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Abstract: Whereas previous studies have assessed the overall health impact of temperature in Hong
Kong, the aim of this study was to investigate whether the health impact is modified by local temper-
ature of small geographic units, which may be related to the diverse socioeconomic characteristics
of these units. The effects of local temperature on non-accidental and cause-specific mortality were
analyzed using Bayesian spatial models at a small-area level, adjusting for potential confounders, i.e.,
area-level air pollutants, socioeconomic status, and green space, as well as spatial dependency. We
found that a 10% increase in green space density was associated with an estimated 4.80% decrease in
non-accidental mortality risk and a 5.75% decrease in cardiovascular disease mortality risk in Hong
Kong, whereas variation in local annual temperature did not significantly contribute to mortality. We
also found that the spatial variation of mortality within this city could be explained by the geographic
distribution of green space and socioeconomic factors rather than local temperature or air pollution.
The findings and methodology of this study may help to further understanding and investigation of
social and structural determinants of health disparities, particularly place-based built environment
across class-based small geographic units in a city, taking into account the intersection of multiple
factors from individual to population levels.

Keywords: mortality; local temperature; green space; social and structural determinants of health
disparities; Bayesian spatial analysis; Hong Kong

1. Introduction

Whereas climate change has become a widely recognized global challenge in this
century, its human health impacts have wide implications. As a result of the increasing
concern regarding the public health effects of meteorological conditions, such as extreme
temperatures, associations between extreme temperatures and mortality/morbidity have
been identified repeatedly and consistently in studies from around the world. A substantial
number of existing studies examined associations between meteorological variables and
health-related outcomes using daily time series study design [1–5]. Findings suggest that
both high and low temperatures increase mortality, with heat-related mortality occurring
during the first few days after temperature increase, whereas the effects of coldness are
prolonged for several weeks [6–8]. Apart from all-cause or non-external causes of mortality,
cardiovascular and respiratory deaths have been found to be associated with both heat
and cold exposure [4,9–12], with V-, U-, or J-shaped temperature–mortality relationships
observed, with the optimum temperature corresponding to the lowest point in the curve.
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Other causes, including cancer, have been shown to have a substantially weaker association
with ambient temperatures [6,13].

Such health studies have measured ambient temperature exposures of entire study
populations using city- or country-wide measurements from either one monitoring station
or the average of a network of stations, which generally does not account for within-city
spatial variation. This failure to account for within-city spatial variations may result in
decreased statistical power and measurement error, as temperatures vary across a city, in
addition to overlooking the possibility of exploring place-based temperature-related health
disparities. Moreover, previous studies examining the association between air pollution ex-
posure and health using different interpolation methods from the measurements of nearby
monitors suggest that within-city effects are larger than between-city effects [14,15]. Never-
theless, given the limited knowledge about the explanatory power of meteorological and air
quality (MAQ) exposures at the geographic subunit level, further investigation is needed
with respect to the geographic heterogeneity of the relationship between temperature and
mortality within a city, which could be achieved appropriately by using small-area-level
ecological designs.

In contrast to time-series studies, small-area-level ecological studies offer another
means of examining the combined effects of acute and chronic environmental exposure
on health [16] to identify subgroups at high risk within a region by exploring the spatial
distribution of health risk and therefore place-based health disparity. Mapping the spatial
variations of health risk from environmental exposure is useful for improving public health
intervention resource allocation to alleviate health disparity. However, some previous
ecological studies investigating the pattern of mortality did not take into account how
areas with different characteristics were distributed in the study region. Thus, the influence
of a small area was not considered to depend on its location [17,18]. The same estimates
would be obtained if the distribution of small areas were permutated at random [19].
Meanwhile, ignoring the spatial dependency of data may lead to underestimated standard
errors on regression coefficients and result in an incorrect conclusion, as adjacent areas in
a region tend to have more similar characteristics than disconnected areas. Subsequently,
the incorporation of spatial dependency in a model could improve the estimation of health
risk in an area [20]. With spatially referenced public health data becoming more available,
statistical methodology for the analysis of spatial patterns in disease mapping has been
developed rapidly to facilitate investigations of disease occurrence or mortality [21–23],
accounting for spatial dependency. Areal or lattice data perspectives have been used to
model regional mortality for the study of discrete spatial units [15,24,25], whereby spatial
dependency is taken into account through the spatial weight matrix.

Besides air pollutants, socioeconomic status and green spacing, as social and struc-
tural determinants of health, could confound the effect of temperature on health. First,
the evidence that air pollutants affect health is tremendous. For example, the effects of
particulate matter (PM) on mortality have been well-recognized in both the short and long
term [26,27]; NO2 and O3 are positively associated with health outcomes [28,29]. Hence, air
pollutants are often included as confounders in studies examining the relationship between
temperature and health and vice versa [30–32]. Secondly, previous studies revealed that
the differences in mortality risk across various areas could be partially attributed to differ-
ences in demographic characteristics [33–35]. Furthermore, how socioeconomic disparities
account for variations in health outcomes between societies has also been investigated
in previous studies [36,37]. Finally, a considerable amount of attention has been given to
green space because it not only supports the ecological integrity of a city but also promotes
physical activity and improves health [38–40]; recreational walking was found to explain
the relationship between green space and physical health [41].

In order to synthesize the spatial variations of exposures, spatial dependency, and
potential confounders, Bayesian spatial models were constructed in this study to examine
the citywide temperature–mortality association in small areas in Hong Kong. The aim of
the study is to investigate whether neighborhoods with high temperatures coincide with
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reduced or increased levels of mortality, accommodating random spatial effects and covari-
ate effects (i.e., other meteorological factors, air pollutants, socioeconomic characteristics,
and green space).

Under the Health-Emergency and Disaster Risk Management (Health-EDRM), an
emerging academic paradigm adopted by the World Health Organization, health and
disaster risks are examined through public health tools for the management of health and
disaster risk [42]. Hence, climate change and ensuing extreme temperatures, as major dis-
aster risk drivers, as well as their effect on health, should be considered within the disaster
risk reduction context. However, little is known about the effect of extreme temperatures
on health at the small-area level, potentially leading place-based health disparity. This
study is motivated by the need to ascertain regional variations and disparity with respect to
mortality and assess the potential social and structural sources of these variations. Relevant
findings will provide evidence to further support the Health-EDRM Framework, linking
health and disaster risk, and address health disparity in urban setting [43].

2. Materials and Methods

This is an aggregated ecological study analyzing secondary data collected by gov-
ernment authorities in Hong Kong. Hong Kong is a city in southern China and home to
more than seven million inhabitants, with a subtropical climate. Hong Kong has a warm
and humid spring, hot and rainy summer, cool and dry autumn, and cold and almost
rainless winter. Its average annual temperature is 23.5 ◦C, and the average annual rainfall
is 2431.2 mm, with high humidity in March and April. The temperature in central Hong
Kong sometimes drops below 10 ◦C, whereas the temperature in the inland New Territories
and highlands can drop below 0 ◦C with frost [44]. Hong Kong is also a densely populated
vertical city affected by urban heat island effects with a complex spatial distribution of
population and severe income disparity. In this study, analyses were performed at the
tertiary planning unit (TPU) level, which is the smallest geographical area level for which
data on mortality and socioeconomic characteristics are available from the Hong Kong
Special Administrative Region (SAR) Government.

2.1. Data Collection

This study involved a range of meteorological, pollution, socioeconomic, geographic,
green space, and mortality data at the small-area level, where socioeconomic data are
only available in census years. Due to the boundary changes in each census and the
limited information collected in previous censuses, all analyses in this study were based on
geographic and socioeconomic data from 2016, as this year has the greatest number and
completeness of data. In 2016, there were 291 TPUs in Hong Kong, but some adjacent TPUs
were merged to protect data privacy when the government released the statistics. Hence,
the whole land area of Hong Kong in this study is divided into 214 subregions. Figure 1
shows the centroids of the 214 subregions.

2.1.1. Mortality Data

For the year 2016, all non-accidental mortality (codes A00-R99 of the International
Classification of Diseases, version 10 (ICD-10)) and cause-specific mortality due to cancers
(C00-D48), respiratory diseases (J00-J99), and cardiovascular diseases (I00-I99) were ob-
tained for each subregion from the Census and Statistics Department of the Hong Kong
SAR Government.
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2.1.2. Socioeconomic Data

Because socioeconomic covariates typically correlate, we performed principal com-
ponent analysis on 27 variables related to socioeconomic vulnerability in Hong Kong. In
other words, the intersection of multiple factors from individual to population levels was
taken into account. The five principal components (PC) accounted for more than 77% of the
variation, namely: (1) indigenous degree: the lack of access to international information;
(2) family resilience: the status of lack of family support; (3) individual productivity: an
individual’s education, occupation, and income in the subregion; (4) populous grassroots:
the situation of lack of home ownership; and (5) young age: youthfulness. The representa-
tiveness and detailed method of construction of the five principal components in the setting
of the Hong Kong population were previously reported in [45].

2.1.3. Meteorological and Pollution Data

Daily data on the minimum temperature at all weather stations from the Hong Kong
Observatory were extracted, excluding data from stations with an altitude higher than 200 m,
as they are not representative of the population, who do not actually reside at such a high
altitude; data from alternative nearby stations were used instead. For this study, we decided
to consider only minimum temperature because previous studies revealed that models using
various air temperature measures (mean, minimum, and maximum) were fairly similar in
terms of predicting mortality [46,47]. Moreover, using minimum temperature from nearby
monitoring stations may be more appropriate to estimate people’s night-time temperature
exposure, as census and mortality data assign people to a TPU according to their residential
addresses, and people are more likely to stay home at night. Other spatially referenced
meteorological data, including daily relative humidity, rainfall, and dew point temperature,
from various stations were also obtained from the Hong Kong Observatory.

Daily pollution data, including levels of PM2.5, NO2, O3, PM10, and SO2, for all 13 gen-
eral air quality monitoring stations in Hong Kong were obtained from the Environmental
Protection Department of the Hong Kong SAR Government for model adjustment.

The annual average temperature in all the subregions studied in the year 2016 was
the primary exposure measure of interest due to the increased network of government
monitors in place in previous years. The locations of the monitoring stations in 2016 are
indicated in Figure 1. Stations with the missing values exceeding 25% during the study
period were excluded. Daily data on exposure variables for each station (including weather
and air quality stations) were averaged to obtain the annual averages in 2016. Based on the
location of a subregion’s centroid, the nearest weather and air quality monitoring stations
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were identified and used to assign local exposure estimates to each sub-region [48]; the
median distance from each subregion centroid to the nearest temperature station was
1.63 km (ranging from 0.05 to 10.51 km).

2.1.4. Green Space Data

To measure green space coverage, we obtained green space data from the 2018 Land
Utilization in Hong Kong document [49]. These data are a rough presentation of the
distribution of land uses in Hong Kong, mainly compiled by the Planning Department of
the Hong Kong SAR Government using satellite images and in-house survey. The raster
grids have a spatial resolution of 10 m. In this study, green space is defined as woodland,
shrubland, grassland, or wetland. Green space forms part of the human-made space of a
city in which people live, work, and recreate on a day-to-day basis and can therefore be
considered part of the built environment. Green space density is derived from a ratio of the
area of green space to the whole area for each subregion using ArcGIS software. Because
green space density data were not available for 2016, 2018 data were used as a proxy, as
green space coverage does not change dramatically across a short space of time.

2.2. Statistical Methods

Spatial autocorrelation is common in areal data. To test for the presence of spatial
autocorrelation of mortality risk, Moran’s I tests were used to detect clusters or hotspots [19]
before subsequent analysis. If spatial autocorrelation were found, the associations between
temperature and mortality would be assessed through a generalized linear mixed model
(GLMM) with a Bayesian approach, including random effects with prior distributions
describing the spatial dependency.

The Besag–York–Mollié (BYM) model [50], a commonly used Bayesian disease-mapping
method, was employed to model the case counts of mortality, assuming that the health risk
of a subregion is affected by its immediate neighbors (i.e., subregions that share a common
border) with equal weight. As the case counts of mortality tend to be over-dispersed,
they are often modelled as a negative binomial distribution to avoid underestimation of
the standard errors. Because the whole land area of Hong Kong is made up of hundreds
of islands, for the five TPUs made up of islands with no immediate adjacent neighbors,
additional links were added based on road networks or ferry connections to reflect the
“true” connectedness structure of Hong Kong [36].

To estimate the effect of local exposures on mortality, the relative risk (RR) and the corre-
sponding 95% credible intervals (95% CI) were calculated after adjusting for the confounding
effects of area-level socioeconomic, pollution, green space, and other meteorological variables.
The model estimates area relative risk based on a negative binomial regression as follows:

Yi ∼ NB(µi, α)

log(µi) = β0 + XAiβA + log(populationi) + ui + vi

ui ∼ iCAR(ui, σ2
u/ni)

vi ∼ N(0, σ2
v)

where the annual case count Yi, is drawn from a negative binomial distribution, with mean µi
and shape parameter α; log(µi) is the linear predictor, including a global intercept β0, regression
coefficients βA, the area-level covariates XA (i.e., meteorological, pollution, green space density,
and socioeconomic variables), an offset term log(populationi), and random effects vi and ui. An
offset term is included as a correction factor to model the mortality rate because the higher the
population, the higher the mortality. In addition, ui is the spatially structured random effect
using the intrinsic conditional autoregressive (iCAR) prior, where ni indicates the number of
neighbors, and vi is the spatially unstructured random effect using an exchangeability prior. It
should be noted that vague priors are assumed, for α and all σ2s, to have both large mean and
variance, and βs are assumed to have zero mean with large variance [51].
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Non-accidental mortality and cause-specific mortality of cancers, respiratory diseases,
and cardiovascular diseases were used as outcome variables. For each outcome, univariable
models were fitted, including the intercept, offset term, and random effects, with one of the
area-level covariates studied at a time; then, multivariable model fitting was conducted
with all area-level covariates significant in the corresponding univariable model, which
was reflected by the 95% CI of the estimate for the regression coefficient, not including 0.
The model fit was evaluated by the deviance information criterion (DIC) [52].

Sensitivity analyses were used to compare the main findings using meteorological and
pollution data from 2016 with the corresponding data from 2015. R software version 3.6.1 (R
Foundation for Statistical Computing, Vienna, Austria) [53] was used for data analysis. The
spdep and DCluster packages were used to detect spatial autocorrelation, maptools package
was used to create maps, and INLA package was used to implement Bayesian estimation. It
should be noted that the Integrated Nested Laplace Approximation (INLA) [54] was used
as a less computationally intensive alternative to Markov Chain Monte Carlo sampling
for Bayesian inference. Ethical approval for the study was obtained from the Survey and
Behavioural Research Ethics Board of the university sponsoring the study.

3. Results
3.1. Spatial Patterns of Mortality and Temperature

Table 1 presents a statistical description of the socioeconomic variables and environ-
mental exposures tested. The five socioeconomic variables are the five principal components
of socioeconomic vulnerability derived from Huang et al. [45]. The annually averaged
minimum temperatures (◦C) in different small areas of Hong Kong ranged from 19.6 to
22.0. Figure 2 shows maps of the geographical distributions of some environmental expo-
sures. During the study period, there were 44,543 non-accidental mortality cases in Hong
Kong, with the central parts of Hong Kong shown to be clusters of high mortality among
all subregions, whereas areas of low mortality were located in the periphery of the city
(Figure 3a). Figure 3b maps the crude relative risk for mortality of all subregions compared
to the whole of Hong Kong.

Table 1. (a) and (b): Descriptive statistics and Pearson correlations of socioeconomic variables and
environmental exposures in Hong Kong in 2016.

(a) Descriptive Statistics

Area-Level Characteristic Minimum 25th Percentile Median 75th Percentile Maximum

Indigenous degree score −4.5 −0.4 0.3 0.6 1.2
Family resilience score −4.2 −0.4 0.2 0.5 2.4

Individual productivity score −3 −0.6 0.1 0.6 3.1
Populous grassroots score −2.8 −0.8 0 0.8 2.6

Young-age score −2.4 −0.6 −0.2 0.5 5.4
PM2.5 (µg/m3) 18.5 20.0 21.5 22.9 27.0
NO2 (µg/m3) 14.0 37.5 45.6 56.5 58.9
O3 (µg/m3) 32.0 33.0 41.1 43.5 62.5

PM10 (µg/m3) 28.4 30.6 32.0 34.3 43.7
SO2 (µg/m3) 4.6 6.1 9.3 9.8 11.6

Minimum temperature (◦C) 19.6 20.6 21.0 21.3 22.0
Rain (mm) 2158 2579 2857 3033 3464

Dew temperature (◦C) 18.8 19.1 19.4 19.8 20.3
Relative humidity (%) 72.9 78.9 80.5 81.6 85.5

Green space density (%) 0.0 3.4 32.4 57.0 93.3
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Table 1. Cont.

(b) Pearson Correlations

PC 1 PC 2 PC 3 PC 4 PC 5 PM2.5 NO2 O3 PM10 SO2 min.T Rain dew.T RH GS

PC 1 1
PC 2 0 1
PC 3 0 0 1
PC 4 0 0 0 1
PC 5 0 0 0 0 1
PM2.5 0.2 −0.08 −0.1 0.02 0.07 1
NO2 0.11 −0.1 0.15 0.2 −0.06 0.6 1
O3 −0.23 0.06 0.07 0.02 −0.03 −0.77 −0.75 1

PM10 0.18 −0.07 −0.09 0 0.14 0.91 0.5 −0.55 1
SO2 0.02 −0.14 −0.01 −0.01 0 0.66 0.54 −0.71 0.59 1

min.T −0.28 −0.26 0.3 0.34 −0.17 0.04 0.39 0.01 0.06 0.05 1
Rain −0.05 0.03 0.27 0.15 −0.11 −0.36 −0.05 0.22 −0.45 −0.44 0.18 1
dew.T −0.16 −0.29 0.13 0 −0.14 −0.25 −0.27 0.44 −0.1 −0.17 0.2 −0.09 1
RH 0.08 −0.01 −0.06 −0.07 0.01 −0.34 −0.41 0.44 −0.18 −0.28 −0.37 −0.01 0.64 1
GS −0.2 0.37 −0.21 −0.11 0.07 −0.29 −0.41 0.31 −0.22 −0.1 −0.31 −0.17 0.06 0.28 1

Note: The table cells shaded in grey indicate that the p-value of the corresponding correlation coefficient was less
than 0.05. PC 1: indigenous degree score; PC 2: family resilience score; PC 3: individual productivity score; PC 4:
populous grassroots score; PC 5: young-age score; min.T: minimum temperature; dew.T: dew temperature; RH:
relative humidity; GS: green space density.
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Global Moran’s I indicates that the spatial patterning of non-accidental mortality was
significant (Moran’s I = 0.11, p-value < 0.01), with the solid diagonal line indicating the
presence of positive spatial autocorrelation throughout all areas (Figure 4a). Areas with
a significant influence on the slope of the straight line, as in a linear model, were located.
Figure 4b presents the areas with significant influence by Moran scatterplot quadrant.

1 
 

 
Figure 4. Spatial autocorrelation of non-accidental mortality in Hong Kong. Note: (a) the x-axis
represents values in area i, whereas the y-axis represents the spatially weighted sums of values in the
neighborhood of location i. Diamond-shaped points are areas whose local relationships influenced
the slope of the straight line more than proportionately; the numbers above the diamonds are their
TPU IDs. (b) High-High indicates that the mortality of the area and the average of its neighbors were
higher than the global mean; High-Low indicates that the mortality of the area was higher than the
global mean but that the average mortality of its neighbors was lower than the mean (Low-High
indicates the inverse).
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In addition, among all types of non-accidental deaths, the most common was cancers,
which accounted for 31.8% of non-accidental mortality. This was followed by respiratory
diseases (24.0%) and cardiovascular diseases (22.4%). Some cause-specific mortality maps
are displayed in Figure 5.
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3.2. Associations of Mortality and Temperature

To summarize the fitted models, Table 2 presents the posterior mean of the regression
coefficients and 95% CI for each of the covariates in the model. All meteorological, pollution,
socioeconomic, and green space variables, as well as minimum temperatures of interest,
were included in the BYM models to estimate their effects on mortality.

Table 2. Summary statistics for the posterior mean and 95% credible interval for the regression
coefficients of the negative binomial regression models with respect to the four types of mortality.

Non-Accidental Mortality (44,543 Cases) Cancer Mortality (14,175 Cases)

Univariable Multivariable (∆DIC = −38.0) Univariable Multivariable (∆DIC = −47.2)

Mean Lower Upper Mean Lower Upper Mean Lower Upper Mean Lower Upper
Intercept −6.756 −12.788 −0.748 −8.04 −13.781 −2.339

Indigenous degree 0.104 −0.046 0.254 0.124 −0.015 0.262
Family resilience −0.158 −0.319 0.002 −0.167 −0.314 −0.020 −0.084 −0.213 0.045

Individual productivity −0.109 −0.266 0.048 −0.101 −0.245 0.045
Populous grassroots 0.487 0.350 0.626 0.443 0.313 0.757 0.468 0.340 0.599 0.437 0.314 0.561

Young age −0.427 −0.56 −0.29 −0.429 −0.553 −0.305 −0.381 −0.509 −0.256 −0.384 −0.502 −0.267
NO2 0.026 0.006 0.045 0.011 −0.004 0.026 0.024 0.006 0.041 0.010 −0.004 0.023

Minimum temperature 0.562 0.206 0.918 0.034 −0.259 0.326 0.555 0.232 0.877 0.044 −0.234 0.323
Green space density −0.860 −1.396 −0.328 −0.492 −0.944 −0.041 −0.781 −1.278 −0.291 −0.342 −0.795 0.108

Respiratory disease mortality (10,682 cases) Cardiovascular disease mortality (9969 cases)
Univariable Multivariable (∆DIC = −32.1) Univariable Multivariable (∆DIC = −36.4)

Mean Lower Upper Mean Lower Upper Mean Lower Upper Mean Lower Upper
Intercept −9.09 −17.18 −1.042 −6.416 −12.344 −0.500

Indigenous degree 0.191 0.023 0.360 0.115 −0.046 0.279 0.134 −0.011 0.280
Family resilience −0.190 −0.370 −0.011 −0.049 −0.214 0.119 −0.135 −0.286 0.016

Individual productivity −0.243 −0.412 −0.074 −0.227 −0.387 −0.067 −0.125 −0.275 0.026
Populous grassroots 0.432 0.273 0.596 0.347 0.191 0.508 0.442 0.307 0.582 0.411 0.281 0.545

Young age −0.400 −0.555 −0.247 −0.404 −0.551 −0.260 −0.373 −0.507 −0.242 −0.384 −0.510 −0.260
NO2 0.029 0.013 0.046 0.013 −0.004 0.031 0.025 0.011 0.040 0.010 −0.004 0.025

Minimum temperature 0.482 0.158 0.810 −0.073 −0.320 0.467 0.389 0.055 0.726 −0.048 −0.336 0.240
Green space density −1.058 −1.598 −0.525 −0.552 −0.836 −0.268 −0.883 −1.395 −0.379 −0.592 −1.045 −0.141

Note: Variables of the annual average of PM10, PM2.5, O3, SO2, rainfall, dew point temperature, and relative
humidity were not significant in any of the univariable models. ∆DIC indicates the difference of DIC between the
multivariable model and the corresponding model with the intercept, offset term, and random effects. Table cells
shaded in grey indicate that the association was statistically significant.

Because the shape parameter α from all the negative binomial regression models
was large, overdispersion might not be a problem here. However, because the DIC of the
negative binomial model was much smaller than that of the corresponding Poisson model,
negative binomial models were preferred in this study. In addition, the difference of DIC
(∆DIC) presented in Table 2 indicates that the socioeconomic variables and environmental
exposures did explain part of the variability in the risk of all four types of mortality. To test
the significance of the spatial effect on mortality, the same models were constructed, but
the random effects in the linear predictor were excluded. The resulting DICs of these new
models were generally larger than the original DICs (not shown in table), suggesting the
presence of random effects.

In univariable models, populous grassroots and young age were positively and nega-
tively correlated with all four types of mortality, respectively, which means higher populous
grassroots or lower young age scores indicate higher mortality from non-accidental, cancer,
respiratory, and cardiovascular causes after accounting spatially structured and unstruc-
tured random effects. In addition, NO2 and minimum temperature appeared to explain, to
some extent, the variation in the four types of mortality. However, in multivariable models,
inclusion of neither temperature nor NO2 significantly affected the four types of mortality,
with the 95% CIs straddling zero. In addition, except for respiratory disease mortality,
the regression coefficients of populous grassroots and young age were not considerably
modified by the presence of the other covariates, although the coefficients of green space
density changed substantially in the multivariable models with the expected sign. Sensi-
tivity analyses showed consistent results in terms of the direction and magnitude of the
regression coefficients but with slightly stronger effects of green space density.

3.2.1. Non-Accidental Mortality

Initial univariable models show that apart from populous grassroots, young age, and
green space density, both annual estimates of NO2 and minimum temperature were signifi-
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cantly and positively associated with non-accidental mortality, with a relative risk (RR) of
1.02 (95% CI: 1.01–1.05) for NO2 and 1.75 (95% CI: 1.23–2.50) for minimum temperature.
When green space density and socioeconomic variables were added in the multivariable
model, the intensity of both associations was reduced toward zero. The results show
that an increase of 10% in green space density was associated with a decrease of 4.8%
(1 − exp(−0.0492)) in the risk of non-accidental mortality rate, with a 95% CI ranging from
0.4% to 9.0%. The pattern of all-cause mortality was similar to that of non-accidental
mortality (not shown in table), constituting 96.3% of all death cases.

In comparison with Figure 3b, Figure 6a seems to produce similar estimates in all the
small areas. Figure 6b indicates that on average, the prediction is close to the observed
values. Figure 6c shows a map of the posterior mean of residual relative risk of the mortality
for each subregion compared to that of the whole study region after the risk factors were
taken into consideration. Regarding uncertainty, Figure 6d shows a posterior standard
deviation map of the spatial effect on mortality, where the peripheral city subregions tend
to have a more variable RR of non-accidental mortality than those in the central region of
Hong Kong.
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3.2.2. Cancer Mortality

Apart from family resilience, the results of univariable models for cancer were con-
sistent with non-accidental mortality, although with slightly reduced effect sizes for all
covariates. The association with green space density (RR: 0.46, 95% CI: 0.28–0.75) was the
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weakest among the four types of mortality studied, and the significant association in the
univariable model became non-significant in the multivariable analysis. In addition, the
coefficients of both socioeconomic variables (populous grassroots and young age) were
similar to those obtained from univariable analysis.

3.2.3. Respiratory Disease Mortality

For univariable models, indigenous degree, populous grassroots, NO2, and minimum
temperature were positively correlated, whereas family resilience, individual productivity,
young age, and green space density were negatively associated with respiratory disease
mortality. When all these variables were considered simultaneously, variables of indigenous
degree, family resilience, NO2, and minimum temperature became non-significant, with
the corresponding regression coefficients dropping substantially; however, NO2 was close
to significant at the 95% credible level (RR: 1.01, 95% CI: 1.00–1.03). In addition, the effect of
populous grassroots (RR: 1.54, 95% CI: 1.31–1.81) seemed to decrease when compared with
the univariable model (RR: 1.41, 95% CI: 1.21–1.66). The significant covariate of individual
productivity suggests that areas with a higher individual productivity score had lower
respiratory disease mortality.

3.2.4. Cardiovascular Disease Mortality

The observed associations for cardiovascular disease mortality closely followed the pattern
for non-accidental mortality in both univariable and multivariable models. After entering all the
significant variables into the same model, we expected a 5.75% (=1 − exp(−0.0592)) decrease in
the risk of cardiovascular disease mortality in association with a 10% increase in green space
density in a subregion, assuming all other predictors were fixed, i.e., the higher the percentages
of green space in a neighborhood, the lower the cardiovascular disease mortality.

4. Discussion

In this study, we analyzed the effect of local temperature on mortality, adjusting for
potential confounders, i.e., area-level air pollutants, socioeconomic status, and green space,
as well as spatial structure. We found that a 10% increase in green space density was
associated with an estimated 4.8% decrease in non-accidental mortality risk, but the spatial
variation of annual temperature did not significantly contribute to mortality.

Further investigations of the multivariable models indicated that an area-specific effect
contributed substantially to the model fits. It should be noted that the estimates of the
residual RRs for non-accidental mortality shown in Figure 6c were higher, on average,
in populous or less developed areas. The higher variability of the area-specific effect in
the city periphery may be due to the lack of contiguous areas. Increased-risk small areas
were also identified; these clusters of neighborhoods with high mortality (High-High) were
located in the central part of Hong Kong (Figure 4b) and categorized as “suburban areas”
in a previous study [45].

The significant effects of green space density and socioeconomic variables in the four
models demonstrate how social and structural determinants alleviated or exacerbated the
RR for the four types of mortality. The differences in DIC for the four types of mortality
shown in Table 2 suggest that green space density and socioeconomic variables explain
part of the variability in risk of mortality, which was not taken into account in many time
series models but can confound the relationship between temperature and mortality.

In this study, spatial annual non-accidental mortality was significantly associated with
annual temperature and NO2 in univariable models after taking into account random effects
at the small-area level. These results are consistent with those reported by Huang et al. [55],
who found that areas with lower socioeconomic status and higher annual temperature had
generally higher mortality in 66 communities in mainland China, as well as a previous
ecological study, which revealed that an excessive number of people died from non-external
causes and circulatory and respiratory causes attributable to annual average NO2 concen-
tration in Auckland [56]. The underlying mechanisms of increased mortality associated
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with elevated temperature may be linked to the stress of high temperature placed on the
respiratory and circulatory systems, which may increase cardiorespiratory death risk [57].
In addition, the health effects of air pollution can be explained by oxidative stress and
immune system damage after both short-term and long-term exposures [58].

However, the multivariable models suggest that annual temperature and NO2 had
little effect on any if the four types of mortality studied after adjusting for neighborhood
green space density and socioeconomic variables. One plausible explanation is that these
variables were significantly correlated with each other, as shown in Table 1. Thus, the
presence of green space density modified and shrank the coefficients of the temperature
and NO2 toward zero. Another possible reason may lie in the relatively small spatial
variability of the temperature and NO2 concentrations in this study when compared with
green space data. Therefore, most effects on mortality were attributed to green space
density. It should be noted that green space data were effectively time-invariant on a daily
basis but varied substantially between small areas, which is suitable for ecological study,
whereas meteorological and pollution data were more time-varying than space-varying
on a daily basis for the whole area across the study region. This is the likely reason why
temperature and NO2 were significantly associated with mortality in previous time series
studies but not here. Further studies are needed to obtain larger spatial variability by
generating a continuous surface for the variable of temperature or NO2 concentration
using geostatistical models (e.g., kriging) [59–61] and to disentangle the mixture effects of
meteorological factors, air pollutants, and green space to which people are exposed.

The mechanisms of the beneficial effects of green spaces in urban environments in-
clude that they alleviate extreme temperature resulting from urban heat island effects, air
pollution, and ambient noise, in addition to promoting healthy behaviors (e.g., physical ac-
tivity and social interaction relatively lacking in urban environment) that play an important
role in physical and psychosocial well-being. With this study, we found that living in areas
with high green space density was associated with a lower risk of non-accidental mortality,
especially for cardiovascular and respiratory diseases but not with cancer, which is consis-
tent with the results of previous studies. Gascon et al. [62] found that living in areas with
higher amounts of green space reduced cardiovascular mortality. Mitchell and Popham [40]
indicated that the association between income deprivation and mortality was modified by
exposure to green space but not for cancer. In Hong Kong, Wang and co-authors suggested
that a 10% increase in coverage of green space was associated with decreased all-cause
mortality (hazard ratio: 0.963, 95% CI: 0.930–0.998) among the elderly [63], which is similar
to our findings (RR: 0.952, 95% CI: 0.910–0.996). Xu et al. showed that Hong Kong residents
living in the greenest areas had a lower risk of cardiovascular mortality, whereas lung
cancer mortality had no significant association with green space [64]. In addition, the
non-significant association between cancer mortality and green space in this study may
also suggest that cancers are less likely to be caused by environmental than lifestyle factors.

Given the links between green space as part of the built environment and health,
bringing green space to various small areas of the city was increasingly valued during the
process of urbanization, which may also help alleviate health disparity across small areas.
as the findings of this study suggest. However, the literature suggested that only those with
a high level of education or high income benefited from urban green space [65], since urban
greening might lead to increased property rent and housing prices, which could encourage
the displacement of the deprived population [66,67]. Because socioeconomic deprivation is
usually geographically correlated with less exposure to green space, proactive green space
interventions by the government are likely to be successful in reducing the mortality risk
related to adverse environmental exposure in socioeconomically vulnerable communities,
thereby reducing health disparity arising from social and structural determinants of health.
In view of the worsening extreme temperature scenario due to the climate crisis, we
hope that the findings of this study can help to persuade the government to adopt a
policy of modifying the urban built environment by providing more green space for
socioeconomically deprived areas in future urban planning and design. In addition, site
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selection for future government housing construction for those most socioeconomically
deprived could take the existing surrounding green space into consideration to reduce
health disparity.

Using 2006 data in Hong Kong, through generalized additive mixed models, Thach et al.
found that spatially referenced physiological equivalent temperature (PET) was signifi-
cantly associated with mortality, with PET as a compound variable, taking air temperature
and greenery of the surroundings into account [68]. They suggested that improvement of
greenery coverage could be an effective intervention for reducing PET-related mortality.
In this study, significant associations between green space density and different types of
mortality rate were also observed, and these findings became more evident when similar
results were obtained with different approaches.

Strengths and Limitations

Hong Kong offers a good opportunity to study social and structural determinant-
related health disparity issues due to the high level of income inequality and the well-
recorded and accessible government data, with socioeconomic, green space, meteorological
and pollution data freely available from government. The greatest strength of this study lies
in the consideration of socioeconomic information and green space density as social and
structural determinants of health disparity, combined with the full use of the monitoring
network for local meteorological and pollution data to model mortality in a subtropical
Chinese city. In addition, land use data for green space used in this study, as an official
record from the government, is relevant to prompting policy changes to reduce place-based
health disparity.

Limitations of this study include the ecological fallacy, as there could be discrepancies
between individual-level and area-level associations between the same exposure and health
outcomes. Future studies might consider supplementing individual-level data to integrate
the results at different levels within the same city. Another limitation is that although annual
averages of local meteorological and pollution data used in this study concerned spatial
variability, they failed to capture the temporal variation on a daily basis. Further study
could focus on a spatiotemporal study design using daily meteorological and pollution data.
Thirdly, the accessibility and quality of green spaces were not considered, based on the
assumption that the effects of all vegetation are the same. Future research should challenge
this assumption by differentiating types of green space according to their characteristics
and accessibility.

5. Conclusions

Previous studies indicated that the daily fluctuation in mortality was associated
with daily temperature when a whole territory was taken as spatially uniform, whereas
in this study, we found that the spatial variation of mortality (i.e., place-based health
disparity) within the study region can be explained by the geographical distribution of
green space and socioeconomic factors as social and structural determinants, controlling
for temperature variations across the territory. We observed a protective relationship
between green space density, as part of the built environment in an urban city, and the
risk of non-accidental mortality, cardiovascular disease mortality, and respiratory disease
mortality but not cancer mortality. Although there was no apparent evidence showing
that the use of local temperature improves the assessment of the temperature–mortality
association, this study extends the knowledge about the confounding effect of green space.
Given that high coverage of green space was associated with a decrease in a range of
mortalities, future studies should further investigate the mechanism of these associations
so that policy makers can modify the urban built environment via urban planning and
design to mitigate the adverse effects of environmental exposure on health, as well as
place-based health disparity in terms of temperature-related mortality, particularly when
extreme temperatures and their threat to health could become more frequent and severe
with the progressing climate crisis.



Int. J. Environ. Res. Public Health 2022, 19, 8506 15 of 17

Author Contributions: Conceptualization, Z.H. and E.Y.-Y.C.; methodology, Z.H.; software, Z.H.;
validation, C.-S.W. and S.L.; formal analysis, Z.H.; investigation, Z.H.; resources, E.Y.Y.C. and S.L.;
data curation, Z.H.; writing—original draft preparation, Z.H.; writing—review and editing, Z.H.,
E.Y.Y.C., B.C.Y.Z., C.S.W. and S.L.; visualization, Z.H.; supervision, E.Y.Y.C. and B.C.Y.Z.; project
administration, C.S.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Survey and Behavioural Research Ethics Committee at
The Chinese University of Hong Kong (Reference No. SBRE-20-490).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are not publicly available due to restrictions of the Census
and Statistics Department of the Hong Kong SAR Government.

Acknowledgments: We acknowledge the Planning Department, Census and Statistics Department,
Environmental Protection Department, and Hong Kong Observatory of the Hong Kong SAR Govern-
ment for providing data for this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Curriero, F.C.; Heiner, K.S.; Samet, J.M.; Zeger, S.L.; Strug, L.; Patz, J.A. Temperature and mortality in 11 cities of the eastern

United States. Am. J. Epidemiol. 2002, 155, 80–87. [CrossRef] [PubMed]
2. Chung, J.Y.; Honda, Y.; Hong, Y.C.; Pan, X.C.; Guo, Y.L.; Kim, H. Ambient temperature and mortality: An international study in

four capital cities of East Asia. Sci. Total Environ. 2009, 408, 390–396. [CrossRef] [PubMed]
3. Anderson, B.G.; Bell, M.L. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States.

Epidemiology 2009, 20, 205. [CrossRef] [PubMed]
4. Braga, A.L.; Zanobetti, A.; Schwartz, J. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ.

Health Perspect. 2002, 110, 859–863. [CrossRef] [PubMed]
5. Medina-Ramon, M.; Schwartz, J. Temperature, temperature extremes, and mortality: A study of acclimatisation and effect

modification in 50 US cities. Occup. Environ. Med. 2007, 64, 827–833. [CrossRef] [PubMed]
6. Carder, M.; McNamee, R.; Beverland, I.; Elton, R.; Cohen, G.R.; Boyd, J.; Agius, R.M. The lagged effect of cold temperature and

wind chill on cardiorespiratory mortality in Scotland. Occup. Environ. Med. 2005, 62, 702–710. [CrossRef] [PubMed]
7. Chan, E.Y.Y.; Goggins, W.B.; Kim, J.J.; Griffiths, S.M. A study of intracity variation of temperature-related mortality and

socioeconomic status among the Chinese population in Hong Kong. J. Epidemiol. Community Health 2012, 66, 322–327. [CrossRef]
8. Goggins, W.B.; Chan, E.Y.Y.; Yang, C.; Chong, M. Associations between mortality and meteorological and pollutant variables

during the cool season in two Asian cities with sub-tropical climates: Hong Kong and Taipei. Environ. Health 2013, 12, 59.
[CrossRef]

9. Goggins, W.B.; Chan, E.Y.Y. A study of the short-term associations between hospital admissions and mortality from heart failure
and meteorological variables in Hong Kong: Weather and heart failure in Hong Kong. Int. J. Cardiol. 2017, 228, 537–542. [CrossRef]
[PubMed]

10. Gouveia, N.; Hajat, S.; Armstrong, B. Socioeconomic differentials in the temperature–mortality relationship in São Paulo, Brazil.
Int. J. Epidemiol. 2003, 32, 390–397. [CrossRef]

11. Hajat, S.; Kovats, R.; Lachowycz, K. Heat-related and cold-related deaths in England and Wales: Who is at risk? Occup. Environ.
Med. 2007, 64, 93–100. [CrossRef] [PubMed]

12. Yu, W.W.; Hu, W.B.; Mengersen, K.; Guo, Y.M.; Pan, X.C.; Connell, D.; Tong, S.L. Time course of temperature effects on
cardiovascular mortality in Brisbane, Australia. Heart 2011, 97, 1089–1093. [CrossRef] [PubMed]

13. Liu, S.; Chan, E.Y.Y.; Goggins, W.B.; Huang, Z. The Mortality Risk and Socioeconomic Vulnerability Associated with High and
Low Temperature in Hong Kong. Int. J. Environ. Res. Public Health 2020, 17, 7326. [CrossRef] [PubMed]

14. Jerrett, M.; Burnett, R.T.; Ma, R.; Pope III, C.A.; Krewski, D.; Newbold, K.B.; Thurston, G.; Shi, Y.; Finkelstein, N.; Calle, E.E.; et al.
Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2005, 16, 727–736. [CrossRef]

15. Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-term exposure to air
pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 2007, 356, 447–458. [CrossRef]

16. Maheswaran, R.; Haining, R.P.; Pearson, T.; Law, J.; Brindley, P.; Best, N.G. Outdoor NOx and stroke mortality: Adjusting for
small area level smoking prevalence using a Bayesian approach. Stat. Methods Med. Res. 2006, 15, 499–516. [CrossRef]

17. Wong, C.-M.; Ou, C.-Q.; Chan, K.-P.; Chau, Y.-K.; Thach, T.Q.; Yang, L.; Chung, R.Y.-N.; Thomas, G.N.; Peiris, J.S.M.;
Wong, T.-W.; et al. The effects of air pollution on mortality in socially deprived urban areas in Hong Kong, China. Environ. Health
Perspect. 2008, 116, 1189–1194. [CrossRef]

http://doi.org/10.1093/aje/155.1.80
http://www.ncbi.nlm.nih.gov/pubmed/11772788
http://doi.org/10.1016/j.scitotenv.2009.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19853280
http://doi.org/10.1097/EDE.0b013e318190ee08
http://www.ncbi.nlm.nih.gov/pubmed/19194300
http://doi.org/10.1289/ehp.02110859
http://www.ncbi.nlm.nih.gov/pubmed/12204818
http://doi.org/10.1136/oem.2007.033175
http://www.ncbi.nlm.nih.gov/pubmed/17600037
http://doi.org/10.1136/oem.2004.016394
http://www.ncbi.nlm.nih.gov/pubmed/16169916
http://doi.org/10.1136/jech.2008.085167
http://doi.org/10.1186/1476-069X-12-59
http://doi.org/10.1016/j.ijcard.2016.11.106
http://www.ncbi.nlm.nih.gov/pubmed/27875731
http://doi.org/10.1093/ije/dyg077
http://doi.org/10.1136/oem.2006.029017
http://www.ncbi.nlm.nih.gov/pubmed/16990293
http://doi.org/10.1136/hrt.2010.217166
http://www.ncbi.nlm.nih.gov/pubmed/21487126
http://doi.org/10.3390/ijerph17197326
http://www.ncbi.nlm.nih.gov/pubmed/33036459
http://doi.org/10.1097/01.ede.0000181630.15826.7d
http://doi.org/10.1056/NEJMoa054409
http://doi.org/10.1177/0962280206071644
http://doi.org/10.1289/ehp.10850


Int. J. Environ. Res. Public Health 2022, 19, 8506 16 of 17

18. Goggins, W.B.; Chan, E.Y.Y.; Ng, E.; Ren, C.; Chen, L. Effect modification of the association between short-term meteorological
factors and mortality by urban heat islands in Hong Kong. PLoS ONE 2012, 7, e38551.

19. Bivand, R.S.; Pebesma, E.J.; Gomez-Rubio, V.; Pebesma, E.J. Applied Spatial Data Analysis with R; Springer: New York, NY,
USA, 2013.

20. Bell, B.S.; Broemeling, L.D. A Bayesian analysis for spatial processes with application to disease mapping. Stat. Med. 2000,
19, 957–974. [CrossRef]

21. Dominici, F.; Daniels, M.; Zeger, S.L.; Samet, J.M. Air pollution and mortality: Estimating regional and national dose-response
relationships. J. Am. Stat. Assoc. 2002, 97, 100–111. [CrossRef]

22. MacNab, Y.C. Hierarchical Bayesian spatial modelling of small-area rates of non-rare disease. Stat. Med. 2003, 22, 1761–1773.
[CrossRef] [PubMed]

23. Blangiardo, M.; Cameletti, M. Spatial and Spatio-Temporal Bayesian Models with R-INLA; John Wiley & Sons: Chichester, UK, 2015.
24. MacNab, Y.C. Mapping disability-adjusted life years: A Bayesian hierarchical model framework for burden of disease and injury

assessment. Stat. Med. 2007, 26, 4746–4769. [CrossRef] [PubMed]
25. Kandt, J.; Chang, S.S.; Yip, P.; Burdett, R. The spatial pattern of premature mortality in Hong Kong: How does it relate to public

housing? Urban Stud. 2017, 54, 1211–1234. [CrossRef]
26. Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al.

Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA
2018, 115, 9592–9597. [CrossRef] [PubMed]

27. Seposo, X.; Ueda, K.; Sugata, S.; Yoshino, A.; Takami, A. Short-term effects of air pollution on daily single-and co-morbidity
cardiorespiratory outpatient visits. Sci. Total Environ. 2020, 729, 138934. [CrossRef] [PubMed]

28. Ito, K.; De Leon, S.F.; Lippmann, M. Associations between ozone and daily mortality: Analysis and meta-analysis. Epidemiology
2005, 16, 446–457. [CrossRef]

29. Wong, C.M.; Ma, S.; Hedley, A.J.; Lam, T.H. Effect of air pollution on daily mortality in Hong Kong. Environ. Health Perspect. 2001,
109, 335–340. [CrossRef]

30. Chan, E.Y.Y. Climate Change and Urban Health: The Case of Hong Kong as a Subtropical City; Routledge: Abingdon, UK; New York,
NY, USA, 2019.

31. Goggins, W.B.; Chan, E.Y.Y.; Yang, C.Y. Weather, pollution, and acute myocardial infarction in Hong Kong and Taiwan. Int. J.
Cardiol. 2013, 168, 243–249. [CrossRef]

32. Schwartz, J. Air pollution and hospital admissions for the elderly in Detroit, Michigan. Am. J. Respir. Crit. Care Med. 1994, 150,
648–655. [CrossRef]

33. Wilkinson, R.G. National mortality rates: The impact of inequality? Am. J. Public Health 1992, 82, 1082–1084. [CrossRef]
34. Mackenbach, J.P.; Kunst, A.E.; Cavelaars, A.E.; Groenhof, F.; Geurts, J.J.; EU Working Group on Socioeconomic Inequalities in

Health. Socioeconomic inequalities in morbidity and mortality in western Europe. Lancet 1997, 349, 1655–1659. [CrossRef]
35. Yu, I.T.S.; Zhang, Y.H.; Tam, W.W.S.; Yan, Q.H.; Xu, Y.J.; Xun, X.J.; Wu, W.; Ma, W.J.; Tian, L.; Tse, L.A.; et al. Effect of ambient air

pollution on daily mortality rates in Guangzhou, China. Atmos. Environ. 2012, 46, 528–535. [CrossRef]
36. Mackenbach, J.P.; Bos, V.; Andersen, O.; Cardano, M.; Costa, G.; Harding, S.; Reid, A.; Hemström, O.; Valkonen, T.; Kunst,

A.E. Widening socioeconomic inequalities in mortality in six Western European countries. Int. J. Epidemiol. 2003, 32, 830–837.
[CrossRef]

37. Wilkinson, R.G.; Pickett, K.E. Income inequality and socioeconomic gradients in mortality. Am. J. Public Health 2008, 98, 699–704.
[CrossRef] [PubMed]

38. Humpel, N.; Owen, N.; Leslie, E. Environmental factors associated with adults’ participation in physical activity: A review. Am. J.
Prev. Med. 2002, 22, 188–199. [CrossRef]

39. Kaczynski, A.T.; Henderson, K.A. Environmental correlates of physical activity: A review of evidence about parks and recreation.
Leis. Sci. 2007, 29, 315–354. [CrossRef]

40. Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study.
Lancet 2008, 372, 1655–1660. [CrossRef]

41. Sugiyama, T.; Leslie, E.; Giles-Corti, B.; Owen, N. Associations of neighbourhood greenness with physical and mental health:
Do walking, social coherence and local social interaction explain the relationships? J. Epidemiol. Community Health 2008, 62, e9.
[CrossRef]

42. World Health Organization. Health Emergency and Disaster Risk Management Framework. Available online: https://www.who.
int/hac/techguidance/preparedness/health-emergency-and-disaster-risk-management-framework-eng.pdf?ua=1 (accessed on
26 January 2022).

43. Chan, E.Y.Y.; Lam, H.C.Y. Research in health-emergency and disaster risk management and its potential implications in the post
covid-19 world. Int. J. Environ. Res. Public Health 2021, 18, 2520. [CrossRef]

44. Hong Kong Observatory. Climate of Hong Kong. Available online: https://www.hko.gov.hk/en/cis/climahk.htm (accessed on
26 January 2022).

45. Huang, Z.; Chan, E.Y.Y.; Wong, C.S.; Zee, B.C.Y. Clustering of socioeconomic data in Hong Kong for planning better community
health protection. Int. J. Environ. Res. Public Health 2021, 18, 12617. [CrossRef]

http://doi.org/10.1002/(SICI)1097-0258(20000415)19:7&lt;957::AID-SIM396&gt;3.0.CO;2-Q
http://doi.org/10.1198/016214502753479266
http://doi.org/10.1002/sim.1463
http://www.ncbi.nlm.nih.gov/pubmed/12720309
http://doi.org/10.1002/sim.2890
http://www.ncbi.nlm.nih.gov/pubmed/17427183
http://doi.org/10.1177/0042098015620341
http://doi.org/10.1073/pnas.1803222115
http://www.ncbi.nlm.nih.gov/pubmed/30181279
http://doi.org/10.1016/j.scitotenv.2020.138934
http://www.ncbi.nlm.nih.gov/pubmed/32371210
http://doi.org/10.1097/01.ede.0000165821.90114.7f
http://doi.org/10.1289/ehp.01109335
http://doi.org/10.1016/j.ijcard.2012.09.087
http://doi.org/10.1164/ajrccm.150.3.8087333
http://doi.org/10.2105/AJPH.82.8.1082
http://doi.org/10.1016/S0140-6736(96)07226-1
http://doi.org/10.1016/j.atmosenv.2011.07.055
http://doi.org/10.1093/ije/dyg209
http://doi.org/10.2105/AJPH.2007.109637
http://www.ncbi.nlm.nih.gov/pubmed/17901426
http://doi.org/10.1016/S0749-3797(01)00426-3
http://doi.org/10.1080/01490400701394865
http://doi.org/10.1016/S0140-6736(08)61689-X
http://doi.org/10.1136/jech.2007.064287
https://www.who.int/hac/techguidance/preparedness/health-emergency-and-disaster-risk-management-framework-eng.pdf?ua=1
https://www.who.int/hac/techguidance/preparedness/health-emergency-and-disaster-risk-management-framework-eng.pdf?ua=1
http://doi.org/10.3390/ijerph18052520
https://www.hko.gov.hk/en/cis/climahk.htm
http://doi.org/10.3390/ijerph182312617


Int. J. Environ. Res. Public Health 2022, 19, 8506 17 of 17

46. Barnett, A.G.; Tong, S.; Clements, A.C. What measure of temperature is the best predictor of mortality? Environ. Res. 2010,
110, 604–611. [CrossRef] [PubMed]

47. Schaeffer, L.; de Crouy-Chanel, P.; Wagner, V.; Desplat, J.; Pascal, M. How to estimate exposure when studying the temperature-
mortality relationship? A case study of the Paris area. Int. J. Biometeorol. 2016, 60, 73–83. [CrossRef] [PubMed]

48. Wong, D.W.; Yuan, L.; Perlin, S.A. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Sci.
Environ. Epidemiol. 2004, 14, 404–415. [CrossRef]

49. DATA.GOV.HK. Land Utilization in Hong Kong (Statistics). Available online: https://data.gov.hk/en-data/dataset/hk-pland-
pland1-land-utilization-in-hong-kong-statistics (accessed on 26 January 2022).

50. Besag, J.; York, J.; Mollie, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991,
43, 1–59. [CrossRef]

51. Wang, X.; Yue, Y.R.; Faraway, J.J. Bayesian Regression Modeling with INLA; Chapman & Hall/CRC: Abingdon, UK; Taylor and
Francis Group: Abingdon, UK, 2018.

52. Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B
2002, 64, 583–639. [CrossRef]

53. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2019. Available online: https://www.R-project.org/ (accessed on 26 January 2022).

54. Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian model by using integrated nested Laplace
approximations. J. R. Stat. Soc. Ser. B 2009, 71, 319–392. [CrossRef]

55. Huang, Z.; Lin, H.; Liu, Y.; Zhou, M.; Liu, T.; Xiao, J.; Zeng, W.; Li, X.; Zhang, Y.; Ebi, K.L.; et al. Individual-level and community-
level effect modifiers of the temperature–mortality relationship in 66 Chinese communities. BMJ Open 2015, 5, e009172. [CrossRef]

56. Scoggins, A.; Kjellstrom, T.; Fisher, G.; Connor, J.; Gimson, N. Spatial analysis of annual air pollution exposure and mortality. Sci.
Total Environ. 2004, 321, 71–85. [CrossRef]

57. Zanobetti, A.; O’Neill, M.S.; Gronlund, C.J.; Schwartz, J.D. Susceptibility to mortality in weather extremes: Effect modification by
personal and small area characteristics in a multi-city case-only analysis. Epidemiology 2013, 24, 809. [CrossRef] [PubMed]

58. Gawda, A.; Majka, G.; Nowak, B.; Marcinkiewicz, J. Air pollution, oxidative stress, and exacerbation of autoimmune diseases.
Cent. Eur. J. Immunol. 2017, 42, 305. [CrossRef]

59. Benavides, R.; Montes, F.; Rubio, A.; Osoro, K. Geostatistical modelling of air temperature in a mountainous region of Northern
Spain. Agric. For. Meteorol. 2007, 146, 173–188. [CrossRef]

60. Ustrnul, Z.; Czekierda, D. Application of GIS for the development of climatological air temperature maps: An example from
Poland. Meteorol. Appl. 2005, 12, 43–50. [CrossRef]

61. Wakefield, J.; Shaddick, G. Health-exposure modeling and the ecological fallacy. Biostatistics 2016, 7, 438–455. [CrossRef]
62. Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Rojas-Rueda, D.; Plasència, A.; Nieuwenhuijsen, M.J. Residential green

spaces and mortality: A systematic review. Environ. Int. 2016, 86, 60–67. [CrossRef]
63. Wang, D.; Lau, K.K.L.; Yu, R.; Wong, S.Y.; Kwok, T.T.; Woo, J. Neighbouring green space and mortality in community-dwelling

elderly Hong Kong Chinese: A cohort study. BMJ Open 2017, 7, e015794. [CrossRef]
64. Xu, L.; Ren, C.; Yuan, C.; Nichol, J.; Goggins, W.B. An ecological study of the association between area-level green space and adult

mortality in Hong Kong. Climate 2017, 5, 55. [CrossRef]
65. Cole, H.V.; Triguero-Mas, M.; Connolly, J.J.; Anguelovski, I. Determining the health benefits of green space: Does gentrification

matter? Health Place 2019, 57, 1–11. [CrossRef]
66. Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; Fuertes, E. Exploring pathways linking

greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [CrossRef]
67. Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities

‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [CrossRef]
68. Thach, T.-Q.; Zheng, Q.; Lai, P.-C.; Wong, P.P.-Y.; Chau, P.Y.-K.; Jahn, H.J.; Plass, D.; Katzschner, L.; Kraemer, A.; Wong, C.-M.

Assessing spatial associations between thermal stress and mortality in Hong Kong: A small-area ecological study. Sci. Total
Environ. 2015, 502, 666–672. [CrossRef]

http://doi.org/10.1016/j.envres.2010.05.006
http://www.ncbi.nlm.nih.gov/pubmed/20519131
http://doi.org/10.1007/s00484-015-1006-x
http://www.ncbi.nlm.nih.gov/pubmed/25972307
http://doi.org/10.1038/sj.jea.7500338
https://data.gov.hk/en-data/dataset/hk-pland-pland1-land-utilization-in-hong-kong-statistics
https://data.gov.hk/en-data/dataset/hk-pland-pland1-land-utilization-in-hong-kong-statistics
http://doi.org/10.1007/BF00116466
http://doi.org/10.1111/1467-9868.00353
https://www.R-project.org/
http://doi.org/10.1111/j.1467-9868.2008.00700.x
http://doi.org/10.1136/bmjopen-2015-009172
http://doi.org/10.1016/j.scitotenv.2003.09.020
http://doi.org/10.1097/01.ede.0000434432.06765.91
http://www.ncbi.nlm.nih.gov/pubmed/24045717
http://doi.org/10.5114/ceji.2017.70975
http://doi.org/10.1016/j.agrformet.2007.05.014
http://doi.org/10.1017/S1350482705001507
http://doi.org/10.1093/biostatistics/kxj017
http://doi.org/10.1016/j.envint.2015.10.013
http://doi.org/10.1136/bmjopen-2016-015794
http://doi.org/10.3390/cli5030055
http://doi.org/10.1016/j.healthplace.2019.02.001
http://doi.org/10.1016/j.envres.2017.06.028
http://doi.org/10.1016/j.landurbplan.2014.01.017
http://doi.org/10.1016/j.scitotenv.2014.09.057

	Introduction 
	Materials and Methods 
	Data Collection 
	Mortality Data 
	Socioeconomic Data 
	Meteorological and Pollution Data 
	Green Space Data 

	Statistical Methods 

	Results 
	Spatial Patterns of Mortality and Temperature 
	Associations of Mortality and Temperature 
	Non-Accidental Mortality 
	Cancer Mortality 
	Respiratory Disease Mortality 
	Cardiovascular Disease Mortality 


	Discussion 
	Conclusions 
	References

