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Abstract

Nocturnin is a circadian clock-regulated deadenylase thought to control mRNA expression post-transcriptionally through
poly(A) tail removal. The expression of Nocturnin is robustly rhythmic in liver at both the mRNA and protein levels, and mice
lacking Nocturnin are resistant to diet-induced obesity and hepatic steatosis. Here we report that Nocturnin expression is
regulated by microRNA-122 (miR-122), a liver specific miRNA. We found that the 39-untranslated region (39-UTR) of
Nocturnin mRNA harbors one putative recognition site for miR-122, and this site is conserved among mammals. Using a
luciferase reporter construct with wild-type or mutant Nocturnin 39-UTR sequence, we demonstrated that overexpression of
miR-122 can down-regulate luciferase activity levels and that this effect is dependent on the presence of the putative miR-
122 recognition site. Additionally, the use of an antisense oligonucleotide to knock down miR-122 in vivo resulted in
significant up-regulation of both Nocturnin mRNA and protein expression in mouse liver during the night, resulting in
Nocturnin rhythms with increased amplitude. Together, these data demonstrate that the normal rhythmic profile of
Nocturnin expression in liver is shaped in part by miR-122. Previous studies have implicated Nocturnin and miR-122 as
important post-transcriptional regulators of both lipid metabolism and circadian clock controlled gene expression in the
liver. Therefore, the demonstration that miR-122 plays a role in regulating Nocturnin expression suggests that this may be an
important intersection between hepatic metabolic and circadian control.
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Introduction

Nocturnin is a circadian deadenylase [1,2], which removes

poly(A) tails from its target RNAs, and is thought to control target

RNA expression by either enhancing RNA degradation or

silencing translation. Nocturnin shows rhythmic expression in many

tissues such as spleen, kidney and heart in mice and this

rhythmicity is particularly robust in liver [3]. Nocturnin is also an

immediate early gene, and its expression is acutely induced by

stimuli such as serum and 12-O-tetradecanoyl-phorbol-13-acetate

(TPA) in cultured cells [2]. Mice lacking Nocturnin (Noc2/2) are

resistant to diet-induced obesity and hepatic steatosis [4]. Although

the expression of ‘core’ circadian clock genes is not affected in

Noc2/2 mice, expression profiles of rhythmic ‘output’ genes such

as Srebp1c and Pparc, key regulators of lipid-related gene

expression, are significantly changed [4]. These and other data

indicate that Nocturnin is important for proper lipid metabolism.

MicroRNAs (miRNAs) are short (19–25 nt), noncoding RNA

molecules that can regulate their target gene expression post-

transcriptionally [5]. MiRNAs are transcribed, capped, adenylated

and spliced just as protein-coding mRNAs, and these primary

transcribed miRNAs (pri-miRNAs) are then cleaved by Drosha,

which is an RNaseIII endonuclease, in the nucleus, releasing the

shorter (265 nt long) precursor miRNA (pre-miRNA). Subse-

quently, pre-miRNAs are exported into the cytoplasm, and are

further digested by Dicer, which is an endonuclease that cleaves

double-strand RNA or pre-miRNAs, and become a short duplex

RNA. This duplex RNA is incorporated into the functional

miRNA-induced silencing complex (miRISC) where target

mRNAs are recognized and processed [6,7]. miRNAs recognize

target sequences usually in the 39-UTRs of target mRNAs with a

requirement for a nearly perfect match between the 59-proximal

‘seed’ region (position 2–8) of the miRNA and its target mRNA for

binding specificity [7,8]. Once the miRNA recognizes and

interacts with its target RNA, it generally results in inhibition of

protein synthesis and/or triggers deadenylation and degradation,

although the detailed mechanisms are still in debate [6,7].

In mammals, more than 50% of all protein-coding mRNAs are

predicted to be targets of a miRNA, therefore most, if not all,

biological processes seem to be controlled by miRNAs to some

degree [6]. Contributions of circadian clock function to miRNA or

vice versa have been demonstrated. Rhythmic expression of
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miRNAs has been observed in mouse retina and suprachiasmatic

nucleus (SCN), the site of the circadian pacemaker [9,10]. Other

miRNAs such as miR-132 and miR-219 are functionally involved

in the clock and regulate circadian period or light dependent

resetting of the clock in the SCN [9]. Also several mammalian core

clock genes such as Period1, 2, 3 and Clock as well as Drosophila Clock

have been demonstrated to be targets of miRNAs [11,12,13].

MicroRNA-122 (miR-122) is a liver-specific miRNA. It is the

most abundant miRNA in this organ accounting for approxi-

mately 70% of the total miRNA population [14]. Proper miR-122

expression is important for normal liver function [15,16]. Blocking

miR-122 expression leads to the reduction of plasma cholesterol

and triglyceride levels in both rodents and primates, [15,17,18,19].

Moreover, mice in which miR-122 is knocked down are resistant

to diet-induced hepatic steatosis [18], supporting a role for this

miRNA in fatty acid and cholesterol metabolism in liver. In

humans, the level of miR-122 is repressed in hepatocellular

carcinomas and in patients with nonalcoholic steatohepatitis

[20,21]. There is also a functional connection between miR-122

and circadian rhythms, because the transcription of miR-122 is

rhythmic, and circadian transcripts are enriched in a gene set that

is misregulated by miR-122 knock-down in vivo [22].

Many mRNAs have been predicted to be potential targets of

miR-122, but only a few genes such as cationic amino acid

transporter1 (Cat1), cyclinG1, or Smarcd1/Baf60a have been

demonstrated to be bona fide targets [15,22,23,24,25]. In this study,

we identified Nocturnin as one of the target mRNAs of miR-122 in

mouse liver and we propose that miR-122 is important for shaping

the appropriate circadian expression profile of Nocturnin.

Results and Discussion

Nocturnin is a target of miR-122 in cultured cells
Although target mRNAs frequently have multiple copies of

miRNA target sites in their 39-UTR [7], examination of the

Nocturnin mRNA sequence revealed a single potential target

sequence for miR-122 in its 39-UTR (Fig. 1A). However, this

single site contained a miR-122 seed sequence that was highly

conserved in human, mouse, rat, and cow (Fig. 1B).

In order to test whether this sequence was indeed a miR-122

recognition site, we used a cell-based luciferase reporter system in

which the mouse Nocturnin 39-UTR was cloned downstream of the

Firefly luciferase gene. We also generated constructs in which the

7 bp ‘‘seed’’ sequence (CACUCCA) within the putative miR-122

site was either mutated or deleted (Fig. 2A). When miR-122 was

expressed in NIH3T3 cells with the WT Nocturnin 39-UTR, we

observed a dose-dependent decrease in relative luciferase activity

(Fig. 2B). In contrast, miR-122 overexpression did not affect the

luciferase activity of constructs with mutated or deleted miR-122

target sequences (Fig. 2B). Similar results were obtained in

HEK293 cells as well (data not shown). These results indicated

that Nocturnin is a potential direct target of miR-122, and miR-122

recognizes the putative recognition site present in the Nocturnin 39-

UTR.

Since most mRNAs undergo either deadenylation and degra-

dation and/or inhibition of protein synthesis after miRNA

recognition and binding [6,7], we investigated whether miR-122

overexpression affected the Nocturnin 39-UTR reporter RNA levels.

Figure 1. The Nocturnin 39UTR possesses one putative miR-122
recognition site. A. The sequence of WT Nocturnin 39-UTR (top) and
miR-122 (bottom) around the putative miR-122 recognition site. Black
and gray lines represent the perfect match and G-U wobbles,
respectively. B. miR-122 recognition sequences of Nocturnin gene in
Homo sapiens (NM_012118; nt1930–1953), Mus musculus (NM_009834,
nt2100–2121), Rattus norvegicus (NM_138526, nt1680–1702), and Bos
taurus (NM_001082454, nt1693–1715). Red characters represent the
seed sequence for miR-122 recognition.
doi:10.1371/journal.pone.0011264.g001

Figure 2. miR-122 down-regulates Nocturnin WT luciferase
reporter activity but not its RNA level. A. Schematic representa-
tion of the Nocturnin 39-UTR luciferase reporter genes. Nucleotide
sequences of mutations introduced into Mut and Del reporters are also
shown. X and D denote mutation and deletion of WT Nocturnin 39-UTR,
respectively. Luc; luciferase, BGH; Bovine growth hormone polyadenyl-
ation signal. B. Relative luciferase activities (means 6 S.E. Three
independent experiments in duplicate) of Nocturnin 39-UTR reporters
with various levels of miR-122 overexpression in NIH3T3 cells. Firefly
luciferase activity was normalized to Renilla luciferase activity. The
firefly/Renilla ratios without miR-122 expression were set as 1 for each
reporter gene. Asterisks represent p,0.005 versus no miR-122
overexpression (white bars). C. Relative RNA levels of reporter genes
(means 6 S.E. Two independent experiments in duplicate) with miR-122
overexpression in NIH3T3 cells. Firefly luciferase level was normalized to
Renilla luciferase level.
doi:10.1371/journal.pone.0011264.g002
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Although the overall RNA levels of control reporter (lacking any of

the Nocturnin 39-UTR) were higher than those containing the 39-

UTR sequence, in no case was there an effect of miR-122 (Fig. 2C).

Therefore, the changes in luciferase activity must be due to miR-

122 mediated inhibition of protein synthesis rather than to RNA

decay.

Interaction between Nocturnin and miR-122 is specific
In order to investigate the specificity of miR-122 towards

Nocturnin, we tested whether miR-125a or miR-125b could reduce

the activity of the Nocturnin 39-UTR reporter. These two miRNAs

are highly expressed in brain, heart and lung, and some genes such

as lin-28 and ERBBs have been identified as their targets

[26,27,28], but the Nocturnin 39-UTR does not contain putative

miR-125a or 125b sequence recognition motifs. When these

miRNAs were co-expressed with Nocturnin 39-UTR reporter genes,

both miR-125a and -125b failed to repress the luciferase activity of

Nocturnin 39UTR WT, even under conditions where miR-122 was

able to effectively repress reporter gene expression (Fig. 3A). The

failure to repress the Nocturnin 39-UTR WT luciferase level by

miR-125a or -125b was not due to the absence of miRNA

expression, since Northern blot analysis showed that the miRNAs

are well expressed in HEK293 cells (Fig. 3B).

miR-122 expression is not rhythmic
Since Nocturnin expression exhibits high amplitude rhythms in

liver [3,4], we tested whether miR-122 expression might also be

rhythmic in liver. The mature form of miR-122 expression was not

rhythmic (Fig. 4; white arrowhead), consistent with the fact that

the half-life of miRNAs can be well over 24 hours [29]. However,

we detected another more slowly migrating band in our Northern

blot analysis, which was rhythmic with highest levels at night

(Fig. 4; black arrowhead) and probably corresponded to pre-miR-

122. These results are consistent with the previous report that the

expression of both pri-miR-122 and pre-miR-122 is rhythmic but

that mature miR-122 is not [22].

The deadenylase activity of Nocturnin is not necessary for
miR-122 mediated self regulation

MiRNAs not only repress translation but can also trigger

deadenylation and degradation and/or translational silencing of

their target mRNAs [30,31]. Since the Nocturnin gene encodes a

deadenylase, we wondered whether Nocturnin’s deadenylation

activity could contribute to the miR-122 effect on the Nocturnin

message. We thus co-expressed miR-122 and Nocturnin reporter

genes (Fig. 2A) in Mouse Embryonic Fibroblasts (MEFs) derived

from Noc+/+, Noc+/2, and Noc 2/2 mice to see if loss of a functional

Nocturnin deadenylase would affect the down-regulation of

Nocturnin expression mediated by miR-122. However, no signifi-

cant difference in miR-122’s ability to down-regulate the

expression of Nocturnin 39-UTR reporter was observed between

genotypes (Fig. 5A), suggesting that the deadenylase activity of

Nocturnin is not necessary for miR-122 to down-regulate Nocturnin

expression. Loss of Nocturnin expression also did not affect the

expression level of miR-122 in mouse liver (Fig. 5B).

Endogenous Nocturnin is a target of miR-122 in vivo
To test whether the effects of miR-122 on Nocturnin in cell

culture could also be observed in vivo, we analyzed endogenous

expression of Nocturnin in liver using mice in which miR-122

expression was knocked down by injecting miR-122 specific

antisense oligonucleotides (ASOs).

Four doses of miR-122 ASO or PBS control were injected

intraperitoneally into mice, and 14–15 days after the first injection

(corresponding to 2–3 days after the last injection), livers were

harvested around the clock at 4hr intervals. Analysis of livers from

miR-122-depleted animals relied on the same samples as in [22].

As described in [22], miR-122 depletion was .85% on average,

but showed some time point-dependent variation due to the

rhythmic production of miR-122. Nocturnin mRNA expression

remained rhythmic after miR-122 ASO administration, but the

Figure 3. Effect of miR-122 on Nocturnin reporter expression is
specific. A. Relative luciferase activities (means 6 S.E. Two independent
experiments in triplicate) when reporter genes were co-transfected with
either miR-122, miR-125a, or miR-125b in NIH3T3 cells. Asterisks
represent p,0.005 miR-122 versus no miR-122, miR-125a, or miR-125b.
B. Northern blot analysis of miRNAs. Same amount of plasmid DNA (1 mg)
to express miR-122, -125a, and -125b was transfected into HEK293 cells.
doi:10.1371/journal.pone.0011264.g003

Figure 4. Mature miR-122 expression is not rhythmic in liver.
The levels of miR-122 were determined by Northern blotting from liver
samples taken at various circadian times as indicated. One mouse per
time point was used. U6 snRNA was measured as a loading control.
White and black arrowheads indicate mature miR-122 and pre-miR-122,
respectively.
doi:10.1371/journal.pone.0011264.g004
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amplitude was significantly increased (Fig. 6A). This up-regulation

was more significant at ZT12 and 16 (ZT refers to Zeitgeber Time

and ZT0 is defined as time (hours) of lights on and ZT12 is defined

as time of lights off) compared to other time points, corresponding

to times when the expression of Nocturnin is usually high. These

data were consistent with previous reports that listed Nocturnin

mRNA as one of a set of mRNAs that were up-regulated by

knocking down miR-122 in vivo [15,18]. Although overexpression

of miR-122 did not affect the RNA level of the Nocturnin reporter

gene (Fig. 2C), the knock down of miR-122 was able to

significantly increase Nocturnin mRNA levels in mouse liver. This

could be due to the difference between synthetic reporter gene vs.

endogenous mRNA or the difference between cultured cell system

vs. in vivo system.

Endogenous Nocturnin protein expression was also measured

around the clock with or without miR-122 ASO, and we found

that Nocturnin protein was significantly higher during the night

(ZT12) in the miR-122 ASO injected mice than in those injected

with PBS (Fig. 6B). In an independent set of animals we

furthermore confirmed that injection of a control ASO, specific

for the brain-specific miR-124, did not increase Nocturnin levels at

the two time points tested, ZT0 or ZT12 (Fig. 6C). The larger

effect of miR-122 ASO at night is likely due to the high levels of

Nocturnin mRNA during this phase of the circadian cycle. Nocturnin

mRNA expression is tightly regulated in liver peaking at ZT12

(Fig. 6A), and its amplitude can be almost 100-fold [3]. Our data

thus demonstrate that this robustly rhythmic expression of

Nocturnin in liver is shaped, at least in part, by miR-122.

It has become increasingly clear that miRNAs play a role in many

biological processes such as development, cell proliferation/

differentiation, apoptosis, and metabolism, and misregulation of

miRNA expression can lead to pathological conditions including

cancer, autoimmunity, and obesity [6]. Obesity and/or metabolic

syndrome have become a major health problem especially among

western countries, and several reports have indicated that there is an

Figure 5. Deadenylase activity of Nocturnin was not involved in
miR-122-mediated self-regulation. A. Relative luciferase activities
(means 6 S.E. Three independent experiments in duplicate) with miR-
122 overexpression in MEFs (White bars; +/+, Gray bars; +/2, Black bars;
2/2). Luciferase activities were normalized as described in Figure 2.
Asterisks represent p,0.005 versus no miR-122. B. miR-122 expression
was measured from Noc+/+ and Noc2/2 livers. RNA samples are pools of
equal amounts of RNA from each circadian time point (ZT 0, 4, 8, 12, 16,
and 20, one mouse per time point).
doi:10.1371/journal.pone.0011264.g005

Figure 6. Nocturnin is up-regulated by miR-122 knock-down in
vivo. A. Nocturnin mRNA expression was measured by qRT-PCR from
livers collected at the times indicated from mice that were previously
treated with miR-122 ASO or PBS (mean 6 S.E.). Each time point
represents an average from three mice. p,0.05 by two-way ANOVA
(PBS vs. miR-122 ASO). B. Nocturnin protein expression in PBS or miR-
122 ASO treated mouse liver (mean 6 S.E.) around the clock was
measured on Western blots and then quantitated using Image J
software. Each point represents average of three mice. Two-way ANOVA
(PBS vs. miR-122 ASO) was not significant (p = 0.32). C. Representative
Western blots of Nocturnin expression in PBS, miR-122 ASO, or miR-124
ASO treated mouse liver (two mice per group) at ZT0 and ZT12. An
independent set of mice as that in panels A and B was used. D.
Nocturnin protein expression in PBS, miR-122 ASO, or miR-124 ASO
treated mouse liver (mean 6 S.E.) at ZT0 and ZT12. Western blots
(Fig. 6C) were quantitated using Image J software. Each point
represents an average of two mice.
doi:10.1371/journal.pone.0011264.g006
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association between miRNA expression and obesity and/

or metabolic syndrome. For example, the expression of miR-27,

-335, and -519d is up-regulated in liver and/or adipose tissue of

obese mice or humans [32,33,34,35,36]. In addition, the proper

expression of miR-122 in liver is critical for lipid metabolism, since

overexpression of miR-122 increased and knockdown of miR-122

decreased cholesterol and fatty acid biosynthesis [15,18]. Nocturnin

is also important for proper lipid metabolism in liver, since Noc2/2

mice manifest hepatic steatosis under high-fat diet conditions and

are resistant to diet-induced obesity [4]. Furthermore, both miR-

122 and Nocturnin are implicated to play a role in circadian rhythms

[4,22]. Taken together, our findings suggest that the regulation of

Nocturnin expression by miR-122 is an important connection

between circadian clocks and hepatic lipid metabolism.

Materials and Methods

Plasmid DNA constructs
The mouse Nocturnin 39-UTR was cloned from mouse liver

cDNA by PCR. The PCR was performed at 95uC for 5 min as the

initial step and then for 30 cycles of 95uC for 30 s, 55uC for 30 s,

and 72uC for 2 min, followed by a final extension of 1 cycle of

72uC for 7 min, utilizing the following primers; mNoc3UTRF 59-

CTAGATCACAAGCGTCTTAACCAGGG-39, mNoc3UTRR

59- TCTAGAACTTTATAAATAAGATATTTACCATTTTA-

CCACTGG-39. Then, the PCR product was cloned into pCR2.1

-TOPO (Invitrogen). Subsequently, mutations into the putative

miR-122 recognition site were introduced by QuikChange Site

Directed Mutagenesis kit (Stratagene). The reactions were

performed at 94uC for 5 min as the initial step and then for 18

cycles of 94uC for 30 s, 55uC for 1 min, and 68uC for 14 min,

followed by a final extension of 1 cycle of 72uC for 7 min with the

following primers; mNocmiR122mutF 59- CCCGCATTGA-

AAAGGTGTTTGGTGAGGTGTTTGAGCTTGTTG-39 and

mNocmir122mutR 59- CAACAAGCTCAAACTGGAGTGCA-

AACACCTTTTCAATGCGGG-39 for mNoc 39-UTR mut, and

mNocmiR122delF 59- CCCGCATTGAAAAGGTGTTTGGT-

TTGAGCTTGTTGTTCATCTGTG-39 and mNoc miR122-

delR 59- CACAGATGAACAACAAGCTCAAACCAAACACC-

TTTTCAATGCGGG-39 for mNoc 39-UTR del. All three

Nocturnin 39-UTR clones (WT, Mut, and Del) in pCR2.1-TOPO

vector were verified by sequencing. Then, these inserts were

removed from pCR2.1-TOPO by BamHI/ApaI digestion, and

ligated into pELSB luciferase reporter vector [37].

For miRNA expression plasmids, genomic sequences of

respective miRNAs were first amplified by PCR. The PCR was

performed at 94uC for 5 min as the initial step and then for 40

cycles of 94uC for 30 s, 58uC (miR-122) or 55uC (miR-125a and

miR-125b) for 30 s, and 72uC for 1 min, followed by a final

extension of 1 cycle of 72uC for 7 min, utilizing the following

primers; miR122F 59-GTATGATGTGGTTTGTAAGAAGTG-

TCTGCC-39, miR122R 59-GTGTCAGGGTAGTCAGTGTT-

GGG-39, miR125aF 59-GCCAATGTCTCTAGGGTTCTAGA-

AGC-39, miR-125aR 59-CAGCTGGCAGACACGGAGGC-39,

miR125bF 59-CCTGGGCCCACAGTAACAGTTG-39, miR125bR

59-GGGCCCCATTAACTGGCATATAATCC-39. The PCR prod-

ucts were first cloned into pCR2.1-TOPO, and sequences were

verified. Then, inserts were cut out by BamHI/EcoRV (miR-122 and

miR-125a) or SpeI/NotI (miR-125b) and ligated into pcDNA3.1/V5-

HisB (Invitrogen).

Cells and Animals
Mouse Embryonic Fibroblast (MEF) cells were derived from E14

embryos of Nocturnin knockout mice (Noc2/2), Nocturnin heterozygous

mice (Noc+/2) or their wild-type counterparts (Noc+/+). All the

MEFs, mouse NIH3T3 cells and human HEK293 cells were

grown in Dulbecco’s Modified Eagle Medium (Invitrogen) with

10% fetal bovine serum (ATLANTA biologicals) at 37uC with

5% CO2.

Mice were maintained on a 12:12 LD cycles and fed ad libitum.

Animal experiments were conducted following the protocols

approved by the Institutional Animal Care and Use Committees.

Antisense oligonucleotide (ASO) treatment was performed as

previously described [22]. Briefly, ASO treatment was performed

in 11-week male C57BL/6 mice (Elevage Janvier, Le Genest St

Isle, France) by intraperitoneal injection. The ASOs were chimeric

29-fluoro/29-O-methoxyethyl modified oligonucleotides with a

completely modified phosphorothioate backbone. The exact

chemistry is available on request. Mice were allowed to adapt to

a 12 hr/12 hr LD regimen for 10 days and then (days 11, 15, 18

and 22; at ZT6 or ZT22) received 4 doses of 20 mg ASO/kg body

weight in 150 ml, or 150 ml of saline (PBS control). On days 24

and 25 (i.e. 2–3 days after the last injection), animals were

sacrificed at the respective ZTs, and livers were snap-frozen in

liquid nitrogen.

DNA Transfections
Transfection was carried out using FuGENE6 (Roche) for

NIH3T3 and HEK293 cells, or Lipofectamine 2000 for MEFs,

according to manufacturer’s instructions. Two days after trans-

fection, cells were washed with phosphate-buffered saline (PBS)

and harvested in 150 ml of passive lysis buffer (Promega). For

induction of ecdysone-mediated transcription, Ponasterone A

(5 mM) (Invitrogen) was added to the culture medium 20 h prior

to harvesting the cells. Luciferase activities were assayed with the

Dual-Luciferase Reporter Assay System (Promega) using Turner

Designs Model 20 luminometer (Turner). The Renilla luciferase

plasmid was cotransfected to normalize each transfection assay.

For Fig. 2B and 3A, 24 well plates were used for luciferase

measurement. Amounts of DNA that were transfected were as

follows; 50 ng firefly reporter genes, 15 ng pRL-CMV (Renilla

luciferase), 50 ng pVgEcR-RXR, pmiR-122 (0 ng, 10 ng, 50 ng,

100 ng, 200 ng, and 400 ng, respectively for Fig. 2B or 100 ng of

pmiR-122, 125a and 125b for Fig. 3A) and pcDNA3.1 to obtain a

total amount of 515 ng (Fig. 2B) or 415ng (Fig. 3A) of DNA per

well. For Fig. 2C, 6 well plates were used for RNA measurement.

Amounts of DNA that were transfected were as follows; 150 ng

firefly reporter genes, 45 ng pRL-CMV (Renilla luciferase), 150 ng

pVgEcR-RXR, pmiR-122 (0 ng, 30 ng, and 600 ng, respectively)

and pcDNA3.1 to obtain a total amount of 1545 ng of DNA per

well.

qPCR Analysis
Total RNA was extracted from NIH3T3 cells with TRIZOL

reagent (Invitrogen), followed by DNaseI treatment twice (Ambion),

iScript cDNA synthesis kit (Bio-Rad) was used for reverse

transcription, and the levels of firefly and Renilla luciferase mRNA

were examined by MyiQ real-time PCR machine (Bio-Rad) using iQ

SYBR Green Supermix (Bio-Rad). The primer sequences were as

follows: pGL3-lucF, 59-CTGATTTTTCTTGCGTCGAGTTT-39;

pGL3-lucR, 59- GCGCGGAGGAGTTGTGTTT-39; pRL-lucF,

59-ACATGGTAACGCGGCCTCTT-39; and pRL-lucR, 59-TG-

CCCATACCAATAAGGTCTGGTA-39. The amount of the firefly

luciferase mRNA was normalized against that of the Renilla luciferase

mRNA, and the relative mRNA abundance was calculated using

Pfaffl Ct method [2].

For ASO-treated mice, RNA was prepared as previously

described [22]. Primers used were as follows; NocF, 59-ACCAGC-

miR-122 Modulates Nocturnin
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CAGACATACTGTGC-39; NocR, 59- CTTGGGGAAAAACG-

TGCCT-39, 45srRNAF, 59-TGCTGATTGCTTGTTTGGTC-

39; 45srRNAR, 59-ACACCCGAAATACCGATACG-39.

Northern Blot
RNAs were extracted from HEK293 cells by TRIZOL, and

equal amounts of total RNA were denatured and fractionated by

electrophoresis on a 15% polyacrylamide-8M Urea gel. After

electroblotting and cross-linking onto Hybond-N+ membrane

(Amersham), the blots were probed at 42uC in QuickHyb

(Stratagene) with terminally radiolabeled oligonucleotides com-

plementary to miR-122 (59-ACAAACACCATTGTCACACTC-

CA-39), miR-125a (59-TCACAGGTTAAAGGGTCTCAGGGA-

39) miR-125b (59-TCACAAGTTAGGGTCTCAGGGA), or U6

(59-CATCCTTGCGCAGGGGCCATGC-39), followed by wash-

ing with 26SSC (16SSC is 0.15 M NaCl plus 0.015 M sodium

citrate)-0.1% sodium dodecyl sulfate (SDS), and then with 0.56
SSC-0.1% SDS at 42uC.

Western Blot
Mouse liver samples were homogenized in RIPA buffer (50mM

Tris-HCl, 150mM NaCl, 2mM EDTA, 0.5% Sodium deoxycho-

late, 1% Igepal CA-630, 5mM DTT), containing protease

inhibitor (SIGMA). Equal amounts of each sample were separated

by electrophoresis on an SDS-10% polyacrylamide gel before

transfer to PVDF membrane (Bio-Rad). The membrane was then

blocked with BLOTTO solution (0.1% Tween 20 and 5% dry

nonfat milk powder in Tris-buffered saline [TBS], pH 7.4) for 1 hr

at room temperature. The membrane was treated with the

primary antibody, anti-Nocturnin antibody (Gift of Garbarino-

Pico, E.) or anti-TUBULIN (SIGMA) overnight at 4uC. After

washing, the blots were treated with secondary antibodies

conjugated to horseradish peroxidase, and developed with

chemiluminescence Western blotting kit (Roche) or ECL plus

(Amersham).
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