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The mitochondrial genome is an evolutionarily persistent and cooperative

component of metazoan cells that contributes to energy production and

many other cellular processes. Despite sharing the same host as the nuclear

genome, the multi-copy mitochondrial DNA (mtDNA) follows very differ-

ent rules of replication and transmission, which translate into differences

in the patterns of selection. On one hand, mtDNA is dependent on the

host for its transmission, so selections would favour genomes that boost

organismal fitness. On the other hand, genetic heterogeneity within an indi-

vidual allows different mitochondrial genomes to compete for transmission.

This intra-organismal competition could select for the best replicator, which

does not necessarily give the fittest organisms, resulting in mito-nuclear con-

flict. In this review, we discuss the recent advances in our understanding of

the mechanisms and opposing forces governing mtDNA transmission and

selection in bilaterians, and what the implications of these are for mtDNA

evolution and mitochondrial replacement therapy.
1. Background
Mitochondria, the powerhouse of the cell, have attracted increasing attention

because of their fascinating biology and health connections. They are thought

to have evolved from free-living bacteria via symbiosis, which changed the

course of eukaryotic evolution through a monumental metabolic upgrade by

employing oxygen to produce energy [1,2]. While now tightly integrated into

the biology of the host cell, with most proteins encoded in the nuclear

genome, mitochondria still retain a reduced but vital genome of their own

known as mitochondrial DNA (mtDNA). The genetic content and organization

of mtDNA can vary incredibly among different species (summarized in [3,4]).

For bilaterians, which are the focus of this review, mtDNA is often a compact

circular DNA molecule with no introns and very few intergenic regions. It

usually encodes 13 proteins of the respiratory chain complex, two ribosomal

RNAs (rRNAs) and 22 transfer RNAs (tRNAs). The genome also contains a dis-

tinct non-coding region/control region that encompasses replication origin(s)

and transcription promoters (figure 1).

Unlike the nuclear genome, which represents an assorted mixture of both

maternal and paternal DNA, animal mtDNA is normally inherited exclusively

from the mother. As such, the maternal genomes do not face any heredity com-

petitors from the male parent and can safely assume their places in the next

generation. Yet, not all maternal genomes are the same [9]. As most cells contain

hundreds or even thousands of copies of mtDNA, spontaneous and inherited

mutations can occur in a subpopulation, creating heteroplasmic organisms

with genetic diversity in the mtDNA population. Theoretically, constantly

occurring mutations would make heteroplasmy a default state. Even if the

selection is actively removing mutant genomes, a return to homoplasmy can
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Figure 1. Map of the human (Homo sapiens) and Drosophila melanogaster mtDNA, representative of the mammalian and insect genome, respectively. Both gen-
omes have the same coding capacity, but differ in gene order, length of the control region and location of the replication origins (OL, light chain; OH, heavy chain).
The 13 polypeptides (blue) form the respiratory chain complex together with the nuclear-encoded proteins (grey) [5]. In addition, a small peptide named humanin
is encoded in the 16S rRNA gene of the human mtDNA. Humanin has been shown to have a role in regulating stress resistance and conferring specific protection
against Alzheimer’s disease [6 – 8]. IMM, inner mitochondrial membrane; IMS, intermembrane space; Q, the ubiquinone form of CoQ10.
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take time, resulting in transient heteroplasmy. Indeed,

modern high-throughput sequencing provides evidence of

widespread low-level heteroplasmy in many tissues of

healthy individuals in humans [10–13]. Extensive hetero-

plasmy has also been reported in a number of other species

including rabbits, horses, macaques, ferrets, cats and dogs

[14–16]. In rare cases, heteroplasmy can be created by

paternal leakage in animals that follow strict maternal inheri-

tance [17–23]. In over 100 species of different bivalve orders,

heteroplasmy occurs in male somatic tissues owing to doubly

uniparental inheritance, where the female genome is trans-

mitted to both male and female soma, and also female

gonad, while the male genome is transmitted only to the

male soma and gonad [24]. Among bilaterians, doubly uni-

parental inheritance is very much an exception to the rule

with probably a single evolutionary origin [25].

Heteroplasmy can represent a dynamic and constantly

changing mtDNA population within an organism [26]

(figure 2). This is because individual mtDNA molecules do

not replicate in equal numbers in dividing cells, nor do

they turn over at equal rates in non-dividing cells. By

chance, a variant molecule may replicate more frequently

than the wild-type genome and thus increase in abundance.

mtDNA also lacks segregation mechanisms that ensure

unbiased transmission into daughter cells, so the genome

can be under the strong influence of genetic drift [27–29].

Besides random fluctuation, selection can further change het-

eroplasmy levels; mitochondrial genomes that provide better

respiratory function might be preferentially transmitted

owing to positive or purifying selection, while genomes

that have a replicative advantage will increase in abundance

through selfish selection (i.e. selection for selfish gains in

transmission). Moreover, germline bottlenecks [30–35] and

occasional recombination [36–43] can quickly shift mtDNA

from one subpopulation to another within individuals and

between generations.
When the abundance of pathogenic mutations reaches a

threshold level, physiological consequences will become

apparent (reviewed by [44,45]). To date, over 350 pathogenic

mitochondrial mutations have been reported to cause a spec-

trum of mitochondrial diseases [46], for which there are still

no cures. One emerging strategy to prevent the transmission

of mitochondrial mutations to offspring is mitochondrial

replacement therapy (MRT), which has been approved in

the UK as part of in vitro fertilization (IVF) treatment since

2015 [47]. MRT involves the transfer of the nucleus from a fer-

tilized or unfertilized egg which carries mitochondrial

mutations into an enucleated egg of a healthy donor, produ-

cing ‘three-parent babies’. However, carryover of pathogenic

mtDNA has been observed in multiple experimental trials

using human or rhesus macaque eggs [48–54], and also in

the first child born from MRT [55]. Even though the carried

over mutants often account for less than 2% of total

mtDNA, they may increase in abundance in somatic and

germline tissues of those born from MRT as the individuals

develop and age, and cause mitochondrial diseases later in

life or in their children.

Heteroplasmy creates a battlefield for coexisting mito-

chondrial genomes to compete for transmission. There

could be conflicts between the cooperative interest enforced

by the nuclear genome and the selfish interest of the mito-

chondrial genome. The outcome of the competition has

profound and incompletely understood impacts on the

accumulation of mtDNA mutations during development

and ageing, the progression and phenotypic complexity of

mitochondrial disease, the inheritance of mitochondrial

mutations from mother to progeny and the effectiveness of

MRT. This review focuses on some of the recent efforts to

investigate how different types of selection shape bilaterian

mtDNA evolution within individuals and between gener-

ations, and how unexpected interactions can compromise

the efficacy of MRT.
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Figure 2. Heteroplasmy dynamics during somatic and germline transmission of mtDNA. In each cell, mitochondrial genomes are dispersed throughout the dynamic
mitochondrial network and are packed in nucleoid structures, with each nucleoid containing one or more copies of mtDNA. As the cell divides, relaxed replication
and random segregation of mtDNA create daughter cells with different heteroplasmy levels, while often maintaining total mtDNA copy number. The shift in the
heteroplasmy level can be accelerated when there is a sharp decline in the number of transmitted mtDNA (i.e. genetic bottleneck, left panel). Besides neutral drift,
selections can further alter heteroplasmy levels in a biased manner (middle panel). Very occasionally, recombination events can create hybrid genomes and alter the
heteroplasmy composition (right panel).
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2. Selections for organismal fitness
All gene products of mtDNA are devoted to energy pro-

duction via oxidative phosphorylation (OXPHOS), which is

of paramount importance to the host. However, the mito-

chondrial genome is vulnerable to mutational meltdown

because uniparental inheritance and little recombination has

limited power of removing de novo mutations. A small

proportion of these mutations have been shown to be adap-

tive and have experienced positive selection. For instance,

high-altitude populations in Tibet show adaptive mtDNA

haplotypes compared with low-altitude, related groups in

humans [56,57], grasshoppers [58] and horses [59,60]

(reviewed by Luo et al. [61]). Similarly, mtDNA haplotypes

have been shown to be positively selected in populations

owing to their effect on tolerance to local temperatures in

humans [62] and in other animals [63–67]. However, a

larger proportion of mitochondrial mutations are deleterious,

and purifying selection is known to be the dominant force to

purge these mutations and keep the functional integrity of

mitochondrial genes.

The presence of purifying selection is reflected by the fact

that mitochondrial-encoded proteins evolve much more

slowly than predicted [68]. In addition, several multi-genera-

tional experiments in mouse and Drosophila have shown that

purifying selection in the female germline reduced the trans-

mission of detrimental mtDNA mutations [69–73] (also

recently reviewed by [26,74–76]). In humans, two studies
which analysed heteroplasmy transmission in mother–child

pairs of European ancestry using blood or buccal mtDNA

data showed a significant decrease in minor non-synon-

ymous alleles in offspring mtDNA [35,77]. More recently,

sequencing mtDNA of human primordial germline cells

(PGCs) isolated from various embryonic stages revealed a

reduced number of non-synonymous and tRNA mutations

during PGC development [78]. Although pre-existing differ-

ences in the heteroplasmy level of different tissues or

embryos could contribute to the observed decline in mutation

load, the above studies suggest that purifying selection is

likely to occur in the female germline in humans.

Intra-organismal purifying selection could act at the level of

the cell, organelle or genome (figure 3). In some organisms,

mitochondrial genetic bottlenecks (figure 2) in the germline

facilitate selection at the cell level: cells that inherit more

mutant mtDNA are less fit, so are less likely to propagate

further. In zebrafish [79], sheep [80], mice [31,32] and humans

[78], there is a dramatic decline in mtDNA copy number in

PGCs. In Caenorhabditis elegans, PGCs form lobes that are

removed and digested by endodermal cells, dramatically redu-

cing the total amount of mitochondria in those cells [81]. In

humans, oocytes were found to contain an average of 1.22 �
106 copies of mtDNA, while PGCs contained just 1425 copies

on average, with an estimated five copies per mitochondrion

[78]. This reduction in mtDNA copy number during germline

development has been proposed to cause large shifts in hetero-

plasmy level between generations [30–32,35]. In addition, a
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Figure 3. Selective transmission of mtDNA can be achieved by multiple mechanisms operating at both organismal and intra-organismal levels. Purifying selection
(clear background) can occur at the organismal level owing to reduced host fitness caused by accumulation of mtDNA mutations. This mode of selection is more
effective when the mutation level is high because the coexisting functional genomes can mask the physiological effects of low-abundance mutants. Within indi-
viduals, purifying selection can occur through selective propagation of more functional cells, mitochondria and mtDNA in germline and soma. For selfish gains in
transmission (shaded background), mutations that are male harming, but neutral or beneficial to female fitness, can increase their abundance. This is because
maternal inheritance limits the scope of purifying selection at the organismal level against such mutations among the male population. Within individuals, selfish
transmission is often due to gains in replication.
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bottleneck may result from unequal segregation or replication of

mitochondrial genomes [33,34]. The bottleneck may even occur

post-fertilization when there is rapid zygotic division unaccom-

panied by mtDNA replication, producing somatic cells with

different mitochondrial mutation loads (e.g. [82]). Such bottle-

necks may increase inter-cellular variation of the mtDNA

pool, and thus accelerate purifying selection at the cell level.
Purifying selection may occur at the level of the organelle

(figure 3), although it is still unclear how the OXPHOS func-

tion of individual mitochondria or mitochondrial networks is

sensed to achieve selection. For example, selective recruit-

ment or active propagation of functional mitochondria to

the germplasm has been suggested by studies in zebrafish

and Drosophila [83,84]. In Drosophila, there is also evidence
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linking mtDNA replication to OXPHOS function, such that

purifying selection occurs by preferential replication of func-

tional mtDNA [73]. The mt:CoIts genome is a temperature-

sensitive lethal mutant isolated through a selection method

based on expressing a restriction enzyme targeted to the

mitochondria in the female germline [85]. The defect is due

to a missense mutation in the coding region of cytochrome

c oxidase I (CoI). When heteroplasmic flies containing mt:CoIts

and wild-type mtDNA were created by cytoplasmic transfer,

the level of mt:CoIts decreased over generations at the restric-

tive temperature, and this eventually led to its elimination

[72,73]. Hill et al. [73] showed that mt:CoIts underwent

reduced replication in early oogenesis and that reduced

mtDNA replication also occurred when mitochondrial func-

tion was impaired by other means, such as uncoupling

drugs. In order for this mechanism of selection to be effective,

mtDNA must be relatively homoplasmic within an organelle

when selection occurs. Indeed, increased fission of mitochon-

dria before mtDNA replication was observed, suggesting a

low mtDNA copy number per mitochondrion [73]. It is still

unclear how preferential mtDNA replication is achieved

during oogenesis or whether there are other mechanisms of

selection acting in the germline simultaneously (e.g. [86–88]),

especially since selective elimination of mt:CoIts was not

observed in post-development somatic tissues in the same het-

eroplasmic flies [89].

As an alternative mechanism of selection at the organelle

level, mitochondria with mutant mtDNA can be eliminated

by mitochondrial quality control mechanisms such as

mitophagy (reviewed by Pickles et al. [90]). In a study using

D. melanogaster heteroplasmic for both wild-type and a del-

etion-bearing mtDNA variant in their post-mitotic flight

muscle, overexpression of some autophagy and mitophagy

proteins (e.g. Atg8a, PINK1 and Parkin) promoted selective

removal of deletion-bearing molecules [91]. In addition,

decreased mitofusin levels, which limit the ability of mito-

chondrial fragments to re-fuse with the network, enhanced

the removal of deletion-bearing mtDNA in the flight

muscle [91]. However, the selective elimination of mt:CoIts

in the fly germline, as described earlier, did not seem to

require Parkin [72]. Furthermore, knockout of Parkin did

not affect the level of somatic mtDNA mutations in mutator

mice, which are known to accumulate mtDNA mutations,

although it did lead to more mitochondrial dysfunction in

those mice [92]. These studies show that Parkin-mediated

mitophagy may not always play a role in eliminating

mtDNA mutations and reveals the diverse nature of

purifying selection.

While there is ample evidence in favour of purifying

selection, there are also examples where purifying selection

was not detected. Many population data in humans find

that segregation of mutations appears to follow random

genetic drift without selection [93–96]. In a mouse model

containing two mutant genomes among the wild-type

genome, one mutant mtDNA that contained a missense

mutation in ND6 was rapidly eliminated within a few gener-

ations, whereas the other mtDNA containing a missense

mutation in CoI that causes myopathy and cardiopathy

persisted [69]. Similarly, Freyer et al. [71] showed that mito-

chondrial mutations in protein-coding genes were

preferentially eliminated in mice over generations, whereas

mutations in tRNA genes evaded selection, despite the fact

that many of these mutations are potentially pathogenic.
Therefore, whether purifying selection takes place or not

seems to depend on the nature of the mutation, the compet-

ing mitochondrial genomes, the tissue and the nuclear

background. It is most likely that the term ‘purifying selec-

tion’ summarizes a plethora of selective phenomena that

could differ completely for the underlying mechanisms,

resulting in the complex dynamics of heteroplasmy observed.
3. Selections for selfish mtDNA
In addition to favouring traits that enhance organismal fit-

ness, evolution favours selfish traits that give replication or

transmission gains. Both mitochondrial and nuclear genomes

are selected to maximally propagate the genes comprising its

own set, independently of the effect on the other gene set or

host. With few constraints on replication and segregation of

mtDNA, free-wheeling intra-organismal competition is likely

to select for the best replicator, regardless of its OXPHOS

output.

The occurrence of selfish transmission is hard to detect in

natural populations, as its consequence only becomes

obvious when the selfish genome also possesses a detrimen-

tal mutation. Even if a detrimental selfish mtDNA does arise,

its increase in abundance can run the risk of lowering host fit-

ness to the point where it drives the host, and therefore itself,

to extinction. Nevertheless, male harming mtDNA variants

that are neutral or beneficial to female fitness can reach

high frequencies in populations because males are a dead-

end for mtDNA transmission (figure 3). This is known as

the mother’s curse and has been primarily studied in plants

(summarized in [97]). A number of cases have also been

recently reported in Drosophila [98,99] and in a human

population in Canada [100].

Selfish mutations that reduce both male and female fitness

are less common, but have been found in natural populations

of Drosophila subobscura [101], C. elegans [102] and

Caenorhabditis briggsae [103]. In all cases, the selfish genomes

that exhibited long-term persistence in isolated strains were

mtDNA variants with a large deletion. For the D. subobscura
strain, the mutant genome contains a 5 kb deletion affecting

10 genes and accounts for approximately 80% of the total

mtDNA copies [101]. The stable transmission of the deletion

molecule is unlikely owing to physical attachment to the

wild-type mtDNA because both genomes are autonomous

monomers [104]. In C. elegans, the uaDf5 mitochondrial

genome, which has a 3.1 kb deletion that removes 11 genes,

accounts for approximately 60% of the total mtDNA copies

in heteroplasmic animals [102]. uaDf5 was shown to be

stably transmitted for over 100 generations, during which

not a single line homoplasmic for wild-type or uaDf5
mtDNA arose [102]. In another nematode species, C. briggsae,
many natural lineages are heteroplasmic for mtDNA with a

786 bp deletion in the ND5 coding region (nad5D) [103]. This

deletion mutant is found in several geographical locations,

indicating its evolutionary persistence. Clark et al. [105] inves-

tigated the inheritance patterns of nad5D in eight lineages and

found a uniform bias towards the inheritance of a greater pro-

portion of the nad5D genome, despite that high levels of nad5D
caused reduced fertility and pharyngeal pumping rates. It is

currently unclear how these deletion-bearing molecules persist

in wild populations. A recent study suggested that uaDf5 can

somehow run away from the copy number control mechanism
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that regulates the coexisting wild-type mtDNA levels because

they observed a wider variation in uaDf5 copy number relative

to that of wild-type [106]. An increase in the total mtDNA

copy number could be an attempt to alleviate OXPHOS

deficiency as proposed by previous theoretical work [106–

109]. Furthermore, high levels of uaDf5 activated the mitochon-

drial unfolded protein response, which was suggested to help

the maintenance of the uaDf5 genome [106,110].

More evidence of selfish transmission has recently

emerged from experimentally generated heteroplasmic lines

in D. melanogaster, where diverged mitochondrial genomes

from different D. melanogaster strains or even different Droso-
phila species were paired for competition [111]. Apparently,

these diverged genomes often do not compete based on their

OXPHOS function. In one example, the temperature-sensitive

mutant mt:CoIts displaced a complementing genome, leading

to population death after several generations at the restrictive

temperature. As mentioned earlier, the mt:CoIts mutant

genome is eliminated by purifying selection when paired

with a closely related wild-type D. melanogaster mtDNA

[72,73]. However, when it was paired with another functional

but more diverged genome called ATP6[1], which is a D. mel-
anogaster mtDNA variant that differs from mt:CoIts by multiple

single nucleotide polymorphisms (SNPs) and indels in both

coding and non-coding regions, the level of mt:CoIts increased

from around 20% to 90% within four generations. Eventually,

the ATP6[1] genome declined to the extent that it could no

longer sustain the life of the flies [111] (figure 4a). In this

case, the mt:CoIts mutant was considered to have a selfish

drive. Interestingly, while most lines ended in lethality, a few

survived [42]. In these lines, recombinant mtDNA were gener-

ated which combined the functional CoI allele from the

ATP6[1] genome with the selfish drive from mt:CoIts. Once

emerged, such recombinant genomes quickly outcompeted

coexisting mt:CoIts because of purifying selection and the

stock became healthier over time. Since all recombinant gen-

omes retained the non-coding region of mt:CoIts, which

differs significantly from the ATP6[1] genome at the sequence

level, this region is believed to be responsible for the strong

selfish drive. That is why the selfish drive of mt:CoIts is not

apparent when paired with its closely related wild-type D. mel-
anogaster mtDNA as they share the same non-coding region.

The non-coding region contains the origins of replication, so

the selfish drive in this case has been linked to replicative

advantage. It is worth noting that the non-coding region of

mt:CoIts is significantly longer than that of the ATP6[1]
genome. This is surprising as the mitochondrial genomes

with the smallest and least redundant DNA are believed to

go to fixation within cells, organisms and then populations

[112–114]. This example implies that other factors besides

genome size can play a more important role in selfish

transmission.

Another example of selfish mtDNA was revealed by a

number of cross-species pairings in the same study. Ma and

O’Farrell [111] created D. melanogaster flies with only wild-

type D. yakuba mtDNA via cytoplasmic transfer followed by

expression of a mitochondrially targeted restriction enzyme

that will only cut the D. melanogaster mtDNA [111]. Despite

that D. melanogaster and D. yakuba diverged about 10 million

years ago, the D. melanogaster (mito-D. yakuba) flies are as

healthy as wild-type, indicating that D. yakuba mtDNA can

provide the wild-type level of function in the D. melanogaster
nuclear background. Nevertheless, when D. yakuba mtDNA
was placed in competition with a number of functionally

compromised D. melanogaster mtDNA variants, it was quickly

outcompeted despite providing better function. In this case,

the D. melanogaster mtDNA variants had a selfish advantage

over D. yakuba mtDNA. Interestingly, mtDNA from Droso-
phila mauritiana (a species diverged �2 million years ago)

can outcompete endogenous D. melanogaster mtDNA with

no deleterious effect, indicating that the home genome is

not always the winner [111,115]. De Stordeur [116] also

used cytoplasmic transfer to study competition between

different Drosophila simulans mtDNA haplotypes and found

a hierarchy of which haplotypes could overtake which

others, although it is not clear whether selfish selection

plays a role in each context. Overall, these examples suggest

that the mismatches in competitive strength are common

among diverged genomes.

Of note, selfish selection can be neutral to the host when

the selfish drive is not linked to detrimental mutations. It can

even be beneficial if a more functional genome gains a repli-

cative advantage, as it will speed up the takeover of the

functional genome. For instance, Rand [117] has shown that

spontaneous mutations that increase the length of the non-

coding region of Drosophila mtDNA could occur in natural

populations. These long variants were preferentially trans-

mitted to the offspring, but there was no evidence for

fitness difference among flies carrying mtDNA variants of

different length [117]. In such cases, selfish selection results

in rapid divergence of mtDNA sequence among different

female lineages. This is because, during evolution, constant

waves of taking over by a new mutant genome with replica-

tive advantage will continuously select for the best replicator

in a given nuclear background, especially if that mutation

does not result in functional sacrifices. Uniparental inheri-

tance limits mitochondrial variants to evolve in individual

lineages, so, within each lineage, different winning mutations

are likely to be fixed independently. As the non-coding

region is often linked to selfish drive, selfish selection can

accelerate divergence of this region. Indeed, for most mito-

chondrial genomes sequenced so far, their non-coding

regions are highly variable [111].
4. The interplay of different types of
selection at multiple levels

The outcome of mtDNA competition will depend on the rela-

tive strength of purifying and selfish selection. These two

forces can oppose one another at both organismal and

intra-organismal levels. In cases where deleterious mutations

are linked to a strong selfish drive, they will quickly accumu-

late within individuals. This will eventually lower the fitness

of the host and trigger purifying selection at the organismal

level. In this way, a selfish element drives its own extinction.

When such an element arises de novo, maternal inheritance

restricts it to a single female lineage, and thus facilitates its

elimination without spreading the detrimental effect to the

rest of the population [118]. Diverse mechanisms have been

described that eliminate paternal mtDNA before and/or

after fertilization in different species to ensure maternal

inheritance [119–125] (summarized by Sato & Sato [126]).

Nevertheless, paternal leakage has been reported in multiple

cases [17–23], and it is unclear to what extent rare leakage

can affect the spread of selfish mtDNA within a species.
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Figure 4. Different selective pressures dynamically act on mtDNA in D. melanogaster [111]. (a) When the mt:CoIts mutant was paired with a diverged, functional
ATP6[1] genome at the restrictive temperature, selfish selection dominated and allowed the mt:CoIts genome to take over, despite purifying selection against mt:CoIts.
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purifying selection against mt:CoIts, allowing the flies to survive the selection. (b) When mt:CoIts was paired with wild-type Drosophila yakuba mtDNA at the restric-
tive temperature, the relative proportion of each genome remained stable over many generations. Interestingly, the heteroplasmy level differed at various
developmental stages. This is likely to be due to a dynamic balance of purifying and selfish selection in different tissues and at different developmental stages.
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Within individuals, opposing types of selection may

explain why sometimes purifying selection was not detected

or was not always complete, resulting in the persistence of

detrimental variants [69,76]. This may occur if the selfish

drive only gives the linked detrimental allele a small gain

in replication or transmission, which can be counterbalanced

by purifying selection at the cell or organelle level. Some of

the long-term heteroplasmy discussed earlier could also be

due to balanced purifying and selfish selection occurring

within individuals. For instance, in C. elegans, the uaDf5
genome appears to be under opposing selective pressures

which have different strengths at different levels of

heteroplasmy [102]. When the proportion of uaDf5 in her-

maphrodites is high, the average uaDf5 content in progeny

is significantly lower. Conversely, when the proportion of

uaDf5 in hermaphrodites is low, the average uaDf5 contents

in progeny increases significantly. These data suggest the

existence of at least two opposing forces, with one force lead-

ing to the increased proportion of uaDf5 mtDNA when its

levels are low, while the second force leads to decreased pro-

portions of uaDf5 mtDNA when its levels are high [102]. In

Drosophila, opposing selfish and purifying selection was

shown to counterbalance in a cross-species heteroplasmic

line, allowing stable transmission of the functional

D. yakuba mtDNA at 5% and the selfish detrimental D. mela-
nogaster mt:CoIts mutant at 95% in adults at the restrictive

temperature [111]. How the two types of selection counteract

can be complex. Selfish selection mainly operates at the

genome level, whereas purifying selection can occur at

genome, organelle and cell level. Furthermore, purifying
selection may occur at different developmental stages and

in different tissues (germline versus soma) from selfish selec-

tion, creating an oscillation in the relative levels of the two

genomes when comparing different developmental stages,

without changing the ratio of the genomes when comparing

different generations (figure 4b) [111,127].

The nuclear background can influence the strength of var-

ious types of selection, and thus alter the outcome of mtDNA

competition. This is because the nuclear genome encodes

nearly all of the proteins in mitochondria, as well as external

regulators of mitochondrial biogenesis, dynamics and

mitophagy/turnover. Differences in the nuclear genome can

re-define the functional OXPHOS capacity of mtDNA and

determine whether or not a variant is a detrimental mutation:

one mtDNA variant may result in deficient OXPHOS

capacity in one nuclear background but not in another

owing to differences in the nuclear-encoded complex proteins

[128,129]. The strength of purifying selection can depend on

the severity of mismatch. Selfish transmission of certain

mtDNA variants may only manifest in a given nuclear back-

ground as particular isoforms of nuclear genes are required to

allow them to replicate or transmit better. Tissues with differ-

ent energy demands may have preferences for mitochondrial

genomes with certain metabolic rates, energy expenditures

or replication features [130–132]. Other changes, such as

temperature and age, may also impact mtDNA competition,

probably through altering nuclear transcriptional profiles

[133–135].

The nuclear influence on mtDNA competition has been

shown in a number of studies. In C. briggsae, the occurrence
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of mtDNA with large deletions varies between different

strains with different nuclear genomes [103]. In D. subobscura,

the abundance of the 5 kb deletion-bearing molecule was

stable across generations, but changed during backcrosses

to a different nuclear genotype [136]. In D. melanogaster, the

level of D. yakuba mtDNA was initially stabilized at 5%

when paired with mt:CoIts, but in another nuclear back-

ground it stabilized at 20% [111]. In mice, tissue-specific

segregation of heteroplasmy has been reported in a number

of studies [137–139]. Furthermore, certain human alleles are

selected for at specific nucleotide positions in specific tissues

as individuals age [12].
 ob
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5. Heteroplasmy and mitochondrial
replacement therapy

The last 5–10 years has been an exciting time for MRT, as

fundamental scientific discoveries have significantly

advanced the clinical strategies to prevent the transmission

of pathogenic mitochondrial mutations. In 2016, the first

‘three-parent boy’ was born in Mexico [55], and in early

2017 the first ‘three-parent girl’ was born in Ukraine. In the

UK, three-parent babies could be born this year, as two

cases have been approved by the UK’s Human Fertilization

and Embryology Authority to take place at the Newcastle

Fertility Centre.

However, MRT has raised a number of ethical and safety

concerns. Although it has been argued that MRT poses no

greater risk of mito-nuclear incompatibility in humans than

normal reproduction [140,141], matching the parents’ nuclear

genome with the donor’s mitochondrial genome could be

considered to minimize potential effects of mito-nuclear

interactions observed in cybrid studies and genetic rescues

[142–144].

Another safety concern is the carryover of mutant mtDNA

from the original mother’s egg. Historically, embryos carrying

mtDNA from both a donor and the mother were created by

cytoplasmic transfer, which was developed to enable women

with impaired fertility to bear children. Although mitochon-

drial transfer was not the primary objective at the time, 5–

15% of ooplasm from unfertilized oocytes is transferred to

the recipient oocyte during this process, thus creating babies

with multiple mitochondrial genotypes. Analysis of the

mtDNA from offspring produced using cytoplasmic transfer

confirmed the presence of donor mtDNA. Between the late

1990s and early 2000s, cytoplasmic transfer resulted in over

30 live births in the USA [145]. Currently, MRT can be per-

formed by either maternal spindle transfer before fertilization

or by pro-nuclear transfer after fertilization, and both methods

lead to some carryover [48–50,54]. For example, oocytes and

embryos produced from maternal spindle transfer by Tachi-

bana et al. [48] had a mean carryover of 0.5%, while embryos

produced from pro-nuclear transfer by Craven et al. [49] had

a mean carryover of 1.8%. In addition, the first boy born

from MRT via spindle transfer contained 2–9% maternal

mutant mtDNA in tissues examined (hair follicles, circumcised

foreskin and umbilical blood) [55]. Recently, polar body trans-

fer has been suggested as an alternative approach to reduce

mtDNA carryover [54,146,147], as polar bodies contain few

mtDNA copies. Nevertheless, an average carryover of 0.26%

in blastocysts has been observed [54].
Even a small trace of carried-over mutant mtDNA could

reach the disease-causing threshold level in specific tissues

later in life. This can occur through genetic drift, as has

been observed when passaging human pluripotent stem

cell lines derived from blastocysts created by MRT [52].

Reversion to maternal haplotype can occur more rapidly

when the maternal genome has a replicative advantage. For

example, in a study where spindle transfers were carried

out between healthy human oocytes with preselected

mtDNA haplotypes, two out of 15 blastocyst-derived

embryonic stem cell lines reverted to the maternal haplotype

[53]. These two cell lines were created by transfer events that

mixed a maternal haplotype U5a with a donor haplotype

H1b (differ by 33 SNPs). Sibling cell lines generated that

mixed the same maternal haplotype with a different donor

haplotype V3 (also differ by 33 SNPs) did not show reversion,

suggesting that reversion is specific to a certain combination

of haplotypes in the maternal nuclear background. The start-

ing abundance of the maternal mtDNA was less than 1%, but

it reached 81% and 94%, respectively, after two or three pas-

sages. Further passaging resulted in a complete loss of donor

mtDNA. This reversion also occurred during stem cell differ-

entiation, raising the possibility that reversal to the mutant

mtDNA may occur in some MRT children. The group ident-

ified a polymorphism within the control region of the

maternal haplotype and suggested that this polymorphism

could enhance replication priming and thus the proliferation

of the maternal genome when paired with H1b [53]. This is

very similar to the selfish selection described earlier in Droso-
phila, where genomes with a certain non-coding region

showed a transmission advantage regardless of their

OXPHOS function [111].

Although it is not known whether mtDNA shifts in

embryonic stem cell lines will truly reflect those in the devel-

oping embryo, precautions ought to be taken to minimize the

reversion after MRT. In humans, there are at least 25 major

mitochondrial haplotypes, each containing many subclades

that differ significantly for their control region [148]. If we

can make sure that the donor’s mitochondrial genotype not

only is compatible with the nuclear genome, but also has a

selective advantage in replication or transmission, it would

have the advantage of fully outcompeting the maternal

genome, even if the carryover level is high. For that, we

need to know more about how the outcome of competition

is determined in order to know which genome will have a

competitive advantage. In particular, we need to identify

sequences in mtDNA that can confer replicative advantage

to certain mitochondrial genomes and understand how

changes in the nuclear genome can influence the outcome

of mtDNA competition [149]. This is relevant not only to

MRT but also to cytoplasmic transfer, which, although aban-

doned in the USA because of uncertainties about its safety

and effective benefit, is still commercially available in IVF

clinics in numerous countries worldwide [150].
6. Conclusion and future perspectives
It is encouraging to see that powerful tools and animal

models have been established to reveal how different forces

influence the transmission of mtDNA, given that selective

transmission influences mitochondrial disease and guides

mtDNA evolution. Moreover, recent advances in genome
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editing based on mitochondrially targeted transcription acti-

vator-like effector nucleases and zinc finger nucleases have

allowed selective elimination of pathogenic mutations in

mouse germ cells [151] and somatic tissues [152,153], and

in induced pluripotent stem cells derived from patients

with mitochondrial encephalomyopathy, lactic acidosis and

stroke-like episodes (MELAS) [154]. These technological

breakthroughs will certainly widen the therapeutic options

in the near future. Nevertheless, the study of mtDNA is far

from exhausted and the management of mitochondrial dis-

eases has lagged behind the genetic revolution. In the

future, we need to gain a better understanding of what and

how sequence differences in mtDNA give a selfish trans-

mission advantage and how the nuclear genome modulates
purifying selection to safeguard the organismal investment

in mitochondrial genes. To answer these questions, we need

to pursue even more basic questions such as how mtDNA

replication is controlled and how the genome segregates.

Furthermore, essential aspects of mitochondrial biology that

were once thought fundamental and universal, such as the

lack of recombination [36–43] and strict maternal inheritance

[17–23], must now be revisited with new tools and systems

that provide higher detection power.
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Lécher P, Alziari S. 1998 Developmental changes in
heteroplasmy level and mitochondrial gene
expression in a Drosophila subobscura mitochondrial
deletion mutant. Curr. Genet. 33, 330 – 339.
(doi:10.1007/s002940050344)

105. Clark KA, Howe DK, Gafner K, Kusuma D, Ping S,
Estes S, Denver DR. 2012 Selfish little circles:
transmission bias and evolution of large deletion-
bearing mitochondrial DNA in Caenorhabditis
briggsae nematodes. PLoS ONE 7, e41433. (doi:10.
1371/journal.pone.0041433)

106. Gitschlag BL, Kirby CS, Samuels DC, Gangula RD,
Mallal SA, Patel MR. 2016 Homeostatic responses
regulate selfish mitochondrial genome dynamics in
C. elegans. Cell Metab. 24, 91 – 103. (doi:10.1016/j.
cmet.2016.06.008)

107. Capps GJ, Samuels DC, Chinnery PF. 2003 A model
of the nuclear control of mitochondrial DNA
replication. J. Theoret. Biol. 221, 565 – 583. (doi:10.
1006/jtbi.2003.3207)

108. Chinnery PF, Samuels DC. 1999 Relaxed replication
of mtDNA: a model with implications for the
expression of disease. Am. J. Hum. Genet. 64,
1158 – 1165. (doi:10.1086/302311)

109. Tam ZY, Gruber J, Halliwell B, Gunawan R. 2015
Context-dependent role of mitochondrial fusion-
fission in clonal expansion of mtDNA mutations.
PLoS Comput. Biol. 11, e1004183. (doi:10.1371/
journal.pcbi.1004183)

110. Lin Y-F, Schulz AM, Pellegrino MW, Lu Y, Shaham S,
Haynes CM. 2016 Maintenance and propagation of a
deleterious mitochondrial genome by the
mitochondrial unfolded protein response. Nature
533, 416 – 419. (doi:10.1038/nature17989)

111. Ma H, O’Farrell PH. 2016 Selfish drive can trump
function when animal mitochondrial genomes
compete. Nat. Genet. 48, 798 – 802. (doi:10.1038/
ng.3587)

http://dx.doi.org/10.1038/ng.2427
http://dx.doi.org/10.1038/ng.2919
http://dx.doi.org/10.1038/ng.2920
http://dx.doi.org/10.1371/journal.pgen.1004670
http://dx.doi.org/10.1016/j.jmb.2018.10.019
http://dx.doi.org/10.1111/dgd.12420
http://dx.doi.org/10.1101/gr.203216.115
http://dx.doi.org/10.1038/s41556-017-0017-8
http://dx.doi.org/10.1016/j.celrep.2016.06.023
http://dx.doi.org/10.1093/molehr/gat013
http://dx.doi.org/10.1093/molehr/gat013
http://dx.doi.org/10.1038/ncb3439
http://dx.doi.org/10.1016/j.celrep.2012.03.011
http://dx.doi.org/10.1007/s00294-010-0291-5
http://dx.doi.org/10.1242/dev.00365
http://dx.doi.org/10.1126/science.1160226
http://dx.doi.org/10.1126/science.1160226
http://dx.doi.org/10.1016/j.devcel.2016.11.004
http://dx.doi.org/10.1038/ncb3165
http://dx.doi.org/10.1093/gbe/evt147
http://dx.doi.org/10.1091/mbc.E14-11-1513
http://dx.doi.org/10.1016/j.cub.2018.01.004
http://dx.doi.org/10.1016/j.cub.2018.01.004
http://dx.doi.org/10.1038/ncomms13100
http://dx.doi.org/10.1016/j.neuron.2015.06.034
http://dx.doi.org/10.1002/humu.21417
http://dx.doi.org/10.1086/318190
http://dx.doi.org/10.1086/318190
http://dx.doi.org/10.1093/hmg/ddv626
http://dx.doi.org/10.3390/genes9030124
http://dx.doi.org/10.1016/j.tree.2004.02.002
http://dx.doi.org/10.1016/j.cub.2015.09.012
http://dx.doi.org/10.1016/j.cub.2015.09.012
http://dx.doi.org/10.7554/eLife.16923
http://dx.doi.org/10.1038/s41559-017-0276-6
http://dx.doi.org/10.1093/nar/21.3.387
http://dx.doi.org/10.1139/o02-135
http://dx.doi.org/10.1186/1471-2148-8-62
http://dx.doi.org/10.1007/s002940050344
http://dx.doi.org/10.1371/journal.pone.0041433
http://dx.doi.org/10.1371/journal.pone.0041433
http://dx.doi.org/10.1016/j.cmet.2016.06.008
http://dx.doi.org/10.1016/j.cmet.2016.06.008
http://dx.doi.org/10.1006/jtbi.2003.3207
http://dx.doi.org/10.1006/jtbi.2003.3207
http://dx.doi.org/10.1086/302311
http://dx.doi.org/10.1371/journal.pcbi.1004183
http://dx.doi.org/10.1371/journal.pcbi.1004183
http://dx.doi.org/10.1038/nature17989
http://dx.doi.org/10.1038/ng.3587
http://dx.doi.org/10.1038/ng.3587


royalsocietypublishing.org/journal/rsob
Open

Biol.9:180267

12
112. Rand DM, Harrison RG. 1986 Mitochondrial DNA
transmission genetics in crickets. Genetics 114,
955 – 970.

113. Hayashi J, Ohta S, Kikuchi A, Takemitsu M, Goto Y,
Nonaka I. 1991 Introduction of disease-related
mitochondrial DNA deletions into HeLa cells lacking
mitochondrial DNA results in mitochondrial
dysfunction. Proc. Natl Acad. Sci. USA 88,
10 614 – 10 618. (doi:10.1073/pnas.88.23.10614)

114. Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao
H, Moraes CT. 2002 Human mitochondrial DNA with
large deletions repopulates organelles faster than
full-length genomes under relaxed copy number
control. Nucleic Acids Res. 30, 4626 – 4633. (doi:10.
1093/nar/gkf602)

115. Niki Y, Chigusa SI, Matsuura ET. 1989 Complete
replacement of mitochondrial DNA in Drosophila.
Nature 341, 551 – 552. (doi:10.1038/341551a0)

116. De Stordeur E. 1997 Nonrandom partition of
mitochondria in heteroplasmic Drosophila. Heredity
(Edinb) 79(Pt 6), 615 – 623. (doi:10.1038/sj.hdy.
6882760)

117. Rand DM. 2011 Population genetics of the cytoplasm
and the units of selection on mitochondrial DNA in
Drosophila melanogaster. Genetica 139, 685 – 697.
(doi:10.1007/s10709-011-9576-y)

118. Greiner S, Sobanski J, Bock R. 2015 Why are most
organelle genomes transmitted maternally?
BioEssays 37, 80 – 94. (doi:10.1002/bies.201400110)

119. Nishimura Y, Yoshinari T, Naruse K, Yamada T, Sumi
K, Mitani H, Higashiyama T, Kuroiwa T. 2006 Active
digestion of sperm mitochondrial DNA in single
living sperm revealed by optical tweezers. Proc. Natl
Acad. Sci. USA 103, 1382 – 1387. (doi:10.1073/pnas.
0506911103)

120. Al Rawi S, Louvet-Vallée S, Djeddi A, Sachse M,
Culetto E, Hajjar C, Boyd L, Legouis R, Galy V. 2011
Postfertilization autophagy of sperm organelles
prevents paternal mitochondrial DNA transmission.
Science 334, 1144 – 1147. (doi:10.1126/science.
1211878)

121. Rojansky R, Cha M-Y, Chan DC. 2016 Elimination of
paternal mitochondria in mouse embryos occurs
through autophagic degradation dependent on
PARKIN and MUL1. eLife 5, 1144. (doi:10.7554/
eLife.17896)

122. DeLuca SZ, O’Farrell PH. 2012 Barriers to male
transmission of mitochondrial DNA in sperm
development. Dev. Cell 22, 660 – 668. (doi:10.1016/
j.devcel.2011.12.021)

123. Luo S-M, Ge Z-J, Wang Z-W, Jiang Z-Z, Wang Z-B,
Ouyang Y-C, Hou Y, Schatten H, Sun Q-Y. 2013
Unique insights into maternal mitochondrial
inheritance in mice. Proc. Natl Acad. Sci. USA 110,
13 038 – 13 043. (doi:10.1073/pnas.1303231110)

124. Politi Y, Gal L, Kalifa Y, Ravid L, Elazar Z, Arama E.
2014 Paternal mitochondrial destruction after
fertilization is mediated by a common endocytic
and autophagic pathway in Drosophila. Dev. Cell 29,
305 – 320. (doi:10.1016/j.devcel.2014.04.005)

125. Yu Z, O’Farrell PH, Yakubovich N, DeLuca SZ. 2017
The mitochondrial DNA polymerase promotes
elimination of paternal mitochondrial genomes.
Curr. Biol. 27, 1033 – 1039. (doi:10.1016/j.cub.2017.
02.014)

126. Sato K, Sato M. 2017 Multiple ways to prevent
transmission of paternal mitochondrial DNA for
maternal inheritance in animals. J. Biochem. 162,
247 – 253. (doi:10.1093/jb/mvx052)
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