytokine/chemokine concentrations 1.

Cytokine/Chemokine Control MPTP MPTP + GLE

IL-1α 61.11 ± 3.82 75.43 ± 2.94 ** 65.93 ± 2.18 #
IL-1β 4895.35 ± 459.92 5895.72 ± 161.64 * 4927.78 ± 138.20 #
IL-2 894.40 ± 69.15 1486.18 ± 218.39 * 1328.81 ± 69.23
IL-3 115.38 ± 8.88 138.77 ± 8.18 109.21 ± 8.20 #
IL-4 41.76 ± 3.42 54.33 ± 2.97 * 55.00 ± 4.52
IL-5 102.39 ± 10.97 120.48 ± 9.47 129.13 ± 9.16
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Table 2. Cont.

Cytokine/Chemokine Control MPTP MPTP + GLE

IL-6 157.80 ± 18.02 183.73 ± 6.73 180.29 ± 7.09
IL-9 15,997.54 ± 1410.37 18,889.61 ± 1096.69 19,500.01 ± 878.82
IL-10 197.01 ± 16.39 244.15 ± 12.87 * 233.61 ± 16.56

IL-12(p40) 94.06 ± 7.31 115.49 ± 4.13 * 107.81 ± 5.11
IL-12(p70) 446.91 ± 34.71 531.65 ± 26.58 * 468.48 ± 18.29

IL-13 23,491.19 ± 2188.84 26,769.18 ± 1134.10 26,409.85 ± 939.14
IL-17 1787.37 ± 151.17 1921.06 ± 84.15 1990.46 ± 59.05

Eotaxin 7062.60 ± 160.99 7494.43 ± 295.88 7187.90 ± 159.94
G-CSF 80.60 ± 9.07 105.89 ± 7.23 * 100.30 ± 4.43

GM-CSF 725.62 ± 14.80 788.56 ± 14.17 ** 771.08 ± 11.42
KC 250.23 ± 24.36 304.47 ± 14.22 * 306.95 ± 13.88

MCP-1 1448.53 ± 112.57 1592.19 ± 64.50 1660.90 ± 65.06
MIP-1α 262.39 ± 19.93 341.37 ± 17.93 ** 311.37 ± 13.78 #
MIP-1β 361.47 ± 25.75 428.31 ± 18.00 * 388.70 ± 10.01

RANTES 227.98 ± 22.43 261.88 ± 11.39 242.62 ± 11.30
TNF-α 4535.07 ± 360.77 5566.64 ± 313.77 * 4606.82 ± 209.94 #
IFN-γ 339.27 ± 30.05 431.28 ± 20.21 * 390.81 ± 18.97

1 All values are means ± SE (in pg/mL); n = 5–6 mice/group. */**: p < 0.05/0.01, Control group vs. MPTP group;
# p < 0.05, MPTP + GLE group vs. MPTP group. IL, interleukin; IL-12(p40), IL-12 subunit p40; G-CSF, granulocyte
colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; KC,
keratinocyte chemoattractant; MCP-1, monocyte chemotactic protein-1; MIP, macrophage inflammatory protein.

3.3. GLE Inhibited LPS-Induced BV2 Microglia Proliferation

We used an in vitro model of microglia proliferation, established by examining BV2
microglia proliferation in response to LPS stimulation at 6, 12, and 24 h. The proliferation
rate of BV2 microglia appeared unaffected by LPS at 6 and 12 h. At 24 h, 1 µg/mL LPS-
stimulated microglia displayed an approximate 50% increase in proliferation. Treatment
with GLE decreased LPS-induced proliferation of BV2 microglia dose-dependently, and
800 µg/mL GLE induced a significant decrease compared with the LPS-stimulation-only
group (Figure 4).
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3.4. GLE Suppressed LPS-Stimulated iNOS-NLRP3 Activation in BV-2 Cells

We sought to determine the role of iNOS-NLRP3 in GLE-mediated immunomod-
ulation of microglial responses. We further evaluated iNOS and NLRP3 expression in
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LPS-stimulated BV-2 microglia. In normal condition culture, BV2 microglia produced negli-
gible amounts of iNOS and NLRP3. LPS stimulation significantly increased the expressions
of both proteins at 24 h. Conversely, the presence of GLE reduced iNOS level compared
with LPS-stimulated BV2 cells alone, similar to the expression level of unstimulated BV2
microglia. In the same way, treatment with 800 µg/mL GLE for 24 h significantly attenuated
LPS-induced upregulation of NLRP3 expression (Figure 5).
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images of Western blot with antibodies against iNOS and NLRP3. (B) Quantification analysis of iNOS
and NLRP3 expression from Western blot. Values are represented in the form of mean ± SEM. */***:
p < 0.05/0.001, Ctrl group vs. LPS group; ##/###: p < 0.01/0.001, LPS group vs. LPS + GLE group.
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3.5. GLE Inhibited Autophagy and Lysosomal Degradation in LPS-Induced BV-2 Cells

Autophagy-related proteins LC3 and P62 are often used to evaluate autophagic level
in vivo and vitro. Therefore, we detected expression levels of these two markers. Our
results showed that, compared with the control group, the expression of LC3II/I in the LPS
group increased, but has no statistically significant difference. P62 expression of the LPS
group also increased, suggesting the lysosome could not bind to the autophagosome at
this time. However, in the LPS + GLE group, P62 further increased, but LC3II/I decreased
compared with the LPS group (Figure 6).
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expressed as the LC3-II/LC3-I ratio. Values are represented in the form of mean ± SEM. **: p < 0.01,
Ctrl group vs. LPS group; ##: p < 0.01, LPS group vs. LPS + GLE group. All experiments were
repeated at least in triplicate.



Nutrients 2022, 14, 3872 9 of 14

4. Discussion

To our best knowledge, this is the first study to observe the anti-neuroinflammatory
effect of Ganoderma lucidum in Parkinsonian pathogenesis in vivo. Our findings showed that
GLE could inhibit microglia activation and modulate cytokine levels in MPTP-neurotoxicity
parkinsonian mice. In addition, our in vitro study revealed that GLE could inhibit mi-
croglial activation by suppression of iNOS/NLRP3 activation and mitigate dysfunction of
autophagy and lysosomal degradation induced by LPS in BV-2 microglial cells.

Mitochondrial neurotoxin MPTP contributes to the neurodegenerative loss of dopamin-
ergic neurons in the substantia nigra pars compacta and striatum. Its neurotoxicity is
generally attributed to a cascade of deleterious events, such as mitochondrial dysfunction,
apoptosis, inflammation, ubiquitin-proteasomal system (UPS) dysfunction, and oxidative
stress, ultimately leading to neuronal damage [14,15]. Increasing evidence indicates the
involvement of microglia in MPTP neurotoxicity [16]. Histology and counting results
showed that MPTP causes dramatic activation of microglia in striatum and SN, which is
consistent with previous studies [17,18]. Herein, we captured and counted both SNpc and
SNpr sections. We found the microglia density of SNpr is three times that of SNpc, which
may suggest that axons and dendrites in SNpr are vulnerable to inflammatory damage
compared to somas in SNpc. We speculate that regional distinct distributions of microglia
largely depend on physical and pathological conditions, being close to and interacting with
highly neural activity. This was also proved by exhibiting basal differences in cytokine
profiles and differential cytokine upregulation with MPP+ in regionally isolated microglia
(SN, ventral tegmental area, and cortex) [19]. Furthermore, microglia actively participate in
regulating neuronal excitability and function. Early axon loss also renders neurons dys-
functional [20]. Our findings verify that GLE with 9.8% polysaccharide treatment obviously
inhibit microglia activation in both striatum and SN sections, confirming its potential to
regulate neuroinflammation of PD.

Production and release of cytokines plays a central role in the microglia-mediated
inflammatory action [21]. Abnormally reactive microglia and dysregulated cytokine levels
are often concomitant with alterations in synaptic structure and function [22]. Our in vivo
study indicated that GLE modulates abnormal cytokine levels to different extents in stria-
tum. For example, altered levels of cytokines such as IL-1α, IL-1β, MIP-1α, and TNF-α
have been corrected to nearly normal levels following MPTP challenge. Another extract
from GL (GLE Cat# 1288372) pre-treatment inhibits the expression of the pro-inflammatory
cytokines G-CSF, IL1a, MCP-5, MIP3α, and RANTES in the LPS-stimulated BV-2 cells [23].
Thus, its effect is beneficial for abnormally reactive microglia, especially for the synaptic
functional output of substantia nigra striatum pathway, exhibiting enhancement of motor
ability [12]. Considered together, immunohistochemistry staining combined with the Bio-
plex data suggest that GLE could modulate abnormal microglial activation and cytokine
expression levels caused by MPTP, indicating its improvement of mitochondrial function
and microglia function.

Next, we conducted CCK-8 assay to test GLE on proliferative activity of BV-2 treated
with LPS. Contradictory to the viability data obtained by Hilliard A et al. using Alamar
Blue® (Resazurin) assay [23], LPS significantly promoted proliferative activities, while GLE
800 ug/mL reduced viability in our BV-2 cellular model. In addition, many studies have
shown that LPS (1 µg/mL) absolutely does not affect the proliferation activity of BV-2
cells [24,25].

iNOS, as one of the key proinflammatory biomarkers, could hardly be detected in
mRNA and protein expression at baseline. However, it is induced and up-regulated under
inflammation, such as LPS-treated animal or microglial cells, contributing to neurodegener-
ation [26]. As predicted, GLE completely blocked LPS-induced overexpression of iNOS and
NLRP3, as determined by Western blotting. The NLRP3 inflammasome has been studied
extensively and was found to be activated by a series of stimuli [27]. The NLRP3 inflam-
masome and its role in PD progression have been attractive subjects recently. Han X and
colleagues reported that NLRP3 inflammasome activation correlates with PD progression,
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and could be inhibited by kaempferol via ubiquitination and autophagy, indicating that
targeting NLRP3 is a promising therapeutic strategy for PD [28]. Whether GLE directly or
indirectly targets NLRP3 needs to be explored in further studies.

The mechanism via which GLE can regulate neuroinflammation remains unclear. The
role of microglial autophagy in microglial function has gained increasing attention [29].
Microglia played a neuroprotective role via selective autophagy in the clearance of neuronal
α-synuclein [30]. Microglia-specific deletion of Atg7 enhances intraneuronal tau pathology
and its spreading, revealing an essential role for microglial autophagy in regulating neu-
roinflammation [31]. LC3 is required for the formation of autophagosome membranes and
is transformed from LC3-I to LC3-II during autophagy activation, the latter of which is con-
sidered a marker of autophagosomes in mammalian cells. Sequestosome-1 (SQSTM1)/P62
is a poly-ubiquitin-binding protein that is degraded via autophagy. Herein, we detected
the expressions of LC3 and P62, which are major components involved in the autophagy
process [32]. LPS increased LC3-I transformation to LC3-II and increased P62 expression,
resulting in abnormally high autophagy flux. Interestingly, GLE could decrease LC3-I
transformation to LC3-II, and meanwhile inhibit P62 degradation, indicating its potential
for balancing between autophagy formation and degradation [33]. These data provide a
new insight of GLE in neuroprotection by inhibiting NLRP3 inflammasome and abnormal
autophagic processes in microglial cells.

Which ingredient(s) of GL that perform its function in neuroinflammatory modulation
is also unclear. As we know, GL is highly rich in hundreds of bioactive components. Any
component may exert anti-neuroinflammatory effects. Ganoderma lucidum polysaccharides
(GLPs), one of the effective fractions, has been proven to play regulatory roles in LPS- and
Aβ-mediated neuroinflammation in an in vitro study, demonstrating a potent modulator
for AD-related neuroinflammation [34]. Accumulating in vivo studies demonstrated that
GLPs could also exert neuroinflammatory modulation in other various neurological disor-
ders such as in D-galactose rats and spinal cord ischemia–reperfusion injury rats [35,36].
Ganoderic acid A (GAA), another popular extract, could inhibit LPS-induced neuroinflam-
mation in BV2 microglial cells and modulated neuroimmune in two multiple sclerosis
models via activating FXR receptor [37,38]. It was suggested that GAA could also suppress
inflammation via regulating M1/M2 microglial polarization in a rat model of post-stroke
depression [39]. Other components of GL were further extracted and confirmed anti-
neuroinflammation action in the classical LPS-stimulated BV2 cell model [40,41]. Generally
speaking, different constituents are largely determined by different extraction methods.
Thus, different components may exert similar pharmacological effects through different
pathways. The aqueous extract of Ganoderma lucidum was found to decrease immunore-
activity for GFAP as well as TNF-alpha and IL-1beta in the CA3 region in rats induced
by kainic acid [42]. In a word, there is no consensus on which components mediate this
pathological process thus far. We prefer that some components play a synergistic role in
the body, which we mentioned 10 years ago [43]. We have surveyed the recent studies of
Ganoderma lucidum, and provided a comparison table of available anti-neuroinflammatory
extracts, beside Parkinsonian pathogenesis (Table 3), which be better for us to understand
the anti-neuroinflammatory components of Ganoderma lucidum.

Table 3. The anti-neuroinflammatory effects of GL extracts on central nervous system diseases.

Extracts
Models Underlying

Mechanisms References
In Vivo In Vitro

Ganoderic acid A
(GAA) D-galactose mice ——

Regulating the
imbalance of the
Th17/Tregs axis

Zhang Y et al., 2021 [35]

GAA —— LPS-stimulated BV-2 Activating farnesoid X
receptor (FXR) Jia Y et al., 2021 [37]
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Table 3. Cont.

Extracts
Models Underlying

Mechanisms References
In Vivo In Vitro

GAA Multiple sclerosis
animal —— Activating farnesoid X

receptor (FXR) Jia Y et al., 2021 [38]

GAA Post-stroke depression ——

Regulating M1/M2
microglial polarization

by activating the
ERK/CREB pathway

Zhang L et al., 2021 [39]

Ganoderterpene A —— LPS-stimulated BV-2

Suppressing the
activation of MAPK
and TLR-4/NF-κB
signaling pathways

Kou RW et al., 2021 [40]

Ganoderma lucidum
polysaccharides

(GLPs)
——

LPS- and
Aβ42-stimulated BV-2

and primary mouse
microglia

Modulate microglial
phagocytosis and

behavioral response
Cai Q et al., 2017 [34]

GLPs D-galactose rats ——
Regulating

inflammation of the
brain–liver axis

Zhang Y et al., 2021 [35]

GLPs
Spinal cord

ischemia–reperfusion
injury

——

Reducing lipid
peroxidation,

inflammatory cytokine
production

Kahveci R et al., 2021
[36]

Ganoderma lucidum
triterpenoids (GLTs)

Maternal
separation-induced

anxiety and
depression

——

Reversing
up-regulation of

pro-inflammatory
markers in the

periphery and brain,
and activating

microglia in the
prefrontal cortex and

hippocampus

Mi X et al., 2022 [7]

The aqueous extract of
GL

Kainic acid-induced
seizures ——

Decreasing
immunoreactivity for

GFAP as well as
TNF-alpha and

IL-1beta in the CA3
region

Aguirre Moreno AC
et al., 2022 [42]

GL extracts ——
LPS- and

MPP(+)-treated
MES23.5 cell

Preventing the
production of

microglia-derived
proinflammatory and

cytotoxic factors

Ding H et al., 2010 [11]

GL extracts ——

LPS and
MPP(+)-treated

co-cultures of microglia
and MES 23.5 Cells

Preventing the
production of

proinflammatory
factors

Zhang R et al., 2011 [10]

Deacetyl ganoderic
acid F

LPS-stimulated
Zebrafish and mice LPS-stimulated BV-2

Suppression of NO
production and

pro-inflammatory
cytokine secretion,
modulation of the
NF-κB pathway

Sheng F et al., 2019 [41]
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5. Conclusions

In summary, our results reveal that GLE prevents MPTP-induced neuroinflammation,
and an in vitro study thus provides the implication that anti-inflammatory mechanism
may be partially involved in suppression of NLRP3 activation and microglial autophagy
deficiency, suggesting that Ganoderma lucidum could be chosen for targeting microglia as a
therapeutic intervention in PD.
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